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Abstract. In this paper we consider a system of mixed variational-like inequalities (for short,
SMVLI) involving nondifferentiable terms, and its related system of auxiliary problems in the
setting of real Hilbert spaces. An existence theorem for the system of auxiliary problems is
established. By exploiting this theorem, an iterative algorithm for SMVLI is constructed. We
derive the existence of a unique solution of SMVLI and discuss the convergence analysis of
the proposed iterative algorithm. Our results represent the generalization, improvement and
development of the previously known results in the literature.

1. Introduction

In 1980, Aubin [1] has pointed out that the Nash equilibrium problem [18] for dif-
ferentiable functions can be formulated in the form of a variational inequality problem
defined over the product of sets (for short, VIPPS). Further, Pang [19] showed that not
only Nash equilibrium problem but also various equilibrium-type problems, like, traffic
equilibrium, spatial equilibrium, and general equilibrium programming problems from
operations research, economics, game theory, mathematical physics and other areas,
can also be uniformly modeled as a VIPPS. Later, it is found that VIPPS is equivalent
to the problem of system of variational inequalities (for short, SVI), see for example
[12, 16] and references therein. Pang [19] suggested parallel and serial algorithms to
compute the approximate solutions of a VIPPS. He also studied the convergence of the
approximate solutions obtained by his algorithms to the exact solution of a VIPPS. The
approximation methods for solving a VIPPS are also studied by Cohen and Chaplais
[7], Ferris and Pang [8], Konnov [14, 15] and Makler-Sceimberg et al. [17]. In 1999,
Ansari and Yao [4] used a fixed point theorem for a family of multivalued maps to
prove the existence of a solution of SVI. Since than several authors, see for instance
[2, 3, 4, 5, 12, 11, 16], studied the existence theory of various classes of systems of
variational(-like) inequalities by exploiting fixed point theorems and maximal element
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theorems for a family of multivalued maps. In the recent past, system of variational(-
like) inequalities and system of generalized variational(-like) inequalities emerged as
tools to prove the existence of a solution of Nash equilibrium problem [18] for differ-
entiable and non-differentiable functions, respectively. See for example [2, 3, 4, 5, 12]
and references therein. On the other hand, only a few iterative algorithms have been
constructed for finding the approximate solutions of systems of variational inequalities,
see for example [7, 8, 14, 15, 17, 19] and references therein.

In this paper, we consider a system of mixed variational-like inequalities which
includes system of variational(-like) inequalities as a special case. We propose a sys-
tem of auxiliary problems and prove the existence of its unique solution. Further, by
exploiting our existence result for a unique solution of our auxiliary problem, we pro-
pose an iterative algorithm for computing the approximate solutions of our system of
mixed variational-like inequalities. Finally, we prove the existence of a unique solu-
tion of our system of mixed variational-like inequalities and discuss the convergence
of the approximate solutions obtained by proposed algorithm to the solution of system
of mixed variational-like inequalities. The results of this paper generalize and improve
several results appeared in the literature.

2. Formulations and preliminaries

Throughout the paper, unless otherwise stated, we assume that I = {1,2, ...,N}
is an index set and for each i ∈ I , Hi is a real Hilbert space whose inner product and
norm are denoted by 〈., .〉i and ‖ · ‖i , respectively. We set H =∏

i∈I
Hi . For each i ∈ I ,

let Fi : H → Hi and ηi : Hi ×Hi → Hi be nonlinear mappings. For each i ∈ I , let
bi : Hi×Hi → R be a bifunction which is not necessarily differentiable and satisfies the
following properties:

(a) bi is linear in the first argument;
(b) bi is bounded, that is, there exists a constant γi > 0 such that

bi(ui,vi) � γi‖ui‖i‖vi‖i, ∀ui,vi ∈ Hi;

(c) bi(ui,vi)−bi(ui,wi) � bi(ui,vi −wi), ∀ui,vi,wi ∈ Hi ;
(d) bi is convex in the second argument.

REMARK 2.1. As in [[10], Remark 2.1], we have

(i) For each i ∈ I and for arbitrary ui,vi ∈Hi , property (a) implies that −bi(ui,vi) =
bi(−ui,vi) and property (b) implies that bi(−ui,vi) � γi‖ui‖i‖vi‖i . Hence, we
have

|bi(ui,vi)| � γi‖ui‖i‖vi‖i, ∀ui,vi ∈ Hi, i ∈ I,

bi(ui,0) = bi(0,vi) = 0, ∀ui,vi ∈ Hi, i ∈ I.

(ii) For each i ∈ I , it follows from properties (b) and (c) that, for all ui,vi,wi ∈ Hi ,

bi(ui,vi)−bi(ui,wi) � γi‖ui‖i‖vi−wi‖i,
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bi(ui,wi)−bi(ui,vi) � γi‖ui‖i‖wi − vi‖i.

Therefore

|bi(ui,vi)−bi(ui,wi)| � γi‖ui‖i‖vi−wi‖i, ∀ui,vi,wi ∈ Hi.

This implies that for each i ∈ I , bi is continuous with respect to the second
argument.

We consider the following system of mixed variational-like inequalities (for short, SMVLI):

Find (x1,x2, ...,xN) ∈ H such that
〈F1(x1,x2, ...,xN),η1(y1,x1)〉1 +b1(x1,y1)−b1(x1,x1) � 0, ∀y1 ∈ H1,
〈F2(x1,x2, ...,xN),η2(y2,x2)〉2 +b2(x2,y2)−b2(x2,x2) � 0, ∀y2 ∈ H2,

...
〈FN(x1,x2, ...,xN),ηN(yN ,xN)〉N +bN(xN ,yN)−bN(xN ,xN) � 0, ∀yN ∈ HN .

(2.1)

The following definitions, assumptions and results will be used in the sequel.

DEFINITION 2.1. For each i ∈ I , let ηi : Hi ×Hi → Hi is a mapping. A mapping
Fi : H → Hi is said to be

(i) αi −ηi -strongly monotone in the ith argument if there exists a constant α1 > 0
such that

〈Fi(u1,u2, ...,uN)−Fi(v1,u2, ...,uN),ηi(ui,vi)〉i
� αi‖ui− vi‖2

i , ∀ui,vi ∈ Hi, (u1, . . .uN) ∈ H;

(ii) (βi1,βi2, ...,βiN)-Lipschitz continuous if there exist constants βi1,βi2, ...,βiN > 0
such that

‖Fi(u1,u2, ...,uN)−Fi(v1,v2, ...,vN)‖i

� βi1‖u1− v1‖1 +βi2‖u2− v2‖2 + · · ·+βiN‖uN − vN‖N

for all (u1,u2, ...,uN),(v1,v2, ...,vN) ∈ H .

ASSUMPTION 2.1. For each i ∈ I , Fi : H → Hi and ηi : Hi ×Hi → Hi satisfy the
following conditions:

(i) For all (x1,x2, ...,xN) ∈ H , there exists a constant τi > 0 such that

‖Fi(x1,x2, ...,xN)‖i � τi (‖x1‖1 +‖x2‖2 + · · ·+‖xN‖N) ;

(ii) ηi(xi,zi) = ηi(xi,yi)+ηi(yi,zi) , ∀xi,yi,zi ∈ Hi ;

(iii) ηi is affine in the second argument;

(iv) For each fixed ui ∈ Hi , the mapping vi �→ ηi(ui,vi) is continuous from the weak
topology to the weak topology.
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REMARK 2.2. It is easy to see that condition (ii) in Assumption 2.1 implies the
following conclusions: For all ui,vi ∈ Hi

(a) ηi(ui,ui) = 0;
(b) ηi(vi,ui) = −ηi(ui,vi) .

LEMMA 2.1. [6] Let X be a nonempty, closed and convex subset of a real Haus-
dorff topological vector space E and let φ ,ψ : X ×X → R be mappings satisfying the
following conditions:

(i) ψ(x,y) � φ(x,y) , for all x,y ∈ X and ψ(x,x) � 0 , for all x ∈ X ;

(ii) For each fixed x ∈ X , the mapping y �→ φ(x,y) is upper semicontinuous;

(iii) For each y ∈ X , the set {x ∈ X : ψ(x,y) < 0} is convex;

(iv) There exists a nonempty compact set K ⊆ X and x0 ∈ K such that

ψ(x0,y) < 0, ∀y ∈ X \K.

Then, there exists y∗ ∈ K such that φ(x,y∗) � 0 , for all x ∈ X .

LEMMA 2.2. [20] Let K be a nonempty and convex subset of a real Hilbert
space H and f : K → R be a lower semicontinuous and convex functional. Then, f is
weakly lower semicontinuous.

REMARK 2.3. [20] By using the same argument as in the proof of Lemma 2.2,
it is easy to see that f : K → R is upper semicontinuous and concave if f is weakly
upper semicontinuous.

3. System of auxiliary problems and an iterative algorithm

Related to SMVLIP (2.1), we introduce the following system of auxiliary problems
(for short, SAP):

Given (x1,x2, ...,xN) ∈ H, find (z1,z2, ...,zN) ∈ H such that
〈η1(z1,x1)+ρF1(x1,x2, ...,xN),η1(y1,z1)〉1 +ρ [b1(x1,y1)−b1(x1,x1)] � 0,

∀y1 ∈ H1,
〈η2(z2,x2)+ρF2(x1,x2, ...,xN),η2(y2,z2)〉2 +ρ [b2(x2,y2)−b2(x2,x2)] � 0,

∀y2 ∈ H2,
...

〈ηN(zN ,xN)+ρFN(x1,x2, ...,xN),ηN(yN ,zN)〉N +ρ [bN(xN ,yN)−bN(xN ,xN)] � 0,
∀yN ∈ HN ,

(3.1)
where ρ > 0 is a constant.

We establish the following existence result for a solution of SAP.
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THEOREM 3.1. For each i ∈ I , let the mapping ηi : Hi ×Hi → Hi be σi -strongly
monotone and δi -Lipschitz continuous and the bifunction bi : Hi ×Hi → R satisfy the
conditions (a)-(d). If the Assumption 2.1 holds, then SAP has a solution.

Proof. For each i ∈ I , define the mappings φi,ψi : Hi ×Hi → R by

φi(yi,zi) = 〈ηi(yi,xi)+ρFi(x1,x2, ...,xN),ηi(yi,zi)〉i +ρ [bi(xi,yi)−bi(xi,zi)]

and

ψi(yi,zi) = 〈ηi(zi,xi)+ρFi(x1,x2, ...,xN),ηi(yi,zi)〉i +ρ [bi(xi,yi)−bi(xi,zi)]

for all yi,zi ∈ Hi and for a given (x1,x2, ...,xN) ∈ H . For each i ∈ I , we show that
the mappings φi and ψi satisfy all the conditions of Lemma 2.1 in the weak topology.
Indeed, since condition (ii) in Assumption 2.1 implies (b) in Remark 2.2, we have

0 � ‖ηi(yi,zi)‖2
i = 〈ηi(yi,zi),ηi(yi,zi)〉i

= 〈ηi(yi,xi)+ηi(xi,zi),ηi(yi,zi)〉i
= 〈ηi(yi,xi)−ηi(zi,xi),ηi(yi,zi)〉i,

and hence
〈ηi(zi,xi),ηi(yi,zi)〉i � 〈ηi(yi,xi),ηi(yi,zi)〉i.

Thus, it follows that φi and ψi satisfy condition (i) of Lemma 2.1. Since the bifunc-
tion bi is convex in the second argument and ηi is affine in the second argument, it
follows from Remark 2.1 (ii) and Assumption 2.1 (iv) that zi �→ φi(yi,zi) is weakly
upper semicontinuous. Further, it is easy to show that for each fixed zi ∈ Hi , the set
{yi ∈ Hi : ψi(yi,zi) < 0} is convex, and so the conditions (ii) and (iii) of Lemma 2.1
hold.

For each i ∈ I , let

ωi = σ−2
i

(
δ 2

i ‖xi‖i +ρτiδi (‖x1‖1 + · · ·+‖xN‖N)+ργi‖xi‖i
)

and
Ki = {zi ∈ Hi : ‖zi‖i � ωi} .

Then, for each i ∈ I, Ki is a weakly compact subset of Hi . For any fixed zi ∈ Hi \Ki ,
take v0i = 0 ∈ Ki . From Assumption 2.1, Lipschitz continuity and strong monotonicity
of ηi , and Remark 2.1, we have

ψi(v0i ,zi) = ψi(0,zi)
= 〈ηi(zi,xi)+ρFi(x1,x2, ...,xN),ηi(0,zi)〉+ρ [bi(xi,0)−bi(xi,zi)]
= −〈ηi(0,zi),ηi(0,zi)〉i+〈ηi(0,xi),ηi(0,zi)〉i

+ρ〈Fi(x1,x2, ...,xN),ηi(0,zi)〉i +ρ [bi(xi,0)−bi(xi,zi)]

� −σ2
i ‖zi‖2

i +δ 2
i ‖xi‖i‖zi‖i+ρτiδi(‖x1‖1+ · · ·+‖xN‖N)‖zi‖i+ργi‖xi‖i‖zi‖i

= −σ2
i ‖zi‖i{‖zi‖i−σ−2

i (δ 2
i ‖xi‖i+ρτiδi(‖x1‖1+ · · ·+‖xN‖N)+ργi‖xi‖i)}

< 0.
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Hence, condition (iv) of Lemma 2.1 holds. Thus, by Lemma 2.1, for each i ∈ I , there
exists z∗i ∈ Hi such that

φi(yi,z
∗
i ) � 0, ∀yi ∈ Hi,

that is,

〈ηi(yi,xi)+ρFi(x1,x2, ...,xN),ηi(yi,z
∗
i )〉i +ρ [bi(xi,yi)−bi(xi,z

∗
i )] � 0, ∀yi ∈ Hi.

(3.2)
For arbitrary t ∈ (0,1] and yi ∈ Hi , let yi,t := tyi +(1− t)z∗i . By replacing yi by yi,t in
(3.2), we obtain

0 � 〈ηi(yi,t ,xi)+ρFi(x1,x2, ...,xN),ηi(yi,t ,z
∗
i )〉i +ρ [bi(xi,yi,t)−bi(xi,z

∗
i )]

= 〈ηi(xi,yi,t)−ρFi(x1,x2, ...,xN),ηi(z∗i ,yi,t)〉i +ρ [bi(xi,yi,t)−bi(xi,z
∗
i )]

� 〈tηi(xi,yi)+ (1− t)ηi(xi,z
∗
i )−ρFi(x1,x2, ...,xN),tηi(z∗i ,yi)

+ (1− t)ηi(z∗i ,z
∗
i )〉i +ρ [tbi(xi,yi)+ (1− t)bi(xi,z

∗
i )−bi(xi,z

∗
i )]

� t〈tηi(xi,yi)+ (1− t)ηi(xi,z
∗
i )−ρFi(x1,x2, ...,xN),ηi(z∗i ,yi)〉i

+ tρ [bi(xi,yi)−bi(xi,z
∗
i )].

Hence, we have

〈tηi(xi,yi)+ (1− t)ηi(xi,z
∗
i )−ρFi(x1,x2, ...,xN),ηi(z∗i ,yi)〉i

+ρ [bi(xi,yi)−bi(xi,z
∗
i )] � 0.

Letting t → 0+ , we have

〈ηi(xi,z
∗
i )−ρFi(x1,x2, ...,xN),ηi(z∗i ,yi)〉i +ρ [bi(xi,yi)−bi(xi,z

∗
i )] � 0, ∀yi ∈ Hi,

which implies that

〈ηi(z∗i ,xi)+ρFi(x1,x2, ...,xN),ηi(yi,z
∗
i )〉i +ρ [bi(xi,yi)−bi(xi,z

∗
i )] � 0, ∀yi ∈ Hi.

Therefore, (z∗1,z
∗
2, ...,z

∗
N) ∈ H is the solution of SAP. �

Based on Theorem 3.1, we construct an iterative algorithm for computing the ap-
proximate solutions of SMVLIP (2.1) in the following way.

For given (x0
1,x

0
2, ...,x

0
N) ∈ H , from Theorem 3.1, SAP has a solution, say,

(x1
1,x

1
2, ...,x

1
N) ∈ H , that is,

〈
η1(x1

1,x
0
1)+ρF1(x0

1,x
0
2, ...,x

0
N),η1(y1,x

1
1)

〉
1 +ρ

[
b1(x0

1,y1)−b1(x0
1,x

1
1)

]
� 0,

∀y1 ∈ H1,〈
η2(x1

2,x
0
2)+ρF2(x0

1,x
0
2, ...,x

0
N),η2(y2,x

1
2)

〉
2 +ρ

[
b2(x0

2,y2)−b2(x0
2,x

1
2)

]
� 0,

∀y2 ∈ H2,

...〈
ηN(x1

N ,x0
N)+ρFN(x0

1,x
0
2, ...,x

0
N),ηN(yN ,x1

N)
〉
N +ρ

[
bN(x0

N ,yN)−bN(x0
N ,x1

N)
]
� 0,

∀yN ∈ HN .
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Again by Theorem3.1, for given (x1
1,x

1
2, ...,x

1
N)∈H , SAP has a solution (x2

1,x
2
2, ...,x

2
N)∈

H , that is,

〈
η1(x2

1,x
1
1)+ρF1(x1

1,x
1
2, ...,x

1
N),η1(y1,x2

1)
〉
1 +ρ

[
b1(x1

1,y1)−b1(x1
1,x

2
1)

]
� 0,
∀y1 ∈ H1,〈

η2(x2
2,x

1
2)+ρF2(x1

1,x
1
2, ...,x

1
N),η2(y2,x2

2)
〉
2 +ρ

[
b2(x1

2,y2)−b2(x1
2,x

2
2)

]
� 0,
∀y2 ∈ H2,

...〈
ηN(x2

N ,x1
N)+ρFN(x1

1,x
1
2, ...,x

1
N),ηN(yN ,x2

N)
〉
N +ρ

[
bN(x1

N ,yN)−bN(x1
N ,x2

N)
]
� 0,

∀yN ∈ HN .

By induction, we construct the following iterative algorithm for finding the approximate
solutions of SMVLIP (2.1):

ALGORITHM 3.1. For given (x0
1, x0

2, ..., x0
N) ∈ H , compute a sequence

{(xn
1,x

n
2, ...,x

n
N)} of approximate solutions in H for SMVLIP (2.1) by the following

iterative scheme
〈
η1(xn+1

1 ,xn
1)+ρF1(xn

1,x
n
2, ...,x

n
N),η1(y1,x

n+1
1 )

〉
1 +ρ

[
b1(xn

1,y1)−b1(xn
1,x

n+1
1 )

]
� 0,
∀y1 ∈ H1,〈

η2(xn+1
2 ,xn

2)+ρF2(xn
1,x

n
2, ...,x

n
N),η2(y2,x

n+1
2 )

〉
2 +ρ

[
b2(xn

2,y2)−b2(xn
2,x

n+1
2 )

]
� 0,
∀y2 ∈ H2,

...〈
ηN(xn+1

N ,xn
N)+ρFN(xn

1,x
n
2, ...,x

n
N),ηN(yN ,xn+1

N )
〉
N +ρ

[
bN(xn

N ,yN)−bN(xn
N ,xn+1

N )
]
� 0,

∀yN ∈ HN ,
(3.3)

where ρ > 0 is a constant.

4. Existence of a unique solution and convergence analysis

We prove the existence of a unique solution of SMVLIP (2.1) and discuss the
convergence analysis of the sequences generated by Algorithm 3.1.

THEOREM 4.1. For each i ∈ I , let the mapping Fi : H → Hi be αi -ηi -strongly
monotone in the i th argument and (βi1,βi2, ...,βiN)-Lipschitz continuous, the mapping
ηi : Hi ×Hi → Hi be σi -strongly monotone and δi -Lipschitz continuous and the bi-
function bi : Hi ×Hi → R satisfy the properties (a)-(d). Assume that the Assumption
2.1 hold and the following conditions hold for ρ > 0

∣∣∣∣ρ− αi − t2i εi
β 2

ii − t2i ε2
i

∣∣∣∣ <

√
(αi − t2i εi)2 − (δ 2

i − t2i )(β 2
ii − t2i ε2

i )

β 2
ii − t2i ε2

i

, (4.1)

αi > t2i εi +
√

(δ 2
i − t2i )(β 2

ii − t2i ε2
i ) and βii > tiεi,
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where

ti :=
σ2

i

δi
and εi :=

γi
σ2

i

+
N

∑
j=1, j �=i

β ji

t j
, i = 1,2, ...,N.

Then the approximate solution (xn
1,x

n
2, ...,x

n
N) generated by Algorithm 3.1 strongly con-

verges to a solution (x∗1,x
∗
2, ...,x

∗
N) of SMVLIP (2.1).

Proof. For any (y1,y2, ...,yN) ∈ H , it follows from (3.3) that

〈
η1(xn

1,x
n−1
1 )+ρF1(xn−1

1 ,xn−1
2 , ...,xn−1

N ),η1(y1,x
n
1)

〉
1

+ρ
[
b1(xn−1

1 ,y1)−b1(xn−1
1 ,xn

1)
]
� 0,〈

η2(xn
2,x

n−1
2 )+ρF2(xn−1

1 ,xn−1
2 , ...,xn−1

N ),η2(y2,x
n
2)

〉
2

+ρ
[
b2(xn−1

2 ,y2)−b2(xn−1
2 ,xn

2)
]
� 0,

...〈
ηN(xn

N ,xn−1
N )+ρFN(xn−1

1 ,xn−1
2 , ...,xn−1

N ),ηN(yN ,xn
N)

〉
N

+ρ
[
bN(xn−1

N ,yN)−bN(xn−1
N ,xn

N)
]
� 0 (4.2)

and

〈
η1(xn+1

1 ,xn
1)+ρF1(xn

1,x
n
2, ...,x

n
N),η1(y1,x

n+1
1 )

〉
1

+ρ
[
b1(xn

1,y1)−b1(xn
1,x

n+1
1 )

]
� 0,〈

η2(xn+1
2 ,xn

2)+ρF2(xn
1,x

n
2, ...,x

n
N),η2(y2,x

n+1
2 )

〉
2

+ρ
[
b2(xn

2,y2)−b2(xn
2,x

n+1
2 )

]
� 0,

...〈
ηN(xn+1

N ,xn
N)+ρFN(xn

1,x
n
2, ...,x

n
N),ηN(yN ,xn+1

N )
〉
N

+ρ
[
bN(xn

N ,yN)−bN(xn
N ,xn+1

N )
]
� 0. (4.3)

Taking yi = xn+1
i in the i th inequality of (4.2) and yi = xn

i in the i th inequality of (4.3),
we obtain

〈
ηi(xn

i ,x
n−1
i )+ρFi(xn−1

1 ,xn−1
2 , ...,xn−1

N ),ηi(xn+1
i ,xn

i )
〉
i

+ρ
[
bi(xn−1

i ,xn+1
i )−bi(xn−1

i ,xn
i )

]
� 0, (4.4)

〈
ηi(xn+1

i ,xn
i )+ρFi(xn

1,x
n
2, ...,x

n
N),ηi(xn

i ,x
n+1
i )

〉
i

+ρ
[
bi(xn

i ,x
n
i )−bi(xn

i ,x
n+1
i )

]
� 0. (4.5)

Adding (4.4) and (4.5), we get
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∥∥ηi(xn
i ,x

n+1
i )

∥∥2
i

=
〈
ηi(xn

i ,x
n+1
i ),ηi(xn

i ,x
n+1
i )

〉
i

�
〈
ηi(xn−1

i ,xn
i )−ρ(Fi(xn−1

1 ,xn−1
2 , ...,xn−1

N )−Fi(xn
1,x

n
2, ...,x

n
N)),ηi(xn

i ,x
n+1
i )

〉
i

+ρ
[
bi(xn−1

i − xn
i ,x

n+1
i )+bi(xn

i − xn−1
i ,xn

i )
]

�
〈
ηi(xn−1

i ,xn
i )−ρ(Fi(xn−1

1 ,xn−1
2 , ...,xn−1

N )−Fi(xn
1,x

n
2, ...,x

n
N)),ηi(xn

i ,x
n+1
i )

〉
i

+ρbi
(
xn
i − xn−1

i ,xn
i − xn+1

i

)
.

(4.6)
Since ηi is σi -strongly monotone and δi -Lipschitz continuous, from (4.6) we obtain

σ2
i

∥∥xn
i −xn+1

i

∥∥2
i

�
∥∥ηi(xn−1

i ,xn
i )−ρ(Fi(xn−1

1 ,xn−1
2 , ...,xn−1

N )−Fi(xn
1,x

n
2, ...,x

n
N))

∥∥
i

∥∥ηi(xn
i ,x

n+1
i )

∥∥
i

+ργi
∥∥xn

i −xn−1
i

∥∥
i

∥∥xn
i −xn+1

i

∥∥
i

� δi
∥∥ηi(xn−1

i ,xn
i )−ρ(Fi(xn−1

1 ,xn−1
2 , ...,xn−1

N )−Fi(xn
1,x

n
2, ...,x

n
N))

∥∥
i

∥∥xn
i −xn+1

i

∥∥
i

+ργi
∥∥xn

i −xn−1
i

∥∥
i

∥∥xn
i −xn+1

i

∥∥
i ,

which implies that
∥∥xn

i −xn+1
i

∥∥
i

� 1
σ2

i
[δi

∥∥ηi(xn−1
i ,xn

i )−ρ(Fi(xn−1
1 ,xn−1

2 , ...,xn−1
N )−Fi(xn

1,x
n
2, ...,x

n
N))

∥∥
i

+ργi
∥∥xn

i −xn−1
i

∥∥
i]

� 1
σ2

i
[δi(

∥∥ηi(xn−1
i ,xn

i )−ρ(Fi(xn−1
1 ,xn−1

2 , ...,xn−1
N )

−Fi(xn−1
1 ,xn−1

2 , ...,xn−1
i−1 ,xn

i ,x
n−1
i+1 , ...,xn−1

N ))
∥∥

i
+ρ

∥∥Fi(xn−1
1 ,xn−1

2 , ...,xn−1
i−1 ,xn

i ,x
n−1
i+1 , ...,xn−1

N )−Fi(xn
1,x

n
2, ...,x

n
N)

∥∥
i
)

+ργi‖xn
i −xn−1

i ‖i].

(4.7)

Since Fi is αi -ηi -strongly monotone in the i th argument and (βi1,βi2, ...,βiN)-
Lipschitz continuous, we deduce that

∥∥ηi(xn−1
i ,xn

i )−ρ(Fi(xn−1
1 ,xn−1

2 , ...,xn−1
N )−Fi(xn−1

1 ,xn−1
2 , ...,xn−1

i−1 ,xn
i ,x

n−1
i+1 , ...,xn−1

N ))
∥∥2

i

=
∥∥ηi(xn−1

i ,xn
i )

∥∥2

−2ρ〈Fi(xn−1
1 ,xn−1

2 , ...,xn−1
N )−Fi(xn−1

1 ,xn−1
2 , ...,xn−1

i−1 ,xn
i ,x

n−1
i+1 , ...,xn−1

N ),ηi(xn−1
i ,xn

i )〉
+ρ2

∥∥Fi(xn−1
1 ,xn−1

2 , ...,xn−1
N )−Fi(xn−1

1 ,xn−1
2 , ...,xn−1

i−1 ,xn
i ,x

n−1
i+1 , ...,xn−1

N )
∥∥2

i

� δ 2
i

∥∥xn−1
i −xn

i

∥∥2−2ραi
∥∥xn−1

i −xn
i

∥∥2
+ρ2β 2

ii

∥∥xn−1
i −xn

i

∥∥2
i

=
(
δ 2

i −2ραi+ρ2β 2
ii

)∥∥xn−1
i −xn

i

∥∥2
i ,

(4.8)
and

∥∥Fi(xn−1
1 ,xn−1

2 , ...,xn−1
i−1 ,xn

i ,x
n−1
i+1 , ...,xn−1

N )−Fi(xn
1,x

n
2, ...,x

n
N)

∥∥
i

�
N

∑
j=1, j �=i

βi j

∥∥∥xn−1
j − xn

j

∥∥∥
j
. (4.9)
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It follows from (4.7), (4.8) and (4.9) that

∥∥xn
i − xn+1

i

∥∥
i � 1

σ2
i

[
δi

√
δ 2

i −2ραi +ρ2β 2
ii +ργi

]∥∥xn−1
i − xn

i

∥∥
i

+
ρδi

σ2
i

N

∑
j=1, j �=i

βi j

∥∥∥xn−1
j − xn

j

∥∥∥
j
. (4.10)

Taking i = 1,2, ...,N in (4.10) and summing the resultant inequalities, we obtain

N

∑
j=1

∥∥∥xn
j−xn+1

j

∥∥∥
j

�
{

1
σ2

1

[
δ1

√
δ 2

1−2ρα1+ρ2β 2
11+ργ1

]
+ρδ2β21

σ2
2

+ · · ·+ρδNβN1
σ2

N

}∥∥xn−1
1 −xn

1

∥∥
1

+
{
ρδ1β12
σ2

1
+ 1

σ2
2

[
δ2

√
δ 2

2−2ρα2+ρ2β 2
22+ργ2

]
+ ρδ3β32

σ2
3

+ · · ·+ ρδNβN2
σ2

N

}∥∥xn−1
2 −xn

2

∥∥
2

...

+
{

ρδ1β1N
σ2

1
+ · · ·+ ρδN−1βN−1 N

σ2
N−1

+ 1
σ2

N

[
δN

√
δ 2

N−2ραN+ρ2β 2
NN+ργN

]}∥∥xn−1
N −xn

N

∥∥
N

� max{θi : 1 � i � N}
N

∑
j=1

∥∥∥xn−1
j −xn

j

∥∥∥
j
,

(4.11)
where for each i ∈ I

θi :=
1

σ2
i

[
δi

√
δ 2

i −2ραi +ρ2β 2
ii +ργi

]
+

N

∑
j=1, j �=i

ρδ jβ ji

σ2
j

. (4.12)

Now, define the norm ‖ · ‖∗ on H = ∏N
j=1 Hj by

‖(y1,y2, ...,yN)‖∗ = ‖y1‖1 +‖y2‖2 + · · ·+‖yN‖N , ∀(y1,y2, ...,yN) ∈ H. (4.13)

We observe that (H,‖ · ‖∗) is a Banach space. Hence, (4.12) implies that
∥∥(xn

1,x
n
2, ...,x

n
N)− (xn+1

1 ,xn+1
2 , ...,xn+1

N )
∥∥∗

� max{θi : 1 � i � N}∥∥(xn−1
1 ,xn−1

2 , ...,xn−1
N )− (xn

1,x
n
2, ...,x

n
N)

∥∥∗ . (4.14)

From condition (4.1), it follows that max{θi : 1 � i � N} ∈ (0,1) and hence (4.14) im-
plies that {(xn

1,x
n
2, ...,x

n
N)} is a Cauchy sequence in H . Let (xn

1,x
n
2, ...,x

n
N)→ (x∗1,x

∗
2, ...,x

∗
N)

in H as n → ∞ . From (3.3), and from the fact that F1,F2, ...,FN , η1,η2, ...,ηN ,
b1,b2, ...,bN are continuous, we have for each (y1,y2, ...,yN) ∈ H ,

〈η1(x∗1,x
∗
1)+ρF1(x∗1,x

∗
2, ...,x

∗
N),η1(y1,x∗1)〉1+ρ [b1(x∗1,y1)−b1(x∗1,x

∗
1)] � 0,

〈η2(x∗2,x
∗
2)+ρF2(x∗1,x

∗
2, ...,x

∗
N),η2(y2,x∗2)〉2+ρ [b2(x∗2,y2)−b2(x∗2,x

∗
2)] � 0,

...
〈ηN(x∗N ,x∗N)+ρFN(x∗1,x

∗
2, ...,x

∗
N),ηN(yN ,x∗N)〉N+ρ [bN(x∗N ,yN)−bN(x∗N ,x∗N)] � 0,
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that is,

〈F1(x∗1,x
∗
2, ...,x

∗
N),η1(y1,x∗1)〉1+b1(x∗1,y1)−b1(x∗1,x

∗
1) � 0,

〈F2(x∗1,x
∗
2, ...,x

∗
N),η2(y2,x∗2)〉2+b2(x∗2,y2)−b2(x∗2,x

∗
2) � 0,

...
〈FN(x∗1,x

∗
2, ...,x

∗
N),ηN(yN ,x∗N)〉N+bN(x∗N ,yN)−bN(x∗N ,x∗N) � 0.

Therefore, (x∗1,x
∗
2, ...,x

∗
N) is a solution of SMVLIP (2.1). �

REMARK 4.1. Zeng et al. [20] considered the single mixed variational-like in-
equality problem involving set-valued mappings. There is no doubt that it is of further
research interest to extend the method presented in this paper for iterative approxima-
tions of solutions of the SMVLIP involving set-valued mappings, that is, utilizing the
method presented in this paper, one can extend Theorems 3.1 and 4.1 to the system of
N -mixed variational-like inequality problems involving set-valued mappings where N
is any given positive integer.
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