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SOME SUBCLASSES OF MULTIVALENT FUNCTIONS INVOLVING
THE EXTENDED FRACTIONAL DIFFERINTEGRAL OPERATOR

R. M. EL-ASHWASH AND M. K. AOUF

(Communicated by A. Kufner)

Abstract. The object of the present paper, is to investigate various properties of several sub-
classes of multivalent analytic functions which are defined here by using the extended fractional
differintegral operator

QM) (o< A < p+1; pEN).

1. Introduction

Let A,(p) denote the class of functions of the form:

f@) =2+ Y e, (pneN={1,2,..};n>p), (1.1)
k=n

which are analytic and p-valent in the open unit disc U = {z € C: |z| < 1}. For conve-
nience, we write A (p) =A(p). A function f € A,(p) is said to be in the class S}, , ()
of p-valent starlike functions of order « in U, if

Re{Z;(S)}>a O<a<p;zel). (1.2)

Furthermore, a function f € A,(p) is said to be in the class K, ,(ct) of p-valent
convex functions of order ¢ in U, if

Red1+ZL O o 0<a<p e (1.3)
(2

From (1.2) and (1.3) it follows that

£(2) € Kpn(a) & 2 ;fz’

€Sy (a) (0<a<p;zel). (1.4)
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The class S} (o) = S,(c) was introduced by Patil and Thakare [14] and the class
K, 1(o) = Kp(o) was introduced by Owa [10]. We note that

Spa(@) €Sp(a) €5,(0) =S, and K, o(at) € K (@) € Kp(0) = K, (0 < < p),

where S}, and K}, denote the subclasses of A(p) consisting of functions which are p-
valent starlike in U and p-valent convex in U, respectivly (see, for details, [3] see also
[21]).

If f and g are analytic functions in U, we say that f is subordinate to g, written
symbolically as f(z) < g(z) if there exists a Schwarz function w, which (by definition)
is analytic in U with w(0) =0 and |w(z)| <1 forall z € U, such that f(z) = g(w(z)),
z € U. Furthermore, if the function g is univalent in U, then we have the following
equivalence, (cf., e.g., [6], see also [7, p. 4]):

f(z) <¢(x)(z€ V) = f(0) = ¢(0) and f(U) C (V).
For functions f; € A(p) (i =1,2) given by

filz) ="+ zak+p,izk+p (i=1,2;peN),
k=1

we define the Hadamard product (or convolution) of f; and f; by
(fixf2)(z )_Zp+zak+p,1ak+p22 =(faxfi)(z) (pEN,z€U). (1.5
k=1

In our present paper, we shall also make use of the Gauss hypergeometric function
2F defined by

2F1abcz 2

— (a,b,ceCic¢Zy ={0,—-1,-2,...}), (1.6)
C k

where (d); denotes the Pochhammer symbol given in terms of the Gamma function I,
by

(d) = I'(d+k) (k=0; d e C*=C\{0})
“TTTW) \dd+1)..(d+k—-1) (keN;deC).

We note that the series defined by (1.6) converges absolutely for z € U and hence ,F}
represents an analytic function in U (see for details [22, Ch. 14]).

For function f(z) € A(p), the generalized Bernardi-Libera-Livingston integral op-
erator Fy, , : A(p) — A(p) is defined by

Fun(£)(@) = 522 [ poyar

0

« Mtp k
=+ Y ————Z |« f(z
( kg’lu—i-lﬂ—k ) )

=R (Lu+p;u+p+1;2) % f(z) (u>—p; zeU). (1.7)
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With a view to introducing an extended fractional differintegral operator, we be-
gin by recalling the following definitions of fractional calculus (fractional integral and
fractional derivative of an arbitrary order) considered by Owa [9] (see also [11] and
[20D).

DEFINITION 1. The fractional integral of order A (A > 0) is defined, for a func-
tion f, analytic in a simply-connected region of the complex plane containing the ori-

gin, by
Dy Lo f)
Dy (Z)_F()L)/o (z—t)l—ldt’ (1.8)

is removed by requiring log(z —) to be real when

where the multiplicity of (z—7)*~!

(z—1)>0.

DEFINITION 2. Under the hypothesis of Definition 1, the fractional derivative of
f oforder A (A > 0) is defined by:
1 _d f(t)
A T(1-4) dz JO Z( t)’tdt O0<A<1)
D f(z) = (1.9)
LD f(2) (n<A<n+1;neNy=Nu{0}),

where the multiplicity of (z —¢)~* is removed as in Definition 1.

In [12] Patel and Mishra defined the extended fractional differintegral operator

le’p) :A(p) — A(p) for a function f of the form (1.1) (with n = 1) and for a real
number A (—eo <A < p+1) by:

Ck+p+1)I(p+1—21)
Q(lp P k+p
: +2 T(p+ DD(k+p+1—2) %47

=z”2F1(1,p+1;p+l—k;z)*f(z) (—eo<A<p+1;z€U). (1.10)
It is easily seen from (1.10) that (see [12])
AQP P f(2)) = (p—M)QUTP () 4+ 2QH P (2) (—eo< A < pi z€U). (1.11)

We also note that

Q' 1(2) = f(a), @l'7r(e) = L,
and, in general
() gy LH1=A) 505 o :
QY f(2) = CES)) 'Dif(z) (—ee<A<p+1;z€U), (1.12)

where D’ f(z) is, respectively, the fractional integral of f of order —A when —eo <
A < 0 and the fractional derivative of f of order A when 0 < A < p+ 1. For integral
values of A, (1.12) becomes:

QU f() = P=9) 12/ £ (2)

P (JEN; j<p+1),
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and

p+m
" Jo

= Fl,pOF2,pO ~~~0Fm7p(f)(z)

P i i
= F17p <1—_Z) *FZ,P (l——z> * ... *Emp (l—_z> *f(Z),

where Fj, , is the familiar integral operator defined by (1.7) (see Section 3) and o
denotes the usual composition of functions.

Z
QP f(z) = 1 f(dr (m e N)

The fractional differential operator le’p ) with 0 < A < 1 was investigated by

Srivastava and Aouf [17]. More recently, Srivastava and Mishra [19] obtained sev-
eral interesting properties and charactaristics for certain subclasses of p-valent analytic
functions involving the differintegral operator le’p ) When (—eo < A < 1). The oper-
ator le’l) = Q? was introduced by Owa and Srivastava [11].

By using the extended fractional differintegral operator QEM’ ) (me<A<p+1),
we define the following subclass of functions in A,(p).

DEFINITION 3. For fixed parameters A,B (-1 < B<A < 1),0< a < p, and
p,n € N we say that a function f € A,(p) is in the class v (a;A,B) 1f it satisfies the
following subordination condition:

(4.p) !
1 z(SBz/l FQF o) 2142 A< pizeu, pen).  (113)
p—o Q§ 717)f(z) 1+ Bz

pn

For convenience, we write

QE’LP) I
vﬁn(a;L—l):vI’}?n(a): {f € An(p) :Re (%) >a,0<a<p,z€ U}.

We note that the class vp (a;A,B) = vy, 4 (0;A,B), was introduced and studied by Patel
and Mishra [12]. We, further observe that

@ pﬁn(a,A,B): a(aA+2 (B A),B) 0<a<1l;—-1<B<A<I1);
and

(i) vo,(0:1,—1) =S85 () and v, (a;1,—1) =K, ().
Also we note that Srivastava et al. [18] have studied some interesting properties of the
class v (a;1,—1) =S; () (0< A < 1;0 < o < 1) by using the techniques of the
Hadamard product.

Let us consider the first-order differential subordination

H((2),2¢(2)) < h(2)-

Then, a univalent function g is called its dominant, if @(z) < g(z) for all analytic
functions ¢ that satisfy this differential subordination. A dominant g is called the best
dominant, if g(z) < ¢(z) for all dominants g. For the general theory of the first-order
differential subordination and its applications, we refer the reader to [2] and [7].
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2. Preliminaries
To establish our main results, we shall require the following lemmas.
LEMMA 1. [12]. Let 6 > 0 and the function f(z) € An(p) satisfy

QM) QM) 144z
+6 <
zP 7P 1+ Bz

(1-9) (zeU).

Then
(A.p)
m(@ f(2)

m l
) >p" (meN,; zeU),
ZP

where

A+(1-H(1-B) LR (L LS+ ) (B£0)

p:

(p—2A)A _
1255 (B=0).

The result is the best possible.

LEMMA 2. [4]. Let h(z) be analytic and convex (univalent) function in U with
h(0) = 1. Also let the function ¢ given by

0(z) = 1+ cnd +end + ... 2.1)
be analytic in U. If
29’ (2)
0(z)+ 5 = h(z) (Re(8)>0;0+#0;z€U),
then 5 .
0(2) < w(2) = ;z*%/o SR d < h(z) (€ U), 2.2)
and @ is the best dominant of (2.2).

LEMMA 3. [5]. Let { #0 be a real number, g >0 and 0< P < 1. Suppose

also that the function ¥ given by
Y(z) =14cud" +epp1 L
is analytic in U and that

aM

n+a

Y(z) <1+ z (mneN;zel),

where

g =R+
1=+l 1+ 1+
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If the function 0(z) = 1 +e,7" +e,112" ' + ... is analytic in U and satisfies the follow-
ing subordination condition :

Y@=+ c{(1-B)0G) +B} <1+Mz (z€U),

then
Re(6(z)) >0 (z€U).

LEMMA 4. [15]. Let ¢ be analytic in U with ¢$(0) =1 and ¢(z) # 0 for 0 <
lz| < 1, andlet A,B € C with A+ B,|B| < 1.
(i) Let B#0 and y € C* satisfy either

l rA—-B)

—1‘<1 or ‘
B

If ¢ satisfies
20’ (z) . 1+Az
yo(z) ' 1+B7Z

then
A-B
9(2) < (1+Bz)""5)

and this is the best dominant.
(ii) Let B=0 and y € C* be such that |YA| < &, and if ¢ satisfies

29’ (2)

b Y9(2)

< 1+Az,

then
0(z) < et

and this is the best dominant.

3. Main results

Unless otherwise mentioned, we assume throughout this paper that: —1 < B <
A< 1, —o <A < p,p,n €N and the powers understood as principle values.

THEOREM 1. Let —o < A < p,p,n € N;v e C* and A,B € C with A # B and
|B| < 1. Suppose that

W—l’glor W#—l <1, if B#0,
T if B=0.

VA| < ——,
vaj <
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1f £(2) € Anl(p) with Q%P £(2) £ 0 forall z € U = U\{0}, then

QP f(7) - 1+Az
o f) 1B

implies
(%.p) v
Q
(72 pf(z>> <q(2),
z
where (450
v(p—2)(A=B
g(z) = { (L+B2) TN if B0,
eV(pfl)AZ lf‘ B= O7
is the best dominant.
Proof. If we let
(A.p) v
Q
9(z) = (Tf@> (zeU), (3.

then ¢ is analytic in U, ¢(0) =1 and ¢(z) # 0 for z € U. Taking the logarithmic
derivatives in both sides of (3.1), multiplying by z and using the identity (1.11), we
have
20 (2) Q" r(z) 144z
1+ = = -
vip=A)ex) QP pi)  1+4Bz
Now, the assertions of Theorem 1 follows by using Lemma 4 for y = v(p — A ), which
completes the proof of Theorem 1.
Putting A = 0 in Theorem 1, we obtain the following result.

COROLLARY 1. Let pn e N,v € C* and let A,B € C with A# B and |B| < 1.
Suppose that
vp(A—B)
B

vp(A—B)
B

N

1 or

_1‘

+1’<1, if B#0,
\VA\<%, if B=0.

If £(2) € An(p) with f(z) #0 forall z € U, then

f (2) 1+Az
fz) =Py + Bz

(%)v <q(z),

implies
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where
ﬂ@:{@+3@w@¥) if B#0,

evpAz if B=0,

is the best dominant.

THEOREM 2. Let 6 >0, 0< o < p, p,n € N and let the function f(z) € An(p)
satisfy the following subordination condition:

Q@) | &)
z? z?

(1-9)

<1+Mz (z€U), (3.2)

where

8(p—a) (1+:2)
My = . (3.3)
((p=2)=8(p— )|+ /(p—2)+(p— A +n)
Then f(z) € v;}m(a).

Proof. Put

(A.p)
M@ZELEEQ (zeU). (3.4)

Then ¢(z) is of the form (2.1) and is analytic in U. From Lemma 1 with A=M;, B=
0 and m =1, we have

(p—A)M,
() < 1+p_)t+5nz (zeU),
which is equivalent to
_ (p—A)M, _
@)~ 1< 5, =N <1 eV, (3.5)
Set
(2:p) !
1 Q
P(z) = A & )f(z)) —o]| (0<a<p;zel,). (3.6)
P=a\ Q"7 f(z)
Using the identity (1.11) followed by (3.4), we obtain
(A+1,p)
Q" Vf@) _[(, P« p—o
p” =|(1 Py + Py} P(z)| ¢(2). (3.7
In view of (3.7), the hypothesis (3.2) can be written as follows:
PO é(p—a) 3 _p—A+dn
‘(1 5—p_k> 0@+ L= r)p0) 1‘ < =Ry o)
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We need to show that (3.8) yields
Re{P(z)} >0 (z€U). (3.9)
If we suppose that Re{P(z)} 0 (z € U), then there exists a point zgp € U such that

P(z0) = ix for some x € R. To prove (3.9), it is sufficient to obtain a contradiction
from the following inequality:

W= (1= 2222 ey + AL ey 1| >

Let @(z0) = u+ iv. Then, by using (3.4) and the triangle inequality, we obtain that

2

we note that (3.9) holds true if ¥(x) > 0 for any x € R. Since

(u* +1?) (%)2 >0,

the inequality ‘{’(x) > 0 holds true if the discriminant A < 0; that is,
5(17—0‘) g 2 5(19—05) g 2 2
A=14 _ — =7 +
[( p— A Y p— A (u Y )

(b (e

p—A p—A

which is equivalent to
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2 2
N) 3 (p—)H—Sn) N2
p—A
Putting ¢(z9) — 1 = Ee' for some real O € R, we get

v E2sin’ 0

u?  (1+&cosB)?

< l( o) ’1 8=

Since the above expression attains its maximum value at cos® = —&, by using (3.5),
we obtain

2 g2 N2

ur T 1-E2 7 1-N?

(s

2 2
—A+d6n 2
N) a (p p=2 ) N ]
< 2 2 7’
S(p—a) S(p—a) —A+6n
- (- Seelo) () ]
which yields A < 0. Therefore, W > M|, which contradicts (3.8). Hence Re{P(z)} >

0 (z € U). This proves that f(z) € vl’}ﬂ(oc). This completes the proof of Theorem 2.
Taking A =0 in Theorem 2, we obtain

)

COROLLARY 2. Let 6 >0, 0< a<p, peN. If f(z) € Ay(p) such that —
z

0 (z € U) and satisfies the following differential subordination:

@) < f@) .
(1_6)2—17_'_5% <14+Mz (6 > 0; ZEU),
where
S(p—a) 1+

T p-dp—a)trRt (pron?

Then f(z) €S}, ,(@),0 < < p.

REMARK 1. (i) We note that this result (with n = 1) also obtained by Patel et al.
[13, Corollary 3];

(i1) Putting p =1 in Corollary 2, we obtain the result obtained by Liu [5, Theorem
2.1].

THEOREM 3. Let § >0, 0< a<p, p,neNand u > 0. If f(z) € Ax(p) such

Q" f(z)
that — #£0 (z € U) and satisfies the following differential subordination:
z
e (2@ s@E ) (M@ L ey
(1-8)| == PO G - < 1+Mz (z€U),

(3.10)
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where

(p—a)s (142
(155) = (u>0),
My=9 Ip—(p—a)8|+ p2+<p+%) 3.11)

e (u=0).

Then f(z) € v;}m(a).
Proof. If u =0, then the condition (3.10) is equivalent to

2@ 1(2)

<p—a (zeU),
QP (2)

-p

which, in turn, implies that f(z) € vl’}ﬂ(oc).
So, we let 1 > 0 and suppose that

(2.p) "
0(z) = (M) (zel). (3.12)

zP

Choosing the principal value in (3.12), we note that ¢ is of the form (2.1) and is
analytic in U . Differentiating (3.12) with respect to z, we obtain

(1-) (M)“+a @7 f(2)) (sw)f@)“
zP

_ ¢<z>+j—pz<o’(z> (cev).
(3.13)

pzl’*I zP

which, in view of Lemma 2 (with A = M, and B = 0), yields

up
up+on

o(z) <1+ Mz (z€ U).

Also, with the aid of (3.12),(3.10) can be written as follows:
o o
(p(z){l—6+6 Kl —;> P(z)—i—;} } <1+Myz (z€U),
where P(z) is given by (3.6). Therefore, by Lemma 3, we find that
Re {P(2)} >0 (z€U),
that is, that
/17 !
N ECSI0)
1 ol
Q" f(2)

This completes the proof of Theorem 3.
Putting A = 0 in Theorem 3, we obtain the following result.

}>(x 0<a<p;zel,).
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COROLLARY 3. Let § >0, 0< a<p, p,neNand u >0. If f(z) €A,(p) such
f@)

that e # 0 (z € U) and satisfies the following differential subordination :

g
FON" | 2f (@) (f)\"
(1-9) <—zl’) +6pf(z) <—zl’) <1+Myz (z€U),

where M, is given as in Theorem 3, then f(z) € S}, ,(o).

REMARK 2. (i) We note that this result (with n = 1) also obtained by Patel et al.
[13, Corollary 4];

(ii) Putting p =1 in Corollary 3, we obtain the result obtained by Liu [5, Theorem
2.2].

Putting A =0 and § = 1 in Theorem 3 we obtain the following result:

COROLLARY 4. Let £ >0, 0< o < p and p,n € N. If f(z) € A,(p) such that
f(@)

— #0 (z € U) and satisfies the inequality:
Z

o ()

then f(z) €S, ,(at).

—pl< (p—oc)(pu—i—n) (ZGU)7

po+\/pu?+ (pu+n)’

REMARK 3. (i) Putting p = 1 in Corollary 4, we get the result obtained by Liu
[5, Corollary 2.1];

(1) Putting p = u =1 in Corollary 4, we obtain the result obtained by Mocanu
and Oros [8, Corollary 2.2].

Putting A =0 and § = p%a, 0 < a < p in Theorem 3 we obtain the following
result :

COROLLARY 5. Let 4 >0, 0< o < p and p,n € N. If f(z) € A,(p) such that
f(@)

— # 0 (z € U) and satisfies the inequality:
z

(r—o1) (&)“_ﬁfﬁ) (f(Z)>“+a_p'

4 pf) \
(p—a)lpu(p—a)+n]
(p—1)++/p2ul(p—o)>+[pu(p — a) +n)?

then f(z) €S}, (o).

(zeU),

REMARK 4. (i) Putting p = 1 in Corollary 5, we get the result obtained by Liu
[5, Corollary 2.2];

(1) Putting p = u =1 in Corollary 5, we obtain the result obtained by Mocanu
and Oros [8, Corollary 2.4].
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4. Properties involving the operator le’p ) f@)

THEOREM 4. If f(z) € vﬁn(a;A,B), then for all s,t € C with |s| < 1,]t| < 1
and s #t the next subordination holds:

A—B)

(p—a)(;
tpggl,p)f . 1+ Bzs B .
pQUP) =) 1+ Bzt o TBFO @-1)
s Z f(Zt) exp[(p—a)AZ(s—[)], l‘fB:O

Proof. 1f f € v}, (::A,B), from (1.13) it follows that

ARTE) . pr B+ (A-B)(p-a))z
Q7 f(z) L+Bz

= k(z). 4.2)

It is easy to check that the function k defined by (4.2) and the function h given by

Z

hz) = H(zs,0) = / (1 —Ssu N 1—tm> du
0

are convex in U, and by combining a general subordination theorem [16, Theorem 4.1]
with (4.2) we deduce

(p—a)(A-B)z

QM f(z))
<7 e *h(z). (4.3)

Q% (z) _,,> e =

A simple computation shows that, if ¢(z) is an analytic functioin in the unit disc U
with @(0) =0, then

o) en(z) = [ “Wau @4

and thus, from (4.3) and (4.4) we have

Sz

[ (@) p du
/( S —;)du-<(p—a)(A—B) ——

1z

1z
This last subordination implies

ST

FO@MPrw)y  p du
exp /(W_; dul <exp \(p=o)(A=B) [ =51+

1z

which repesents the conclusion (4.1).
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COROLLARY 6. If f € VI),L7,1(06;A,B)7 then for all |z| = r < 1, the next inequalities
hold:

(p=a)(A=B)
p) P(1+Br)— B8, if B#0
’Qz f(z)’g{rpexp[(p—a)ArL if B=0, 4.5)
)(A—B)
(2.p) rP(1—Br)"=% ", f B#0
‘QZ f(Z)‘ 2 {rl’exp[—(p—a)AV}» lfB:07 (46)
and N
@ <p—a>Ar, FE=0.

All of the estimates asserted here are sharp.

Proof. Taking s=1 and =0 in (4.1), and using the definition of subordination,

we obtain N
o ”’)f(Z) (1+Bw(2) = F 2, if B#0, 4.8)
P exp[(p — a)A ( ), if B=0, '

where w is an analytic function in U, with w(0) =0 and |w(z)| <1 for all z € U.
According to the well-known Schwarz’s Theorem, we have |w(z)| < |z| forall z € U.
(i) If B > 0, then from (4.8) are find that

Q) —a)(A—B
QIR = exp (p-o)A-B) log |1+ Bw(z)|
P B
(p—a)(A-B) p—)(A-B)

(
=|14Bw(z)| ? <(1+4Br) B

@ii) If B < 0, we easily obtain that

=|(1+Bw() | *

Q" () ‘ | p-a)a-p)

(p—a)(A-B) (p=c)(A-5)

<[@+Br)7'] T =(1+Br)
This proves the inequality (4.5) for B # 0, and similarly we may prove the other in-

equalities in (4.6) and (4.7).
Now, for |z| =r and B # 0, from (4.8) we see that

(4.,p)
arg(Qz Pf(z))‘ _(p—a)(A-B) jarg(1 + Bw()

k4 B

(p—a)(A-B) . _
ST o '(Bl7),

and for B=0, (4.7) is a direct consequence of (4.8).
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It is easy to verify that all of the esimates from this corollary are sharp, being
attained by the function f; defined in U by

(p-a)A-B) .
QELF)JCO (2) = ?(1+Bz) B, if B #0, (4.9)
exp[(p— )Az], if B=0.

COROLLARY 7. If f € v§7n(oc;A7B), then for all |z| = r < 1, the next inequalities
hold :

@75y | < { 7 Pt B+ (p— lrb 1+ B) R ir B,
P~ p+ (p— a)Ar]exp|(p — a)Ar], if B=0,
(4.10)
(p—2)(A-B) .
(@7 f2)| > P p—[aB+ (p—a)Alr} (1-Br)" 7 ', if B#0,
= p—(p— &) |A]rexp [~ (p — a)Ar], if B=0,
4.11)
and
(=a)(A-B) 1 - (p—a)(A-B)r
(Q(/l,p)f( . 5] sin” " (|B|r) + sin L)_ 0B+ (p— a)AIBR ]’
z
arg (ZZT> < if B#0,
(p—a)Ar+sin~! {A(%&)r} . if B=0.
(4.12)
All of the estimates asserted here are sharp.
Proof. 1If we define the function g by
(A.p) !
Q
8(2) = W (zeU), (4.13)
Q" f(2)

then g is analytic in U with g(0) = p and

p+IpB+(A-B)(p—a)z
8(2) = 1+ Bz '
It is known from [1] that the function g satisfies the following sharp inequalities:

p—[aB+(p—a)Alr o p+[aB+(p—o)Alr

< < C lel=r<1, (414
- 18(2)] T+ Br 2 =r< (4.14)
p—laB+(p—a)ABr*| _ (A—B)(p—o)r
- < = ,
8(2) e S g k=r<i, @13
and B
jargg(z)] < sin~! — A Bl 7 =r<1. (4.16)

p—|aB+ (p—o)A|Br?’
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Applying to the function g given by (4.13) the inequalities (4.14),(4.15) and

(4.16), in conjunction with the estimates given by Corollary 6, we deduce the relations
(4.10),(4.11) and (4.12), All of the estimates are sharp for the the function fy defined
by (4.9).
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