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A NOTE ON CLARKSON’S INEQUALITY IN THE REAL CASE

HIROYASU MIZUGUCHI AND KICHI-SUKE SAITO

(Communicated by M. Fujii)

Abstract. We present an elementary proof of the generalized Clarkson’s inequality in the real
case.

In this note, we consider a generalized Clarkson’s inequality in the real case:

(|a+b|q + |a−b|q) 1
q � C(|a|p + |b|p) 1

p , (1)

for all a,b ∈ R . We put

Cp,q(R) = sup
a,b∈R,|a|p+|b|p �=0

(|a+b|q + |a−b|q) 1
q

(|a|p + |b|p) 1
p

= sup
t∈[0,1]

((1+ t)q +(1− t)q)
1
q

(1+ t p)
1
p

.

In [3], L. Maligranda and N. Sabourova computed the best constant C =Cp,q(R) in the
inequality (1) for all 0 < p, q < ∞ . By Theorem 2.1 in [3], we have

THEOREM 1. Let 0 < p, q < ∞ . Then the best constant Cp,q(R) in equality (1)
is:

(1) If 0 < p, q � 2 , then Cp,q(R) = 21/q .
(2) If 2 � p < ∞ and 0 < q � 1 , then Cp,q(R) = 21/q .
(3) If 2 � q < ∞ and 1/p+1/q � 1 , then Cp,q(R) = 21/q .
(4) If 2 � q < ∞ and 1/p+1/q � 1 , then Cp,q(R) = 21−1/p .
(5) If 1 < q < 2 < p < ∞ , then max{21−1/p,21/q} < Cp,q(R) < 21/q−1/p+1/2.

In Theorem 2.5 in [2], K. Kuriyama, M. Miyagi, M. Okada and T. Miyoshi gave
the elementary proof of the case that 1 < p � 2 and q > 1.

Our aim in this note is to present an elementary proof of Theorem 1(5) (cf. [4, 5]).
Suppose that 0 < q < 2 < p < ∞ . We define a function f from [0,1] into R by

f (t) =
((1+ t)q +(1− t)q)

1
q

(1+ t p)
1
p
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for t with 0 � t � 1. Then the derivative of f is

f ′(t)=
((1+t)q+(1−t)q)

1
q−1

(1+t p)1+ 1
p

{((1+t)q−1−(1−t)q−1)(1+t p)−t p−1((1+t)q+(1−t)q)}.

If 0 < q � 1, then f ′(t) < 0 and so f is decreasing on [0,1] . Therefore

Cp,q(R) = f (0) = 2
1
q .

In the case that 1 < q < 2 < p < ∞ , we will prove that there exists a unique t0 ∈ (0,1)
at which the function f has its maximum. That is, we have

LEMMA 2. If 1 < q < 2 < p <∞ , then there exists a unique t0 ∈ (0,1) such that

Cp,q(R) = f (t0).

Moreover, max{21−1/p,21/q} < Cp,q(R) < 21/q−1/p+1/2.

Proof. It is clear that the derivative of f is

f ′(t) =
((1+ t)q +(1− t)q)

1
q−1

(1+ t p)1+ 1
p

{(1+ t)q−1(1− t p−1)− (1− t)q−1(1+ t p−1)}.

For simplicity, we put α = p−1 and β = q−1, respectively. We define a function f1
from [0,1] into R by

f1(t) = (1+ t)β(1− tα)− (1− t)β(1+ tα)

for t with 0 � t � 1. We also define

f2(t) = log((1+ t)β (1− tα))− log((1− t)β (1+ tα))

for t with 0 � t < 1. Note that for any t , f2(t) � 0 if and only if f ′(t) � 0. Since

f2(t) = β log(1+ t)+ log(1− tα)−β log(1− t)− log(1+ tα),

we have f2(0) = 0 and limt→1−0 f2(t) = −∞ . Since the derivative of f2 is

f ′2(t) =
2(β −βx2α −αt2α−1 +αt2α+1)
(1+ t)(1− t)(1− tα)(1+ tα)

,

we put f3(t) = β −β t2α −αt2α−1 +αt2α+1 . Then the derivative of f3 is

f ′3(t) = αtα−2{(2α+1)t2−2β t− (2α−1)}.
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Table 1

t 0 t2 t1 1

f ′3(t) − − 0 +

f3(t) β + 0 − − 0

f2(t) 0 ↗ max ↘ ↘ −∞

We put
f4(t) = (2α +1)t2−2β t− (2α−1).

Since f4(0) = −2α + 1 < 0 and f4(1) = 2(1−β ) > 0, there exists a unique element
t1 ∈ (0,1) such that f4(t1) = f ′3(t1) = 0. Since f3(0) = β and f3(1) = 0, the function
f3 has a minimum at t1 and we have f ′3(t) < 0 on (0, t1) , f ′3(t) > 0 on (t1,1) .
Since f3(t1) < 0, there exists a unique element t2 ∈ (0,t1) such that f3(t2) = 0. Since
f ′2(t2) = f3(t2) = 0, by Table 1, f2 has a unique maximum at t2 . Since f2(0) = 0
and limt→1−0 f2(t) = −∞ , there exists t0 ∈ (t2,1) such that f2(t0) = 0. Since f1 and
f2 have the same signature on [0,1) , we have f1(t0) = 0, f1(t) > 0 on (0,t0) and
f1(t) < 0 on (t0,1) .

Table 2

t 0 t0 1

f2(t) 0 + 0 − 0

f1(t) 0 + 0 − 0

f ′(t) 0 + 0 − 0

f (t) 21/q ↗ f (t0) ↘ 21−1/p

Then f is increasing on [0,t0] and decreasing on [t0,1] . This implies that f has the
unique maximum at t0 . Therefore we have Cp,q(R) = f (t0) and

max{21/q,21−1/p} = max{ f (0), f (1)} < f (t0) = Cp,q(R).

Since 1 < q < 2 < p < ∞ , we have for t ∈ (0,1) , by the Hölder inequality,

((1+ t)q +(1− t)q)1/q � 21/q−1/2((1+ t2)2 +(1− t)2)1/2

= 21/q(1+ t2)1/2 < 21/q−1/p+1/2(1+ t p)1/p.

Thus, we have f (t0) < 21/q−1/p+1/2 . This completes the proof. �
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