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ON EQUIVALENCE BETWEEN CONVERGENCE

OF ISHIKAWA––MANN AND NOOR ITERATIONS

LI-PING YANG AND XIANGSHENG XIE

(Communicated by M. A. Noor)

Abstract. In this paper, we prove the equivalence of convergence between the Mann–Ishikawa–
Noor and multistep iterations for Φ− strongly pseudocontractive and Φ− strongly accretive type
operators in an arbitrary Banach spaces. Results proved in this paper represent an extension and
refinement of the previously known results in this area.

1. Introduction

Let E denote an arbitrary real Banach space and E∗ denote the dual space of E .
The duality map J : E → 2E∗

is defined by

Jx := {u∗ ∈ E∗ : 〈x,u∗〉 = ‖x‖2;‖u∗‖ = ‖x‖},

where 〈·, ·〉 denotes the generalized duality pairing between elements of E and E∗ .
First of all, we recall and define the concepts as follows:

DEFINITION 1.1. ([1]) Let K be a nonempty subset of E and let T : K → K be
an operator.

1) T is said to be strongly accretive if, for all x,y ∈ K , there exists j(x− y) ∈
J(x− y) such that

〈Tx−Ty, j(x− y)〉� k‖x− y‖2, (1.1)

where k > 0 is a constant. Without loss of generality, we can assume that k ∈ (0,1) . If
k = 0 in (1.1) the T is said to be accretive operator.

2) T is said to be Φ−strongly accretive if for all x,y ∈ K , there exist j(x− y) ∈
J(x− y) and a strictly increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that

〈Tx−Ty, j(x− y)〉� Φ(‖x− y‖)‖x− y‖. (1.2)
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If I denotes the identity operator, it follows from inequalities (1.1) to (1.2) that
T is pseudocontractive (respectively, strongly pseudocontractive, Φ−strongly pseu-
docontractive) if and only if (I − T ) is an accretive (respectively, strongly accretive,
Φ−strongly accretive). It is shown in [2] that the class of single-valued strongly pseu-
docontractive operators is a proper subclass of the class of single-valued Φ−strongly
pseudocontractive operators. The classes of single-valued operators have been studied
by various authors (see, for example [2, 3, 4, 5, 6, 7, 8]).

Now, we state concepts and lemmas which will be needed in the sequel.
(1) The following iteration (see [9] ):{

xn+1 = (1−αn−λn)xn +αnTy1
n +λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n Txn + c1
nη1

n , n = 0,1,2, . . . ,
(1.3)

is called the Ishikawa iteration sequence with errors, where {αn},{β 1
n },{λn},{c1

n} are
real sequences in [0,1] and {ξn},{η1

n} are sequences in K satisfying appropriate con-
ditions.

(2) In particular, if β 1
n = c1

n = 0 for n � 0 in (1.3) the sequence {xn} defined by

xn+1 = (1−αn−λn)xn +αnTxn +λnξn, n = 0,1,2, . . . , (1.4)

is called the Mann iteration with errors (see [10]).
(3) In [11], Noor introduced the three-step procedure (Noor procedure). Now, we

define the three step iterative sequence with errors as follows:⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αnTy1
n +λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n Ty2
n + c1

nη1
n ,

y2
n = (1−β 2

n − c2
n)xn +β 2

n Txn + c2
nη2

n , n = 0,1,2, . . . ,

(1.5)

where {αn},{λn},{β i
n},{ci

n} are real sequences in [0,1] and {ξn},{η i
n} are sequences

in K satisfying appropriate conditions for i = 1,2.
(4) In year 2004, Rhoades and Soltuz in [13] introduced the multi-step procedure.

We generalize this to the multi-step iterative process with errors as follows:⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αnTy1
n +λnξn,

yi
n = (1−β i

n− ci
n)xn +β i

nTyi+1
n + ci

nη i
n, i = 1, . . . , p−2,

yp−1
n = (1−β p−1

n − cp−1
n )xn +β p−1

n Txn + cp−1
n η p−1

n , n = 0,1,2, . . . ,

(1.6)

where p � 2 is fixed order, {αn},{λn},{β i
n},{ci

n} are sequences in [0,1] and {ξn},{η i
n}

are sequences in K for i = 1,2, . . . , p−1.
(5) In 2006, Huang et al. in [14] introduced the multi-step iterations with errors as

follows:⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn)xn +Ty1
n + ξn,

yi
n = (1−β i

n)xn +β i
nTyi+1

n +η i
n, i = 1,2, . . . , p−2,

yp−1
n = (1−β p−1

n )xn +β p−1
n Txn +η p−1

n , p � 2, n = 0,1,2, · · · ,
(1.7)
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It is clear that if K is a nonempty convex subset of K and {ξn}, {η i
n} ⊂ K such

that ∑∞
n=1‖ξn‖ < ∞, limn→∞‖η1

n‖ = 0, then the multi-step iterations with errors in the
sense of [14] need not be well defined, i.e., {xn} may fail to be in K . More precisely,
the conditions imposed on the error terms are not compatible with the randomness
of the occurrence of errors. Unlike iteration methods with errors (1.7) of [14], our
iteration method with random errors (1.6) is always well defined, that is {xn} is always
in K . We would like to emphasize that the multi-step iterations can be viewed as the
predictor—correctormethods for solving the nonlinear equations in Banach spaces. For
the convergence analysis of the predictor—corrector and multi-step iterative methods
for solving the variational inequalities and optimization problems, see Noor [23] and
the references therein.

Taking p = 3 in (1.6), we obtain that the three-step iteration with errors (1.5).
Taking p = 2 in (1.6), we obtain the Ishikawa iteration with errors (1.3). Thus, our
iteration scheme (1.6) generalizes the Mann, Ishikawa and three-step iteration schemes
with errors. It is worth mentioning that other important iteration schemes introduced re-
cently by Das and Debata [21] and Kim et al. [22] are all special cases of our iteration
scheme. Iterative methods for approximating fixed points of strongly (Φ−strongly)
accretive operator have been studied by some authors (see, e.g., [2, 5, 6, 7, 24, 1]),
using the Mann iteration process or the Ishikawa iteration process. Then we have a
question: are there any differences of the convergence between these two kinds of se-
quences? Can we prove the equivalence of the convergence between these two kinds
of sequences? B.E. Rhoades and S.M. Soltuz in [13] show that the convergence of
the Mann, Ishikawa iterations are equivalent to the multi-step iteration for strongly
pseudocontractive operator and strongly accretive operator in uniformly convex Ba-
nach space. Z. Huang et al in [14] shows the equivalence of the convergence between
the modified Mann–Ishikawa and multi-step Noor iterations with errors for the succes-
sively strongly pseudo-contractive operators and the strongly pseudo-contractive op-
erators in uniformly smooth Banach spaces. Recently, the study of equivalence for
Mann and Ishikawa iterations has been investigated extensively by many authors (see,
e.g., [16, 17, 18, 19, 20, 15] and the references therein). Motivated and inspired by
the results of [13] and [14], we prove in this paper that the convergence of the Mann,
Ishikawa iterations with errors are equivalent to the multi-step iteration with errors for
Φ−strongly pseudocontractive type operator and Φ−strongly accretive type operator
in an arbitrary Banach space. Moreover, we will modify some gaps in [15]. Indeed, we
discovered that there are some gaps in the proof of [15, Theorem 2.1] (see Page 1265).
In [15], the author used bnjo+i � ε for all i � 1 to deduce bn → 0 (n → ∞) . But it is
known that this is not always true. For example,

{bn} = {1,0,2,0,0,3,0,0,0,4,0,0,0,0,5,0,0,0,0,0,6,0,0, . . .}. (∗)
If we take the second term, the fourth term, the seventh term, the eleventh term, the
sixteenth term, . . . , we obtain that the subsequence {bnj} = {0} . Obviously, bnj →
0 ( j → ∞) . For all i ∈ N (a positive integer set), apart from bnj+i 	= 0, the other
terms are zero, that is, bnj+1 = bnj+2 = · · · = bnj+i−1 = bnj+i+1 = · · · = 0. Therefore,
bnj+i → 0 (n j → ∞) . But limn→∞ bn 	= 0. In fact, the sequence {bn} defined by (∗ ) is
divergent.
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In the sequel, we shall need the following results.

LEMMA 1.2. ([8]) Let {an}, {bn} and {cn} be sequences of nonnegative real
numbers satisfying the following relation:

an+1 � (1− tn)an +bn + cn, n � 1,

where {tn} ⊂ [0,1] and ∑∞
n=1 tn = ∞ . Suppose

(a) bn = O(tn) ,

(b) ∑∞
n=1 cn < ∞ .

Then {an} is bounded.

The next lemma plays a crucial role for proving the main theorem.

LEMMA 1.3. Let {an}, {ρn}, {μn}, {cn} be four sequences of non-negative real
numbers such that

a2
n+1 � a2

n−ρnφ(an+1)+ρnμn + cn, (1.8)

where φ : [0,∞) → [0,∞) is a non-decreasing real function such that φ(t) = 0 if and
only if t = 0 . Suppose that (i) ∑∞

n=0ρn = ∞; (ii) limn→∞ μn = 0 ; (iii) ∑∞
n=0 cn < ∞ .

Then limn→∞ an = 0 .

Proof. First we show that

liminf
n→∞

an = δ = 0.

Suppose, to the contrary that δ > 0 or δ = +∞ , for arbitrary r ∈ (0,δ ) , there exists
some positive integer n0 such that an � r > 0 for all n � n0 . Since φ(t) is non-
decreasing, then φ(an+1) � φ(r) > 0 for all n � n0 . As limn→∞ μn = 0, there exists a
positive integer n1 � n0 such that

μn � φ(r)
2

for all n � n1 . Thus, from (1.8) and using the fact that φ(t) is non-decreasing, for all
n � n1 , we have

a2
n+1 � a2

n−ρnφ(r)+
1
2
ρnφ(r)+ cn,

or rewritten,

1
2
φ(r)ρn � a2

n−a2
n+1 + cn.
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Hence, for any n > n1 ,

1
2
φ(r)

n

∑
j=n1

ρ j � a2
n1
−a2

n+1 +
n

∑
j=n1

c j � a2
n1

+
n

∑
j=n1

c j.

This implies

φ(r)
∞

∑
j=n1

ρ j � 2a2
n1

+
∞

∑
j=n1

c j,

which is contradiction with (i) . Then δ = 0, i.e., liminfn→∞ an = 0. Now we show
that limsupn→∞ an = 0. Indeed, for arbitrary ε > 0, From conditions (ii) , (iii) there
exists a positive integer n2 such that

μn < φ(ε),
∞

∑
n=n2

cn < ε2 (1.9)

for all n � n2 . Since liminfn→∞ an = 0, there exists a positive integer N such that
aN < ε for all n � N . Next we shall prove

a2
k � ε2 +

k−1

∑
n=N

cn, ∀k � N. (1.10)

The proof of this is by mathematical induction. Clearly, (1.10) holds for k = N . Assume
now it holds for n � N . We prove that a2

k+1 � ε2 +∑k
n=N cn . Suppose this not the case.

Then a2
k+1 > ε2 +∑k

n=N cn . This implies that a2
k+1 > ε2 , and ak+1 > ε . Since φ(t) is

non-decreasing and ε > 0, then φ(ak+1) � φ(ε) . It follows from (1.8) and (1.9) that

a2
k+1 � a2

k −ρkφ(ak+1)+ρkμk + ck � a2
k −ρkφ(ε)+ρkφ(ε)+ ck

= a2
k + ck � ε2 +

k

∑
n=N

cn,

a contradiction. Hence (1.10) holds. Therefore, it follows from (1.9) and (1.10) that

limsup
k→∞

ak �
√
ε2 +

∞

∑
n=N

cn �
√

2 ε,

then limsupn→∞ an = 0, So limn→∞ an = 0. This completes the proof. �

LEMMA 1.4. (see [24, Lemma 2.3]) Let E be a real Banach space and T : E →E
be a continuous Φ−strongly accretive operator. Then the equation Tx = f has a
unique solution for any f ∈ E .
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2. Main results

Let S , T : E → E, f ∈ E be given. It is well known that T is a Φ−strongly accre-
tive type operator if and only if (I−T ) is Φ−strongly pseudocontractive. Moreover,
x∗ is the solution of the equation Tx = f if and only if x∗ is the fixed point for the
operator Sx = f +(I−T)x .

Replacing T by f +(I−T ) in (1.4), (1.6), we obtain the following ordinary Mann
and multi-step iteration with errors, respectively:

un+1 = (1−αn−λn)un +αn( f +un−Tun)+λnωn, n = 0,1, . . . , (2.1)

⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αn( f + y1
n−Ty1

n)+λnξn,

yi
n = (1−β i

n− ci
n)xn +β i

n( f + yi+1
n −Tyi+1

n )+ ci
nη i

n, i = 1, . . . , p−2,

yp−1
n = (1−β p−1

n − cp−1
n )xn +β p−1

n ( f + xn−Txn)+ cp−1
n η p−1

n , n = 0,1,2, . . .

(2.2)

THEOREM 2.1. Let K be a nonempty closed convex subset of an arbitrary real
Banach space and T : K → K be a uniformly continuous Φ−strongly accretive op-
erator. Let {αn}, {λn}, {β i

n} and {ci
n} be sequences in [0,1] for i = 1,2, . . . , p− 1

satisfying the following conditions:

(a) αn +λn ∈ [0,1] and β i
n + ci

n ∈ [0,1], n � 1, i = 1,2, p−1 ;

(b) limn→∞αn = 0, limn→∞β 1
n = 0 and limn→∞ c1

n = 0 ;

(c) 0 < αn < 1, n � 1 ;

(d) limn→∞
λn

αn+λn
= 0 ;

(e) ∑∞
n=1(αn +λn) = ∞ .

Assume that the sequences {Tun}, {Ty j
n} or {(I−T )un}, {(I−T )y j

n} are bounded for
j = 1,2 . For error term sequences {ωn}, {ξn}, {η1

n} bounded in K . If u0 = x0 ∈ K ,
then the following are equivalent:

(i) the Mann iterative sequence with errors (2.1) converges strongly to the solution
of the equation Tx = f for any given f ∈ K .

(ii) the multi-step iterative sequence with errors (2.2) converges strongly to the
solution of the equation Tx = f for any given f ∈ K .

Proof. It follows from Lemma 1.4 that the equation Tx = f has a unique solution
q ∈ K . Define S : K → K by Sx = f + (I − T )x for all x ∈ K , we know that S is
uniformly continuous and q is a unique fixed point of S . And (2.1), (2.2) become
respectively,

un+1 = (1−αn−λn)un +αnSun +λnωn, n = 0,1, . . . , (2.3)
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⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αnSy1
n +λnξn,

yi
n = (1−β i

n− ci
n)xn +β i

nSyi+1
n + ci

nη i
n, i = 1, . . . , p−2,

yp−1
n = (1−β p−1

n − cp−1
n )xn +β p−1

n Sxn + cp−1
n η p−1

n , n = 0,1,2, . . .

(2.4)

If the multi-step iterative sequence with errors (2.4) converges strongly to a point
x∗ , analogy to [12], we can prove that x∗ is a fixed point. Setting β i

n = 0 (i =
1,2, . . . , p−1) in (2.4), we get the convergence of the Mann iteration with errors. Con-
versely, we will prove that the convergence of the Mann iteration with errors implies the
convergence of multi-step iteration with errors. Since T is Φ-strongly accretive type
operator, operator S is Φ-strongly pseudocontractive type and for all x,y ∈ K , there
exists j(x− y) ∈ J(x− y) such that

〈Tx−Ty, j(x− y)〉� Φ(‖x− y‖)‖x− y‖,

which implies that

Φ(‖x− y‖) � ‖Tx−Ty‖.

Then, for all x,y ∈ K , we have

‖Sx−Sy‖� ‖x− y‖+‖Tx−Ty‖� Φ−1(‖Tx−Ty‖)+‖Tx−Ty‖ (2.5)

and

‖Sx−Sy‖� ‖x−Tx‖+‖y−Ty‖. (2.6)

Since the sequences {Tun}, {Ty j
n} or {(I−T )un}, {(I−T )y j

n} are bounded for j =
1,2, (2.5) and (2.6), we have that the sequences {Sun},{Syi

n, i = 1,2} are bounded.
Since {ωn}, {ξn}, {η1

n} are bounded in K , then for q ∈ F(S) , the set of fixed points
of S , we can find a constant D′ such that

D′ = max

{
sup
n∈N

{‖Sun−q‖}, sup
n∈N

{‖Syi
n−q‖ : i = 1,2}, sup

n∈N

{‖ωn−q‖},

sup
n∈N

{‖ξn−q‖}, sup
n∈N

{‖η1
n −q‖}

}
+‖x0−q‖,

then D′ < ∞ . It follows from (2.4) that

‖xn+1−q‖ � (1− δn)‖xn−q‖+αn‖Sy1
n−q‖+λn‖ωn−q‖

� (1− δn)‖xn−q‖+ δnD
′,

where δn = αn + λn . Since ∑∞
n=1δn = ∞ , Lemma 1.2 guarantees that {‖xn+1 − q‖}

is bounded. As a result, {xn+1} is bounded. Similarity, we can prove the sequences
{y1

n}, {un} are bounded. So we can find D′′ such that

‖xn+1−q‖ � D′′, ‖y1
n−q‖� D′′, ‖un−q‖ � D′′,
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for all n . Let D = max{D′,D′′} . It follows from (2.3) and (2.4) that

un+1 = (1− δn)un + δnSun +λn(ωn −Sun),
xn+1 = (1− δn)xn + δnSy1

n +λn(ξn−Sy1
n).

Thus, we have

‖xn+1−un+1‖2 � (1− δn)‖xn−un‖ · ‖xn+1−un+1‖
+δn〈Sy1

n−Sun, j(xn+1 −un+1)〉
+λn〈(ξn −Sy1

n)− (ωn−Sun), j(xn+1 −un+1)〉
= (1− δn)‖xn−un‖ · ‖xn+1−un+1‖

+δn〈Sxn+1−Sun+1, j(xn+1 −un+1)〉
+δn〈Sy1

n−Sun− (Sxn+1−Sun+1), j(xn+1 −un+1)〉
+λn〈(ξn −Sy1

n)− (ωn−Sun), j(xn+1 −un+1)〉
� (1− δn)‖xn−un‖ · ‖xn+1−un+1‖

+δn
[‖xn+1−un+1‖2−Φ(‖xn+1−un+1‖)‖xn+1−un+1‖

]
+(δnθn +Mλn)‖xn+1−un+1‖

� (1− δn)‖xn−un‖ · ‖xn+1−un+1‖
+δn

[‖xn+1−un+1‖2−Φ(‖xn+1−un+1‖)‖xn+1−un+1‖
]

+δnqn‖xn+1−un+1‖, (2.7)

where θn = ‖Sy1
n−Sun− (Sxn+1−Sun+1)‖, M = ‖(ξn−Sy1

n)− (ωn−Sun)‖<∞, qn =
θn + Mλn

δn
. Notice

‖un+1−un‖ � δn‖Sun−un‖+λn‖ωn−Sun‖
� 2D(δn +λn),

‖xn+1− y1
n‖ � δn‖Sy1

n− xn‖+λn‖ξn−Sy1
n‖

+δ 1
n ‖Sy2

n− xn‖+ c1
n‖η1

n −Sy2
n‖

� 2D(δn +λn)+2D(δ 1
n + c1

n),

where δ 1
n = β 1

n + c1
n . This implies that limn→∞‖un+1−un‖ = 0, limn→∞‖xn+1− y1

n‖ =
0 since limn→∞ λn = 0, limn→∞ δn = 0, limn→∞ δ 1

n = 0, limn→∞ c1
n = 0. Since S is

uniformly continuous, we have

θn � ‖Sxn+1−Sy1
n‖+‖Sun+1−Sun‖→ 0,(n → ∞).

Note that limn→∞
λn
δn

= 0, we have qn → 0 as n → ∞ . Notice that

(1− δn)‖xn−un‖ · ‖xn+1−un+1‖ � 1
2

(
(1− δn)2‖xn−un‖2 +‖xn+1−un+1‖2

)
,

‖xn+1−un+1‖ � 1
2
(1+‖xn+1−un+1‖2).



ISHIKAWA–MANN AND NOOR ITERATIONS 115

If we set an = ‖xn−un‖ , it follows from (2.7) that we have

[1− δn(2+qn)]a2
n+1 � (1− δn)2a2

n−2δnΦ(an+1)an+1 + δnqn. (2.8)

Owing to limn→∞[1− δn(2+qn)] = 1 > 0, then there exists a positive integer N0 such
that 1− δn(2+qn) > 0 for n � N0 . Without loss of generality, let 1− δn(2+qn) > 0
for all n > 0. Thus, for all n > 0, it follows from (2.8) that we have

a2
n+1 � (1− δn)2

1− δn(2+qn)
a2

n−
2δn

1− δn(2+qn)
Φ(an+1)an+1 +

δnqn

1− δn(2+qn)
. (2.9)

Since limn→∞[1− δn(2 + qn)] = 1 > 1
2 , there exists a positive integer N1 such that

1 > [1− δn(2+ qn)] > 1
2 for all n � N1 . Notice that an � ‖xn − q‖+ ‖un− q‖ � 2D .

Thus, it follows from (2.9) that

a2
n+1 � a2

n−2δnΦ(an+1)an+1 + δn(δn +2qn +8D2qn), ∀n � N1. (2.10)

Taking

ρn = 2δn, φ(t) = Φ(t)t, μn =
1
2
(δn +2qn +8D2qn),

then (2.10) becomes

a2
n+1 � a2

n−ρnφ(an+1)+ρnμn, ∀n � N1.

This with Lemma 1.3 we get an → 0 as n → ∞ , that is,

lim
n→∞

‖xn−un‖ = 0. (2.11)

Suppose that limn→∞ un = q . The inequality

0 � ‖xn−q‖ � ‖xn−un‖+‖un−q‖
and (2.11) imply that limn→∞ xn = q . This completes the proof. �

REMARK 2.2. Theorem 2.1 extends, improves theorem 2.1 of [13] and theorem 2
of [14] in some aspects.

(1). Abolish the condition that E∗ is uniformly convex of [13] and E is uniformly
smooth of [14].

(2). The hypotheses conditions that a bounded subset K of E in [13], [14] is re-
placed by the more general conditions {(I−T)un}, {(I−T )yi

n}2
i=1 or {Tun}, {Tyi

n}2
i=1

are bounded.
(3). The strongly pseudocontractive operator in [13] and [14] is replaced by the

Φ−strongly pseudocontractive operator.
(4). The assumption that {ωn}, {ξn} be summable and limn→∞‖η1

n‖ = 0 are
replaced by the assumption that {ωn}, {ξn}, {η1

n} be bounded in K in [14].
(5). The domain of T need not be the whole of E .
(6). The iterative sequences in [13], [14] are replaced by the iterative sequence

with random errors which appear to be more satisfactory in this paper.
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Replacing T by f + (I − T ) in (1.3), (1.5), we obtain the following ordinary
Ishikawa and three-step iterations, respectively:{

xn+1 = (1−αn−λn)xn +αn( f + y1
n−Ty1

n)+λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n ( f + xn−Txn)+ c1
nη1

n , n = 0,1,2, . . .
(2.12)

⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αn( f + y1
n−Ty1

n)+λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n ( f + y2
n−Ty2

n)+ c1
nη1

n ,

y2
n = (1−β 2

n − c2
n)xn +β 2

n ( f + xn−Txn)+ c2
nη2

n , n = 0,1,2, · · ·
(2.13)

Taking p = 2,3 in (2.2), respectively, Theorem 2.1 leads to the following result.

COROLLARY 2.3. Let K be a nonempty closed convex subset of an arbitrary real
Banach space and T : K → K be a uniformly continuous Φ−strongly accretive op-
erator. Let {αn}, {λn}, {β i

n} and {ci
n} be sequences in [0,1] for i = 1,2, . . . , p− 1

satisfying the following conditions:

(a) αn +λn ∈ [0,1] and β i
n + ci

n ∈ [0,1], n � 1, i = 1,2, p−1 ;

(b) limn→∞αn = 0, limn→∞β 1
n = 0 and limn→∞ c1

n = 0 ;

(c) 0 < αn < 1, n � 1 ;

(d) limn→∞
λn

αn+λn
= 0 ;

(e) ∑∞
n=1(αn +λn) = ∞ .

Assume that the sequences {Tun}, {Ty j
n} or {(I−T )un}, {(I−T )y j

n} are bounded for
j = 1,2 . For error term sequences {ωn}, {ξn}, {η1

n} bounded in K . If u0 = x0 ∈ K ,
then the following are equivalent:

(i) the Mann iterative sequence (2.1)converges strongly to the solution of the
equation Tx = f for any given f ∈ K ;

(ii) the Ishikawa iterative sequence (2.12) converges strongly to the solution of
the equation Tx = f for any given f ∈ K ;

(iii) the three-step iterative sequence (2.13) converges strongly to the solution of
the equation Tx = f for any given f ∈ K ;

(iv) the multi-step iterative sequence (2.2) converges strongly to the solution of
the equation Tx = f for any given f ∈ K .

If we put S = I +T and T : K →K be a uniformly continuous Φ−strongly accre-
tive operator. It is easy to prove that S is a uniformly continuous Φ−strongly accretive
operator. For all x ∈ K , we have f −Tx = f − (S− I)x = f + x−Sx . Thus, the Mann
iterative sequence with errors (2.1) becomes

un+1 = (1−αn−λn)un +αn( f −Tun)+λnωn,n = 0,1, . . . . (2.14)
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The Ishikawa iterative sequence with errors (2.12) becomes{
xn+1 = (1−αn−λn)xn +αn( f −Ty1

n)+λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n ( f −Txn)+ c1
nη1

n , n = 0,1,2, . . . .
(2.15)

The three-step iterative sequence with errors (2.13) becomes⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αn( f −Ty1
n)+λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n ( f −Ty2
n)+ c1

nη1
n ,

y2
n = (1−β 2

n − c2
n)xn +β 2

n ( f −Txn)+ c2
n, n = 0,1,2, . . . .

(2.16)

The multi-step iterative sequence with errors (2.2) becomes⎧⎪⎪⎨
⎪⎪⎩

xn+1 = (1−αn−λn)xn +αn( f −Ty1
n)+λnξn,

yi
n = (1−β i

n− ci
n)xn +β i

n( f −Tyi+1
n )+ ci

nη i
n, i = 1, . . . , p−2,

yp−1
n = (1−β p−1

n − cp−1
n )xn +β p−1

n ( f −Txn)+ cp−1
n η p−1

n , n = 0,1,2, . . . .

(2.17)

It follows from Corollary 2.3 that we have

COROLLARY 2.4. Let K be a nonempty closed convex subset of an arbitrary real
Banach space and T : K → K be a uniformly continuous Φ−strongly accretive op-
erator. Let {αn}, {λn}, {β i

n} and {ci
n} be sequences in [0,1] for i = 1,2, . . . , p− 1

satisfying the following conditions:

(a) αn +λn ∈ [0,1] and β i
n + ci

n ∈ [0,1], n � 1, i = 1,2, p−1 ;

(b) limn→∞αn = 0, limn→∞β 1
n = 0 and limn→∞ c1

n = 0 ;

(c) 0 < αn < 1, n � 1 ;

(d) limn→∞
λn

αn+λn
= 0 ;

(e) ∑∞
n=1(αn +λn) = ∞ .

Assume that {un+Tun}, {yi
n+Tyi

n}2
i=1 or the sequences {Tun}, {Tyi

n}2
i=1 are bounded

and u0 = x0 ∈ K , then the following are equivalent:
(i) the Mann iterative sequence with errors (2.14) converges strongly to the solu-

tion of the equation x+Tx = f for any given f ∈ K .
(ii) the Ishikawa iterative sequence with errors (2.15) converges strongly to the

solution of the equation x+Tx = f for any given f ∈ K .
(iii) the three-step iterative sequence with errors (2.16) converges strongly to the

solution of the equation x+Tx = f for any given f ∈ K .
(iv) the multi-step iterative sequence with errors (2.17) converges strongly to the

solution of the equation x+Tx = f for any given f ∈ K .
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Let S = I−T and f = 0. Suppose that T is a uniformly continuous Φ−strongly
pseudocontractive operator, then S is a uniformly continuous Φ−strongly accretive
type operator. It follows from Lemma 1.4 that equation Sx = 0 has a unique solution
q ∈ K if and only if operator T has a unique fixed point q ∈ K . On the other hand, for
all x ∈ K , we have Tx = f +(I − S)x = (I − S)x . Thus, the Mann iterative sequence
with errors (2.1) becomes

un+1 = (1−αn−λn)un +αnTun +λnωn,n = 0,1, . . . . (2.18)

The Ishikawa iterative sequence with errors (2.12) becomes{
xn+1= (1−αn−λn)xn +αnTy1

n +λnξn,

y1
n = (1−β 1

n − c1
n)xn +β 1

n Txn + c1
n, n = 0,1,2, . . . .

(2.19)

The multi-step iterative sequence with errors (2.2) becomes⎧⎪⎪⎨
⎪⎪⎩

xn+1= (1−αn−λn)xn +αnTy1
n +λnξn,

yi
n = (1−β i

n− ci
n)xn +β i

nTyi+1
n + ci

nη i
n, i = 1, . . . , p−2,

yp−1
n = (1−β p−1

n − cp−1
n )xn +β p−1

n Txn + cp−1
n η p−1

n , n = 0,1,2, . . . .

(2.20)

It follows from Theorem 2.1 that we get the following result.

COROLLARY 2.5. Let K be a nonempty closed convex subset of an arbitrary
real Banach space and T : K → K be a uniformly continuous Φ−strongly pseudo-
contractive operator. Let {αn}, {λn}, {β i

n} and {ci
n} be sequences in [0,1] for

i = 1,2, . . . , p−1 satisfying the following conditions:

(a) αn +λn ∈ [0,1] and β i
n + ci

n ∈ [0,1], n � 1, i = 1,2, p−1 ;

(b) limn→∞αn = 0, limn→∞β 1
n = 0 and limn→∞ c1

n = 0 ;

(c) 0 < αn < 1, n � 1 ;

(d) limn→∞
λn

αn+λn
= 0 ;

(e) ∑∞
n=1(αn +λn) = ∞ .

Assume that the sequences {Tun}, {Ty j
n} or {(I−T )un}, {(I−T )y j

n} are bounded for
j = 1,2 . For error term sequences {ωn}, {ξn}, {η1

n} bounded in K . If u0 = x0 ∈ K ,
then the following are equivalent:

(i) the Mann iterative sequence (2.18) converges strongly to the fixed point of T .
(ii) the Ishikawa iterative sequence (2.19) converges strongly to the fixed point of

T .
(iii) the multi-step iterative sequence (2.20) converges strongly to the fixed point

of T .
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REMARK 2.6. The iteration parameters {αn},{λn},{β i
n},{η i

n} (i = 1, · · · , p−1)
in Theorem 2.1 and Corollary 2.3–2.5 do not depend on any geometric structure of the
Banach space E or on any property of the operator T .
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