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SOME GRONWALL TYPE INEQUALITIES ON TIME SCALES

WEI NIAN LI AND WEIHONG SHENG

(Communicated by N. Elezović)

Abstract. In this paper, we investigate some Gronwall type inequalities on time scales, which
provide explicit bounds on unknown functions. Our results unify and extend some continuous
inequalities and their corresponding discrete analogues. Two applications of the main results are
given in the end of this paper.

1. Introduction

In 1988 Hilger [1] introduced the calculus on time scales in order to unify the
theory of continuous and discrete dynamic systems. Motivated by the paper [1], many
authors have extended some fundamental integral inequalities used in the theory of
differential and integral equations on time scales. For example, we refer the reader to
the literatures [2–8] and the references cited therein. In this paper, we investigate some
Gronwall type inequalities on time scales, which unify and extend some continuous
inequalities and their corresponding discrete analogues. The obtained inequalities can
be used as important tools in the study of certain properties of dynamic equations on
time scales.

2. Preliminaries on time scales

We first briefly introduce the time scales calculus, which can be found in [2, 3].
In what follows, R denotes the set of real numbers, Z denotes the set of integers,

N0 denotes the set of nonnegative integers, C denotes the set of complex numbers, and
C(M,S) denotes the class of all continuous functions defined on set M with range in
the set S . We use the usual conventions that empty sums and products are taken to be 0
and 1 respectively.

A time scale T is an arbitrary nonempty closed subset of R . The forward jump
operator σ on T is defined by

σ(t) := inf{s ∈ T : s > t} ∈ T for all t ∈ T.
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In this definition we put inf( /0) = supT , where /0 is the empty set. If σ(t) > t , then
we say that t is right-scattered. If σ(t) = t and t < supT , then we say that t is right-
dense. The backward jump operator, left–scattered and left–dense points are defined in
a similar way. The graininess μ : T → [0,∞) is defined by μ(t) := σ(t)− t . The set
Tκ is derived from T as follows: If T has a left–scattered maximum m , then Tκ = T

−{m} ; otherwise, T
κ = T .

REMARK 2.1. Clearly, we see that σ(t) = t if T = R and σ(t) = t +1 if T = Z .
For f : T → R and t � t0, t ∈ Tκ , we define f Δ(t) to be the number (provided it

exists) such that given any ε > 0, there is a neighborhood U of t with

|[ f (σ(t))− f (s)]− f Δ(t)[σ(t)− s]| � ε|σ(t)− s| for all s ∈U.

We call f Δ(t) the delta derivative of f at t .

REMARK 2.2. f Δ is the usual derivative f
′
if T = R and the usual forward dif-

ference ΔΔΔΔf (defined by ΔΔΔΔf (t) = f (t +1)− f (t)) if T = Z .
We say that f : T → R is rd–continuous provided f is continuous at each right–

dense point of T and has a finite left–sided limit at each left–dense point of T . As
usual, the set of rd–continuous functions is denoted by Crd . A function F : T → R is
called an antiderivative of f : T → R provided FΔ(t) = f (t) holds for all t ∈ T

κ . In
this case we define the Cauchy integral of f by∫ b

a
f (t)Δt = F(b)−F(a) for a,b ∈ T.

We say that p : T → R is regressive provided 1+ μ(t)p(t) �= 0 for all t ∈ T . We
denote by R the set of all regressive and rd–continuous functions. We define the set of
all positively regressive functions by R+ = {p ∈ R : 1+μ(t)p(t) > 0 for all t ∈ T} .

THEOREM 2.1. If p ∈ R and fix t0 ∈ T , then the exponential function ep(·, t0) is
for the unique solution of the initial value problem

xΔ = p(t)x, x(t0) = 1 on T.

THEOREM 2.2. If p ∈ R , then
(i) ep(t, t) ≡ 1 and e0(t,s) ≡ 1 ;
(ii) ep(σ(t),s) = (1+ μ(t)p(t))ep(t,s);
(iii) if p ∈ R+ , then ep(t,t0) > 0 for all t ∈ T .

REMARK 2.3. Clearly, the exponential function is given by

ep(t,s) = e
∫ t
s p(τ)dτ , eα(t,s) = eα(t−s), eα(t,0) = eαt

for s, t ∈ R , where α ∈ R is a constant and p : R → R is a continuous function if
T = R , and the exponential function is given by

ep(t,s) =
t−1

∏
τ=s

[1+ p(τ)], eα(t,s) = (1+α)t−s, eα(t,0) = (1+α)t
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for s, t ∈ Z with s < t , where α �= −1 is a constant and p : Z → R is a sequence
satisfying p(t) �= −1 for all t ∈ Z if T = Z .

THEOREM 2.3. If p ∈ R and a,b,c ∈ T , then

∫ b

a
p(t)ep(c,σ(t))Δt = ep(c,a)− ep(c,b).

THEOREM 2.4. Let t0 ∈ T
κ and w : T×T

κ → R be continuous at (t,t) , where
t � t0, t ∈ Tκ with t > t0 . Assume that wΔ(t, ·) is rd–continuous on [t0,σ(t)] . If for
any ε > 0 , there exists a neighborhood U of t , independent of τ ∈ [t0,σ(t)] , such that

|w(σ(t),τ)−w(s,τ)−wΔ(t,τ)(σ(t)− s)| � ε|σ(t)− s| for all s ∈U,

where wΔ denotes the derivative of w with respect to the first variable, then

g(t) :=
∫ t

t0
w(t,τ)Δτ

implies

gΔ(t) =
∫ t

t0
wΔ(t,τ)Δτ +w(σ(t),t).

The following theorem is a foundational result in dynamic inequalities.

THEOREM 2.5. (Comparison Theorem). Suppose u,b ∈ Crd , a ∈ R+ . Then

uΔ(t) � a(t)u(t)+b(t), t � t0, t ∈ T
κ

implies

u(t) � u(t0)ea(t,t0)+
∫ t

t0
ea(t,σ(τ))b(τ)Δτ, t � t0, t ∈ T

κ .

3. Main results

In this section, we investigate some Gronwall type inequalities on time scales. For
convenience, we always assume that t � t0, t0 ∈ Tκ .

THEOREM 3.1. Assume that u, f ∈Crd , u(t) and f (t) are nonnegative, and c � 0
is a constant. If w(t,s) is defined as in Theorem 2.4 such that w(t,s) � 0 and wΔ(t,s) �
0 for t,s ∈ T with s � t , then

u(t) � c+
∫ t

t0
f (τ)

[
u(τ)+

∫ τ

t0
w(τ,s)u(s)Δs

]
Δτ, t ∈ T

κ , (3.1)

implies

u(t) � c

[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δτ

]
, t ∈ T

κ , (3.2)
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where

A(t) = w(σ(t),t)+
∫ t

t0
wΔ(t,s)Δs, t ∈ T

κ . (3.3)

Proof. Define a function z(t) by the right side of (3.1). Then z(t0) = c , u(t) � z(t)
and

zΔ(t) = f (t)
[
u(t)+

∫ t

t0
w(t,s)u(s)Δs

]
� f (t)

[
z(t)+

∫ t

t0
w(t,s)z(s)Δs

]
, t ∈ T

κ .
(3.4)

Define a function v(t) by

v(t) = z(t)+
∫ t

t0
w(t,s)z(s)Δs, t ∈ T

κ . (3.5)

Then v(t0) = z(t0) = c , z(t) � v(t) , zΔ(t) � f (t)v(t) and v(t) is nondecreasing for
t ∈ Tκ . Using Theorem 2.4, we obtain

vΔ(t) = zΔ(t)+w(σ(t),t)z(t)+
∫ t

t0
wΔ(t,s)z(s)Δs

� f (t)v(t)+w(σ(t),t)v(t)+
∫ t

t0
wΔ(t,s)v(s)Δs

�
[

f (t)+w(σ(t),t)+
∫ t

t0
wΔ(t,s)Δs

]
v(t)

= [ f (t)+A(t)]v(t), t ∈ Tκ .

(3.4)

Using Theorem 2.5 and noting v(t0) = c , from (3.4), we have

v(t) � ce f+A(t,t0), t ∈ T
κ . (3.5)

Therefore,
zΔ(t) � c f (t)e f+A(t,t0), t ∈ T

κ . (3.5)

Integrating the inequality (3.5) from t0 to t , we obtain

z(t) � c

[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δτ

]
, t ∈ T

κ . (3.6)

Clearly, the desired inequality (3.2) follows by using (3.6) in u(t) � z(t) . This com-
pletes the proof of Theorem 3.1. �

REMARK 3.1. By taking w(t,s) = w(s) , the inequality given in Theorem 3.1 re-
duces to the inequality given in [7, Theorem 1].

REMARK 3.2. The result of Theorem 3.1 holds for an arbitrary time scale. There-
fore, using Theorem 3.1, we immediately obtain many results for some peculiar time
scales. For example, letting T = R and T = Z respectively, we can obtain Theorem
2.1(a1 ) and Theorem 2.5(c1 ) in [11].
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THEOREM 3.2. Assume that u,a, f ∈ Crd , u(t),a(t) and f (t) are nonnegative,
and a(t) is nondecreasing. If w(t,s) is defined as in Theorem 2.4 such that w(t,s) � 0
and wΔ(t,s) � 0 for t,s ∈ T with s � t , then

u(t) � a(t)+
∫ t

t0
f (τ)

[
u(τ)+

∫ τ

t0
w(τ,s)u(s)Δs

]
Δτ, t ∈ T

κ , (3.7)

implies

u(t) � a(t)
[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δ(τ)

]
, t ∈ T

κ , (3.8)

where A(t) is defined as in (3.3).

Proof. Noting a(t) � 0 and a(t) is nondecreasing, for any ε > 0, we observe that

u(t)
a(t)+ ε

� 1+
∫ t

t0
f (τ)

[
u(τ)

a(t)+ ε
+

∫ τ

t0
w(τ,s)

u(s)
a(t)+ ε

Δs

]
Δτ

� 1+
∫ t

t0
f (τ)

[
u(τ)

a(τ)+ ε
+

∫ τ

t0
w(τ,s)

u(s)
a(s)+ ε

Δs

]
Δτ, t ∈ T

κ .
(3.9)

Letting

v(t) =
u(t)

a(t)+ ε
,

from (3.9), we have

v(t) � 1+
∫ t

t0
f (τ)

[
v(τ)+

∫ τ

t0
w(τ,s)v(s)Δs

]
Δτ, t ∈ T

κ . (3.10)

Using Theorem 3.1, from (3.10), we obtain

v(t) � 1+
∫ t

t0
f (τ)e f+A(τ,t0)Δτ, t ∈ T

κ ,

where A(t) is defined as in (3.3). Therefore,

u(t) � (a(t)+ ε)
[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δτ

]
, t ∈ T

κ . (3.11)

Letting ε → 0 in (3.11), we easily obtain the desired inequality (3.8). The proof of
Theorem 3.2 is complete. �

THEOREM 3.3. If all conditions of Theorem 3.2 are satisfied, then the inequality
(3.7) implies

u(t) � a(t)e f+A(t,t0), t ∈ T
κ , (3.12)

where A(t) is defined as in (3.3).

Proof. As in the proof of Theorem 3.2, we obtain (3.10). Letting

y(t) = 1+
∫ t

t0
f (τ)

[
v(τ)+

∫ τ

t0
w(τ,s)v(s)Δs

]
Δτ, t ∈ T

κ , (3.13)
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we have v(t) � y(t) , y(t) is nondecreasing, and

yΔ(t) = f (t)
[
v(t)+

∫ t

t0
w(t,s)v(s)Δs

]
� f (t)

[
y(t)+

∫ t

t0
w(t,s)y(s)Δs

]
, t ∈ T

κ .
(3.14)

Define a function z(t) by

z(t) = y(t)+
∫ t

t0
w(t,s)y(s)Δs, t ∈ T

κ . (3.15)

Then z(t0) = y(t0) = 1, y(t) � z(t) , z(t) is nondecreasing, and

zΔ(t) = yΔ(t)+w(σ(t),t)y(t)+
∫ t

t0
wΔ(t,s)y(s)Δs

� f (t)z(t)+w(σ(t),t)y(t)+
∫ t

t0
wΔ(t,s)y(s)Δs

�
[

f (t)+w(σ(t),t)+
∫ t

t0
wΔ(t,s)Δs

]
z(t)

= [ f (t)+A(t)]z(t), t ∈ Tκ ,

(3.16)

where A(t) is defined as in (3.3). Using Theorem 2.5 and noting z(t0) = 1, from (3.16),
we have

z(t) � e f+A(t,t0), t ∈ T
κ . (3.17)

Noting the definitions of v(t),y(t) and z(t) , from (3.17), we easily obtain

u(t) � (a(t)+ ε)e f+A(t,t0), t ∈ T
κ . (3.18)

Letting ε → 0 in (3.18), we can obtain the desired inequality (3.12). This completes
the proof of Theorem 3.3. �

REMARK 3.3. By taking w(t,s) = w(s) , the inequalities given in Theorem 3.2
and Theorem 3.3 reduces to the inequalities given in [7, Theorem 2].

Using Theorem 3.2 and Theorem 3.3, we easily establish the following corollaries.

COROLLARY 3.1. Let T = R and assume that u(t),a(t), f (t) ∈C(R+,R+) , and
a(t) is nondecreasing. If w(t,s) and its partial derivative ∂

∂ t w(t,s) are real–valued
nonnegative continuous functions for t,s ∈ R+ with s � t , then the inequality

u(t) � a(t)+
∫ t

0
f (τ)

[
u(τ)+

∫ τ

0
w(τ,s)u(s)ds

]
dτ, t ∈ R+, (3.19)

implies

u(t) � a(t)
[
1+

∫ t

0
f (τ)exp

(∫ τ

s
( f (s)+A(s)ds

)
dτ

]
, t ∈ R+, (3.20)

where

A(t) = w(t,t)+
∫ t

0

∂
∂ t

w(t,s)ds. (3.21)

REMARK 3.4. Letting w(t,s) = w(s) in Corollary 3.1, we immediately obtain
Theorem 1.7.4 in [9].



SOME GRONWALL TYPE INEQUALITIES ON TIME SCALES 73

COROLLARY 3.2. Assume that the conditions of Corollary 3.1 are satisfied. Then
the inequality (3.19) implies

u(t) � a(t)exp

(∫ t

0
( f (s)+A(s)ds

)
, t ∈ R+, (3.22)

where A(t) is defined as in (3.21).

COROLLARY 3.3. Let T = Z and assume that u(t),a(t) and f (t) are nonnega-
tive functions defined for t ∈ N0 , and a(t) is nondecreasing. If w(t,s) and ΔΔΔΔ1w(t,s)
are real–valued nonnegative functions for t,s ∈ N0 with s � t , then the inequality

u(t) � a(t)+
t−1

∑
s=0

f (s)
[
u(s)+

s−1

∑
τ=0

w(s,τ)u(τ)
]
, t ∈ N0, (3.23)

implies

u(t) � a(t)
[
1+

t−1

∑
s=0

f (s)
s−1

∏
τ=0

(1+ f (τ)+ Ã(τ))
]
, t ∈ N0, (3.24)

where ΔΔΔΔ1w(t,s) = w(t +1,s)−w(t,s) for t,s ∈ N0 with s � t , and

Ã(t) = w(t +1,t)+
t−1

∑
s=0

ΔΔΔΔ1w(t,s), t ∈ N0. (3.25)

REMARK 3.5. Let w(t,s) = w(s) in Corollary 3.3. We easily obtain Theorem
2.4.2 in [10].

COROLLARY 3.4.. Assume that the conditions of Corollary 3.3 are satisfied. Then
the inequality (3.23) implies

u(t) � a(t)
t−1

∏
s=0

(
f (s)+ Ã(s)

)
, t ∈ N0, (3.26)

where Ã(t) is defined as in (3.25).

THEOREM 3.4. Assume that u,b, f ∈ Crd , u(t),b(t) and f (t) are nonnegative. If
w(t,s) is defined as in Theorem 2.4 such that w(t,s) � 0 and wΔ(t,s) � 0 for t,s ∈ T

with s � t , then

u(t) � b(t)+
∫ t

t0
f (τ)

[
u(τ)+

∫ τ

t0
w(τ,s)u(s)Δs

]
Δτ, t ∈ T

κ , (3.27)

implies

u(t) � b(t)+H(t)
[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δτ

]
, t ∈ T

κ , (3.28)

where A(t) is defined as in (3.3) and

H(t) =
∫ t

t0
f (τ)

[
b(τ)+

∫ τ

t0
w(τ,s)b(s)Δs

]
Δτ, t ∈ T

κ . (3.29)
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Proof. Define a function z(t) by

z(t) =
∫ t

t0
f (τ)

[
u(τ)+

∫ τ

t0
w(τ,s)u(s)Δs

]
Δτ, t ∈ T

κ . (3.30)

Then from (3.27), u(t) � b(t)+ z(t) and using this in (3.30), we have

z(t) �
∫ t

t0
f (τ)

[
b(τ)+ z(τ)+

∫ τ

t0
w(τ,s)(b(s)+ z(s))Δs

]
Δτ

= H(t)+
∫ t

t0
f (τ)

[
z(τ)+

∫ τ

t0
w(τ,s)z(s)Δs

]
Δτ, t ∈ T

κ ,
(3.31)

where H(t) is defined as in (3.29). Clearly H ∈ Crd , and H(t) is nonnegative and
nondecreasing in t , t ∈ Tκ . Therefore, for any ε > 0, it follows from (3.31) that

z(t)
H(t)+ ε

� 1+
∫ t

t0
f (τ)

[
z(τ)

H(t)+ ε
+

∫ τ

t0
w(τ,s)

z(s)
H(t)+ ε

Δs

]
Δτ

� 1+
∫ t

t0
f (τ)

[
z(τ)

H(τ)+ ε
+

∫ τ

t0
w(τ,s)

z(s)
H(s)+ ε

Δs

]
Δτ, t ∈ T

κ .
(3.32)

By Theorem 3.1, from (3.32), we have

z(t)
H(t)+ ε

� 1+
∫ t

t0
f (τ)e f+A(τ,t0)Δτ, t ∈ T

κ ,

where A(t) is defined as in (3.3). Hence

z(t) � (H(t)+ ε)
[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δτ

]
, t ∈ T

κ . (3.33)

Letting ε → 0 in (3.33) and noting u(t) � b(t)+ z(t) , we easily obtain the desired
inequality (3.28). The proof of Theorem 3.4 is complete. �

REMARK 3.6. In Theorem 3.4, letting T = R and T = Z respectively, we can
obtain Theorem 2.1(a2 ) and Theorem 2.5(c2 ) in [11].

In Theorem 3.4, letting w(t,s) = w(s) , we can obtain the following result.

COROLLARY 3.4. Assume that u,b, f ,w ∈Crd , u(t),b(t), f (t) and w(t) are non-
negative. Then

u(t) � b(t)+
∫ t

t0
f (τ)

[
u(τ)+

∫ τ

t0
w(s)u(s)Δs

]
Δτ, t ∈ T

κ , (3.34)

implies

u(t) � b(t)+ H̃(t)
[
1+

∫ t

t0
f (τ)e f+w(τ, t0)Δτ

]
, t ∈ T

κ , (3.35)

where

H̃(t) =
∫ t

t0
f (τ)

[
b(τ)+

∫ τ

t0
w(s)b(s)Δs

]
Δτ, t ∈ T

κ . (3.36)

REMARK 3.7. Using our main results, we can obtain many dynamic inequalities
for some peculiar time scales. Due to limited space, their statements are omitted here.
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4. Applications

In this section, we present some applications of Theorem 3.1 to investigate certain
properties of solutions of dynamic equation on time scales.

Consider the the following initial value problem

uΔ(t) = f (t)
(

u(t)+
∫ t

t0
w(t,s)u(s)Δs

)
, u(t0) = C, t ∈ T

κ , (4.1)

where f (t) and w(t,s) are as defined in Theorem 3.1, and C is a constant.

THEOREM 4.1. Assume u(t) is a solution of IVP (4.1). Then

|u(t)| � |C|
[
1+

∫ t

t0
f (τ)e f+A(τ,t0)Δτ

]
, t ∈ T

κ , (4.2)

where A(t) is as defined in Theorem 3.1.

Proof. Obviously, the solution u(t) of IVP (4.1) satisfies the following equivalent
equation

u(t) = C+
∫ t

t0
f (τ)

(
u(τ)+

∫ t

t0
w(τ,s)u(s)Δs

)
Δτ, t ∈ T

κ . (4.3)

It follows from (4.3) that

|u(t)| � |C|+
∫ t

t0
f (τ)

(
|u(τ)|+

∫ t

t0
w(τ,s)|u(s)|Δs

)
Δτ, t ∈ T

κ . (4.4)

Using Theorem 3.1 in (4.4), we immediately obtain (4.2). This completes the proof of
Theorem 4.1. �

THEOREM 4.2. The IVP (4.1) has at most one solution.

Proof. Let u1(t) and u2(t) be two solutions of IVP (4.1). Then we have

|u1(t)−u2(t)| �
∫ t

t0
f (τ)

[
|u1(τ)−u2(τ)|+

∫ τ

t0
w(τ,s)|u1(s)−u2(s)|Δs

]
Δτ, t ∈ T

κ .

(4.5)
Using Theorem 3.1 in (4.5), we have |u1(t)− u2(t)| ≡ 0, t ∈ Tκ . Therefore, u1(t) =
u2(t) , i,e., the IVP (4.1) has at most one solution. The proof of Theorem 4.2 is com-
plete. �
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