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RELATING THE MINIMAL ANNULUS WITH

THE CIRCUMRADIUS OF A CONVEX SET

M. A. HERNÁNDEZ CIFRE AND P. J. HERRERO PIÑEYRO

(Communicated by G. Leng)

Abstract. In this paper we relate the minimal annulus of a planar convex body K with its cir-
cumradius, obtaining all the upper and lower bounds, in terms of these quantities, for some of
the classic geometric measures associated with the set: the diameter, the minimal width and the
inradius. We prove the optimal inequalities for each one of those problems, determining also its
corresponding extremal sets.

1. Introduction

Let K ⊂ R
2 be a convex body (compact convex set). Associated with K there

are a number of well-known functionals: the area A = A(K) and the perimeter p =
p(K) ; the diameter D = D(K) and the minimal width ω = ω(K) (minimum distance
between two parallel support lines of K ); among all discs containing K there is exactly
one (circumcircle) with minimum radius, the circumradius RK of K ; among all discs
contained in K , those whose radii have maximum value (incircles) provide the inradius
rK of K .

Another interesting functional to be considered for a convex body K is the thick-
ness of its minimal annulus. The minimal annulus of K is the annulus (the closed
set consisting of the points lying between two concentric discs –concentric n -balls in
R

n ) with minimum difference of radii that contains the boundary of K . Of course, the
minimal annulus is uniquely determined (Bonnesen [2] in R

2 , Kritikos [8] in R
3 and

Bárány [1] in higher dimension). From now on, we shall denote by A(c,r,R) the min-
imal annulus of the planar convex body K , where c , r and R represent, respectively,
its center, radius of the inner circle, and radius of the outer circle. This object and its
properties were studied mainly by Bonnesen for planar convex sets (see [2] and [3]).
More recently, very interesting works have appeared, in which, the minimal annulus
has been studied in a more general setting: for arbitrary dimension, replacing the ball
by the boundary of a fixed smooth strictly convex body, in Minkowski space... (see, for
instance, [1, 9, 10, 11, 12, 15]).
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Another interesting problem would be to look for inequalities involving the classi-
cal functionals and the minimal annulus, finding the convex sets for which the equality
sign is attained: the extremal sets. In [2], [5] and [4], Bonnesen and Favard studied this
type of problems: in [2] and [5] the minimum and the maximum of the isoperimetric
deficit p2/(4π)−A , for given minimal annulus were obtained; in the third paper, the
optimal bounds of the area and the perimeter for fixed minimal annulus were deter-
mined.

In [6], the bounds for the remaining measures (diameter, minimal width, circum-
radius and inradius) in terms of the minimal annulus have been obtained. In [7], the
problem of optimizing the classical magnitudes when the minimal annulus and the in-
radius are fixed is solved: let us note that if three measures are involved, the question
becomes more interesting when the inequality, named optimal, provides the maximum
or minimum value of a measure for each pair of possible values of the others.

In this paper, we obtain all the possible (and optimal) relations which state the
maximum and minimum values of the diameter, the minimal width and the inradius of
a convex body, when its minimal annulus and its circumradius are given. We prove
the optimal inequalities for each one of these problems, determining also their corre-
sponding extremal sets. The inequalities that state the best bounds of the area and the
perimeter for fixed minimal annulus and circumradius were obtained in [6]. So, the re-
sults proved here close the problem: all the possible cases involving minimal annulus,
circumradius and inradius are solved.

2. Some previous results

Before stating the main results of the paper, let us consider some properties of the
minimal annulus of a convex body K , which will play a crucial role in the proofs of the
results. Let us denote by cr and CR , respectively, the inner and the outer circles of the
minimal annulus A(c,r,R) of K . As usual, ∂K will denote the boundary of the set K .
Given two points P,Q ∈ R

2 , PQ will denote the straight line determined by them; PQ

the line segment joining them; and
︷ ︷
PQ any circular arc with P,Q as extreme points.

Besides, if P,Q lie on a circumference (with center c), we call central angle of P and
Q the angle ∠(PcQ) determined by them with respect to the center c .

The following well-known properties were studied by Bonnesen in [2]:

(P1) Each one of the circumferences ∂cr and ∂CR touches the boundary of K in, at
least, two points.

(P2) The sets ∂cr ∩∂K and ∂CR ∩∂K can not be separated.

(Two sets A and B can be separated if there exists a line � such that A ⊂ �+ and
B ⊂ �− , where �+ , �− represent the halfplanes determined by � ).

(P3) The minimal annulus of a convex body K is uniquely determined.

(P4) The minimal annulus of a convex body K is the only annulus that contains ∂K
and verifies properties (P1) and (P2).
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The following lemmas were obtained in [6], where we proved some properties of
the minimal annulus of a convex body K , as well as its relation with the circumradius
of K . They will be very useful in the proofs of the results.

LEMMA 1. Let K be a convex body with minimal annulus A(c,r,R) . The follow-
ing properties hold:

(a) There are points P,Q∈ ∂CR∩∂K whose central angle α verifies α �2arccos(r/R) .

c

P Q

R
r

Figure 1: The limit case when the central angle of the points P,Q ∈ ∂CR ∩∂K is
α = 2arccos(r/R) .

(b) K contains a cap-body, the convex hull of cr and two points of ∂CR∩∂K , whose
minimal annulus is A(c,r,R) (a cap-body is the convex hull of a disc and count-
able many points such that the line segment joining any pair of them intersects
the disc).

(c) K is contained in a circular slice of CR determined by two support lines to
cr , whose minimal annulus is A(c,r,R) (a circular slice is the part of a circle
bounded by two straight lines, whose intersection point, if it exists, is not interior
to it).

The following lemma collects some properties relating the minimal annulus of a
convex body with its circumradius. From now on, we shall denote by CK the circum-
circle of the body K , and by x0 its circumcenter.

LEMMA 2. Let K be a convex body with minimal annulus A(c,r,R) , circumcircle
CK and circumradius RK . The following properties hold:

(i) RK � R.

(ii) cr ⊂ K ⊂CR ∩CK .

(iii) Either CR ≡CK , or ∂CK ∩∂CR has exactly two points, denoted by A and B.

(iv) If CK �≡ CR , then the points {A,B} = ∂CK ∩ ∂CR determine a central angle α
such that α � 2arccos(r/R) .

(v) The circular arc
︷ ︷
AB ⊂ ∂CK ⊂CR can not be smaller than a semi-circumference.
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(vi) The tangent line to cr , which is parallel and closer to the segment AB, intersects
∂CR in two points A′,B′ , such that there exists, at least, one point P ∈ ∂K∩∂CR

lying on one of the arcs
︷ ︷
AA′ ,

︷ ︷
BB′ . Without loss of generality, let us suppose

that P ∈
︷ ︷
AA′ . Then, there exists another point Q �= P lying on the arc

︷ ︷
PB, such

that the central angle determined by P and Q verifies α � 2arccos(r/R) , see
Figure 2.

0

c

A'

B'

x
A

B

P

Q

Figure 2: There are, at least, two points P,Q ∈ ∂K ∩∂CR .

(vii) K contains the 2-cap-body Kc = conv{cr,P,Q} , with P,Q obtained from (vi).

(viii) The 2-cap-body Kc of the above property (vii) determines on the boundary of cr

two circular arcs, each one having, at least, one point of ∂K .

(ix) K is contained in the intersection of CK with the circular slice of CR determined
by the support lines to cr through the points of ∂K∩∂cr given by property (viii).

From now on, we will follow the notation of the above Lemma 2: A,B will denote
the intersection points of ∂CK and ∂CR ; besides, we will denote by A′ and B′ the
intersection points of ∂CR with the parallel line to AB which is tangent to ∂cr (see
Figure 2).

In the following sections, we are going to obtain all the possible (and optimal)
relations which state the maximum and minimum values of the diameter, the minimal
width and the inradius of a convex body, when its minimal annulus and its circumradius
are given.

3. Optimizing the diameter

In this section we state the relation between the minimal annulus, the circumradius
and the diameter of a convex body. More precisely, we obtain the best (upper and lower)
bounds for D , when the minimal annulus and the circumradius of the convex body are
fixed, determining also the extremal sets in each case. We start with the upper bounds.

THEOREM 1. Let K be a convex body with minimal annulus A(c,r,R) and cir-
cumradius RK . Then, its diameter D verifies D � 2RK . The equality holds for any set
containing diametrically opposite points of ∂CK .
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x

Figure 3: A convex body with maximum diameter.

Proof. The inequality D � 2RK always holds, independently of the minimal annu-
lus. Now, the set shown in Figure 3 has minimal annulus A(c,r,R) , its circumradius is
RK and its diameter D = 2RK ; hence, there are sets for which the equality holds. �

From now on, we will denote by N and N′ the north poles of the circumferences
∂CR and ∂CK , i.e., the intersection points of the straight line cx0 with ∂CR and ∂CK ,
respectively, which lie over the line segment AB .

THEOREM 2. Let K be a convex body with minimal annulus A(c,r,R) and cir-
cumradius RK . Then, its diameter D verifies:

D � R+ r if R � 5
3
r and RK � R+ r√

3
. (1)

The equality holds, for instance, for the cap-body conv{cr,A,B,N′} (see Figure 4).

D

0

A B

c

N'

x

Figure 4: Set with minimum diameter for R � 5r/3, RK � (R+ r)/
√

3.

D �
√

3RK if

⎧⎪⎨
⎪⎩

R � 5
3
r and RK � R+ r√

3
, or (2.a)

5
3
r � R � 2r and RK � 2√

3

√
R2− r2. (2.b)

(2)

The equality holds in both cases, for instance, for the cap-body conv{cr,A,B,N′} ,
when 	(ABN′) is an equilateral triangle (see Figure 5).
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Figure 5: Sets with minimum diameter when (a) R � 5r/3, RK � (R+ r)/
√

3 , and
(b) 5r/3 � R � 2r , RK � 2

√
R2− r2/

√
3 .

D � 2
√

R2 − r2 if

⎧⎨
⎩

5
3
r � R � 2r and RK � 2√

3

√
R2− r2, or (3.a)

2r � R. (3.b)
(3)

In (3.a), equality holds, for instance, for the cap-body conv{cr,A,B,N′} ; in (3.b), for
the convex body conv{cr,A,B,Z} , where Z �= A is the intersection point of ∂CK and
the circumference with center B and radius d(A,B) = 2

√
R2− r2 (see Figure 6).
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Figure 6: Sets with minimum diameter when (a) 5r/3 � R � 2r , RK � 2
√

R2− r2/
√

3 , and (b)
2r � R .

Let us note that the extremal set conv{cr,A,B,Z} for inequality (3.b) is not always
a cap-body, since the line segment AZ can have no intersection with cr (see Figure
6(b)).

Proof. We develop the proof in different steps: first, we see that all the inequalities
hold; then, we will show that they are optimal, determining the extremal sets.

(i) The inequalities. Let us suppose first that R � 5r/3 and RK � (R + r)/
√

3. In
[6, Proposition 3], the relation between the minimal annulus and the circumradius was
stated. It was proved that when R � 5r/3, it always holds D � R+r , for any (possible)
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value of RK . Besides, it is well-known that if K is a convex body with circumradius
RK , then D �

√
3RK (see, for instance, [3, p. 84]). Hence, we can assure that

D � max
{
R+ r,

√
3RK

}
= R+ r,

since, by hypothesis,
√

3RK � R+ r . It gives the lower bound in inequality (1). Now, if
R � 5r/3 but RK � (R+ r)/

√
3, then D � max

{
R+ r,

√
3RK

}
=

√
3RK , which states

the bound in (2.a).
Let us suppose now that R ∈ [

5r/3,2r
]

and RK � 2
√

R2 − r2/
√

3. Since R �
5r/3, it is known (see [6, Proposition 3]) that D � 2

√
R2− r2 . Hence,

D � max
{

2
√

R2− r2,
√

3RK

}
=
√

3RK ,

which proves the lower bound for (2.b). If, on the contrary, RK � 2
√

R2 − r2/
√

3, then

D � max
{

2
√

R2− r2,
√

3RK

}
= 2

√
R2− r2 , inequality (3.a).

Finally, let us suppose that R � 2r . Then, in particular, R � 5r/3, which assures
that D � 2

√
R2− r2 (see again [6, Proposition 3]). Hence, D � max

{
2
√

R2− r2,
√

3RK
}

.
If

√
3RK � 2

√
R2− r2 , using the trivial inequality R � RK , we would get 3R2 �

4(R2− r2) , or equivalently, R � 2r , a contradiction. Therefore, the above maximum is
2
√

R2 − r2 , which shows inequality (3.b).

In order to conclude the proof of the theorem, we have to show that these bounds
are best possible; i.e., we have to determine the families of extremal sets for each of
them. First, we distinguish the particular case R = RK .

(ii) The particular case RK = R . It is an easy computation to check that inequalities
(1), (2) and (3) are reduced to

D � R+ r if R � 1+
√

3
2

r, (4)

D �
√

3R if
1+

√
3

2
r � R � 2r, (5)

D � 2
√

R2− r2 if 2r � R. (6)

There are many families of sets for which the equality holds in inequalities (4)
and (5): the well-known constant width sets verify D = R+ r when R � (

√
3+1)r/2,

since their circumcircle and incircle are always concentric, and hence determine their
minimal annulus; the so called Yamanouti sets verify D =

√
3R when (

√
3+1)r/2 �

R � 2r , again because the circumcircle and the incircle are concentric, and determine
the minimal annulus (a Yamanouti set is the convex hull of an equilateral triangle and
three circular arcs with center on each vertex of the triangle and radius not greater than
its side length).

Now, let us suppose that R � 2r . Let A ≡ A′ and B ≡ B′ , and we consider the
circular sector ABM , where M is the intersection point of ∂CR and the circumference
with center B and radius d(A,B) = 2

√
R2 − r2 (see Figure 7).
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A=A' B=B'

C

R -r2 22

B

D

c

M
N

Figure 7: The extremal set for RK = R and R � 2r .

Clearly, the straight lines AB and BM support cr , and the contact points can not be
separated from {A,B,M} ; hence, the set has minimal annulus A(c,r,R) . Its circumra-
dius is R , since A , B , M determine an acute-angled triangle. Finally, since R � 2r , the
point M lies on the circular arc

︷ ︷
AN ⊂ ∂CR . Therefore, d(A,M) � d(B,M) = d(A,B) ,

which assures that the diameter is D = d(B,M) = d(A,B) = 2
√

R2− r2 .
From now on, we will assume that RK < R , i.e., that CK �≡CR .

(iii.a) The extremal sets for inequality (1). Let R,r be given such that R � 5r/3. In this
case, the distance d(A′,B′) = 2

√
R2− r2 � R+ r . Let us take A ≡ A′ and B ≡ B′ , and

let us consider the circles CA and CB , both with radius R + r , and centers A and B ,
respectively. Then, ∂cr touches the circumferences ∂CA and ∂CB in the intersection
points MA,MB of the straight lines Ac and Bc with ∂cr , respectively (see Figure 8(a)).

If RK is such that d(A,N′) = d(B,N′) � R+ r (i.e., if N′ lies inside the circle CA

–and CB ), then L = conv{cr,A,B,N′} is contained in the intersection of CA ∩CB with
the closed half-plane determined by AB (see Figure 8). Since A ≡ A′ and B ≡ B′ , then
x0 lies over the segment AB , which assures that 	(AN′B) is an acute-angled triangle;
hence, L has circumradius RK . By property (P4), its minimal annulus is A(c,r,R) .

Let us study the diameter of these figures. Since R � 5r/3 < 2r , the line segments
N′A and N′B always intersect cr (the limit case corresponds to N′ ≡ N and R = 2r );

R+r

(a)

CC

A

A

B

B

A=A' B=B'

0

c

M

x

N'

M

R+r

(b)

A

AB

B
C C

B=B'A=A'

0

c

M

x

N'

M

Figure 8: L has minimum diameter when RK �
√

(R+ r)3/(8r) .
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therefore, MA,MB ∈ ∂L . It follows that D(L) = d(A,MA) = d(B,MB) = R+r , since we
have assumed that d(A,N′) = d(B,N′) � R+r and R � 5r/3 (which implies d(A,B) =
2
√

R2 − r2 � R+ r ). An easy computation shows that N′ ∈ ∂CA ∩ ∂CB if and only if
RK =

√
(R+ r)3/(8r) . Thus, the above construction for the set L can be developed

only if RK �
√

(R+ r)3/(8r) (see Figure 8).
However, from such a value of RK , d(A,N′) = d(B,N′) > R + r , and the above

construction does not work. So, let us suppose that R � 5r/3 and RK >
√

(R+ r)3/(8r) ,
which implies d(A′,B′) = 2

√
R2− r2 � R+ r < d(A′,N′) = d(B′,N′) . Let us choose

the circumcenter x0 such that A ≡ A′ and B ≡ B′ . Then, moving x0 on the line cx0

far away from c , we increase the distance d(A,B) (now A �≡ A′ , B �≡ B′ ), decreasing
d(A,N′) = d(B,N′) at the same time. By continuity, there is a position of x0 for which
d(A,B) = d(A,N′) = d(B,N′) ; i.e., such that A,B,N′ ∈ ∂CK form an equilateral trian-
gle. Then, d(A,B) = d(A,N′) = d(B,N′) =

√
3RK , and the set L = conv{cr,A,B,N′}

has circumradius RK and minimal annulus A(c,r,R) (see Figure 9).

A B

CC D=R+r

0

AB

(a)

c

N'

x

A' B'

A B

CC

D=

0

AB

(b)

3RK

c

N'

x

A' B'

Figure 9: (a) D(L) = R+ r , if R � 5r/3 and
√

(R+ r)3/(8r) � RK � (R+ r)/
√

3;
(b) D(L) =

√
3RK , if R � 5r/3 and RK � (R+ r)/

√
3 .

Clearly, D(L) � d(A,B) . Thus, two different cases appear:

• If N′ ∈CA ∩CB (i.e., if L ⊂CA ∩CB ), then R+ r � d(A,B) =
√

3RK (see Figure
9(a)); so, D(L) = R+ r .

• If N′ �∈CA ∩CB , then
√

3RK = d(A,B) � R+ r , and the diameter is
√

3RK (see
Figure 9(b)).

In short, if
√

(R+ r)3/(8r) < RK � (R + r)/
√

3, the set L = conv{cr,A,B,N′}
shown in Figure 9(a) is extremal for inequality (1); it concludes the proof of this in-
equality.

(iii.b) The extremal sets for inequality (2). The previous argument also shows that if
RK � (R+ r)/

√
3 (and R � 5r/3), then the analogous set L , shown in Figure 9(b), is

extremal for inequality (2.a).
So, let us suppose that 5r/3 � R � 2r and RK � 2

√
R2− r2/

√
3. The points

A′,N′,B′ determine an isosceles triangle, with side lengths

d(A′,B′) = 2
√

R2− r2, d(A′,N′) = d(B′,N′) =
[
2RK

(
RK +

√
R2

K −R2 + r2
)]1/2

.
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An easy computation shows that 	(A′N′B′) is an equilateral triangle if and only if√
3RK = 2

√
R2− r2 , and also that d(A′,B′) � d(A′,N′) = d(B′,N′) if and only if√

3RK � 2
√

R2− r2 , our hypothesis. Hence, d(A′,B′) � d(A′,N′) = d(B′,N′) .

Let us choose again the circumcenter x0 such that A ≡ A′ and B ≡ B′ . Then,
moving x0 on the line cx0 far away from c , we increase the distance d(A,B) , de-
creasing d(A,N′) = d(B,N′) at the same time. By continuity, there exists a position of
x0 for which d(A,B) = d(A,N′) = d(B,N′) ; i.e., such that 	(AN′B) is an equilateral
triangle. In this case, d(A,B) = d(A,N′) = d(B,N′) =

√
3RK , and the convex body

L = conv{cr,A,B,N′} has circumradius RK . Since R � 2r , the sides of the triangle
	(AN′B) intersect cr , which implies that the contact points of ∂L with ∂CR and ∂cr ,
respectively, can not be separated: L has minimal annulus A(c,r,R) (see Figure 10).

0

A B

N'

D

c

A' B'

x

Figure 10: D(L) =
√

3RK , if 5r/3 � R � 2r and RK � 2
√

R2− r2/
√

3 .

The diameter of L is, either the diameter of 	(AN′B) , i.e.,
√

3RK , or the distance
from any vertex to a support line of the opposite circular arc of ∂cr , i.e., R+ r . Since
5r/3� R , then 2

√
R2− r2 � R+r , and from RK � 2

√
R2− r2/

√
3, we obtain

√
3RK �

R+ r ; hence D(L) =
√

3RK (see Figure 10). It concludes the proof of inequality (2.b).

(iii.c) The extremal sets for inequality (3). Let us suppose that 5r/3 � R � 2r and
RK � 2

√
R2− r2/

√
3. We take A ≡ A′ and B ≡ B′ , and let CA,CB be the circles with

radius 2
√

R2 − r2 = d(A,B) and centers A and B , respectively.

An easy computation shows that d(A,N) =
√

2R(R+ r); using that R � 2r , we
have d(A,N) = d(B,N) � d(A,B) = 2

√
R2− r2 . Hence, ∂CA ∩ ∂CB gives a point

E ∈ CR . Let us note that for a value of RK such that the point N′ verifies d(N′,c) �
d(E,c) , the set L = conv{cr,A,B,N′} is the required solution (see Figure 11): its cir-
cumradius is RK because A,N′,B do not lie on the same semi-circumference; the min-
imal annulus is A(c,r,R) , because ∂	(AN′B)∩ cr �= /0 ; finally, since L ⊂ CA ∩CB ,
D(L) = 2

√
R2− r2 .
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(a)

C CBA

A=A' B=B'

D

0

c

x
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E
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(b)

C CAB N'=E

0

A=A' B=B'

D

c
x

N

Figure 11: (a) conv{cr ,A,B,N′} has minimum diameter if 5r/3 � R � 2r and RK �
2
√

R2 − r2/
√

3. (b) The limit case RK = 2
√

R2− r2/
√

3 .

It is easy to see that d(N′,c) = d(E,c) , i.e., N′ ≡ E , only if RK = 2
√

R2− r2/
√

3;
so, d(N′,c) � d(E,c) when RK � 2

√
R2− r2/

√
3, our hypothesis. It shows inequality

(3.a).
Finally, let us suppose that R � 2r , for any (possible) value of RK . Let us take A≡

A′ and B≡B′ . From R � 2r , it follows that d(A,N) = d(B,N) � d(A,B) = 2
√

R2− r2 .
Hence, ∂CA and ∂CB intersect in the exterior of CR (see Figure 12), and ∂CB ∩ ∂CR

gives a point M ∈ ︷ ︷
AN , such that the line segment MB supports cr . On the other hand,

there is a point Z ∈ ∂CB ∩∂CK lying on
︷ ︷
AM ⊂ ∂CB (if AB is a diameter-chord of CK ,

then Z ≡ A , as shown in Figure 12(b)).

A=A' B=B'

CCA B

D

(a)

0

c

x

Z

N

M

N'

0

A=A'=Z B=B'

CCA B

D

(b)

c

x

M

N'

N

Figure 12: L = conv{cr ,A,B,Z} has minimum diameter if R � 2r .

The convex body L = conv{cr,A,B,Z} provides the required solution: it has cir-
cumradius RK (A,B,Z do not lie on the same semi-circumference) and minimal annu-
lus A(c,r,R) . Finally, since L is contained in the circular sector ABM , and contains
the center B and two points A,Z of the circular arc, its diameter is D(L) = 2

√
R2− r2

(see Figure 12). It concludes the proof of inequality (3.b), and the theorem.
Let us note that, in the last case, the set L can not be usual conv{cr,A,B,N′} ,

because for certain values of R,r,RK , the line segments AN′ and BN′ do not touch ∂cr

(see Figure 12(b)); then, A(c,r,R) can not be the minimal annulus of the set. �



144 M. A. HERNÁNDEZ CIFRE AND P. J. HERRERO PIÑEYRO

4. Optimizing the minimal width and the inradius

In this section we state the relation between the minimal annulus, the circumradius
and both, the minimal width and the inradius of a convex body K . More precisely, we
are going to obtain the best bounds (upper and lower bounds) for ω and rK , when the
minimal annulus and the circumradius of the convex body are fixed, determining also
the extremal sets in each case. The results for both cases, the minimal width and the
inradius, can be proved in a similar way. So, we will state them together.

THEOREM 3. Let K be a convex body with minimal annulus A(c,r,R) and cir-
cumradius RK . Then, its minimal width ω and its inradius rK verify

ω � 2r and rK � r.

The equality holds for any set containing diametrically opposite points of ∂cr .

0

0

rK
c=y

A=A' B=B'

x

Figure 13: A set with minimal width ω = 2r and inradius rK = r .

Proof. In [6] it was proved that the above inequalities always hold, independently
of the value of RK . Therefore, it suffices to show that, for any possible value of RK ,
there exists a convex body with minimal annulus A(c,r,R) and, for each case, minimal
width ω = 2r or inradius rK = r . For instance, the set in Figure 13 verifies the required
conditions. �

Before stating the opposite bound, let us construct the following set: for A(c,r,R)
and RK given, let us consider the circle CK with radius RK such that the straight line

l

c

A B

Figure 14: Asymmetric circular wedge K∠ .
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AB supports cr . Let � denote the tangent line to ∂cr , passing through the point A (see
Figure 14). We define the asymmetric circular wedge, and we denoted it by K∠ , as the
intersection of CK with the circular slice of CR determined by the straight lines AB and
� .

THEOREM 4. Let K be a convex body with minimal annulus A(c,r,R) and cir-
cumradius RK . Then, its minimal width ω verifies:

ω � RK+
√

R2
K −R2 + r2

if

⎧⎨
⎩

R � 2r, or (7.a)

2r � R � r
√

2(2+
√

2) and RK � R4

4r(R2−2r2)
. (7.b)

(7)

ω �4r(R2− r2)
R4

(
R2−2r2 +2r

√
R2

K −R2 + r2

)

if

⎧⎪⎨
⎪⎩

2r � R � r
√

2(2+
√

2) and RK � R4

4r(R2−2r2)
, or (8.a)

R � r
√

2(2+
√

2). (8.b)

(8)

And its inradius rK verifies

rK � 2r

⎛
⎝1− r

RK −
√

R2
K −R2 + r2

R2 − r2

⎞
⎠ . (9)

The equality holds, in all cases, for the asymmetric circular wedge K∠ (see Figure 15).

c

A B

0

0

rK

c

x

y

Figure 15: K∠ has maximum minimal width and inradius.

Proof. Let us note that, if RK = R , then inequalities (7), (8) and (9) can be written
as

ω �
{

R+ r if R � 2r,

ω � 4r
R2 (R2 − r2) if R � 2r

and rK � 2rR
R+ r

,
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respectively. In [6, Propositions 2 and 7], it was proved that these relations hold for the
minimal width and the inradius when the minimal annulus is prescribed. Thus, from
now on we can suppose that RK < R , and hence, that CK �≡CR .

Property (ix) of Lemma 2 assures that K is contained in the intersection of CK with
the circular slice of CR determined by the support lines to cr in two suitable points of
∂cr ∩ ∂K , which are separated by the line segment AB ; we denote by K1 this kind of
sets. Besides, by property (vi) of this lemma, we know that at least one of the above

support lines intersects ∂CR in a point P , lying either on the circular arc
︷ ︷
AA′ , or on︷ ︷

BB′ ; we can suppose, for instance, that P∈
︷ ︷
AA′ (see Figure 16). Therefore, ω �ω(K1)

and rK � rK1
, and the problem is reduced to consider this particular family of sets.

0

c

x

A B

A'

B'

S

T

P

Q

Figure 16: Reducing the problem to the sets K1 .

Following the notation of Figure 16, we represent by S,T ∈ ∂CK and Q∈ ∂CR the
intersection points (besides P), of ∂CK and ∂CR with the straight lines determining the
set K1 .

For each fixed segment PQ , both the minimal width and the inradius of K1 are
minimum (respectively, 2r and r ) when ST is parallel to PQ . If we move ST con-
tinuously on ∂cr in the anti-counter-clockwise, we obtain all the possible sets K1 . Let
us note that the width in the orthogonal direction to PQ is given, depending on the
relation between r , R and RK , by the distance, to PQ , either from the point T , or from
the tangent line to ∂CK , which is parallel to PQ . And this one is the direction in which
the minimal width of K1 is attained. Of course, the greater the angle determined by
PQ and ST , the greater the minimal width and the inradius of K1 ; therefore, the set K1

with maximum width and inradius is obtained when the points P and S coincide (see
Figure 17).

If we move ST in the counter-clockwise, we can conclude analogously that the
set has maximum minimal width and inradius when T ≡ Q . However, this figure has
both, less minimal width and less inradius than the previous one (when P ≡ S ). In
fact, let us note that the point P lies over the line segment A′B′ , and consequently, Q
lies below it; then, d(Q,x0) � d(P,x0) . Besides, the angles �(PQS) = �(TPQ) when
T ≡ Q or P ≡ S , because P,Q ∈ ∂CR and the lines determining these angles support
cr . Therefore, the length of the arc

︷ ︷
AS , when T ≡ Q , is less than the length of

︷ ︷
TB ,

if P ≡ S ; it implies that both the minimal width and the inradius are maximized when
P ≡ S .



RELATING THE MINIMAL ANNULUS WITH THE CIRCUMRADIUS 147

0

c

x
A B

A'
B'

T
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0
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x
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B'P=S

Q

T

y

Figure 17: Reducing the problem to the sets K2 .

Let K2 be this last set (see Figure 17). Then, ω � ω(K1) � ω(K2) and rK �
rK1

� rK2
. Since P ∈ ∂CR and the lines PT , PQ support cr , then the angle �(TPQ)

is always the same for any point P . Besides, the greater the length of the arc
︷ ︷
TB , the

greater

1. the distance between PQ and its parallel line, tangent to
︷ ︷
TB , and so the minimal

width,

2. the radius of the incircle.

For fixed P , continuously moving the circumcenter x0 on the straight line x0c
towards c , then the part of CK contained in CR is bigger; hence, the length of the arc︷ ︷
TB increases, and hence the minimal width and the inradius. We can do this movement
till P≡ A . Thus, it suffices to consider the sets K2 such that the lines determining them
intersect on A (see Figure 18, left).

0

c

x

P=S=A B

A'

B'

T

Q

ω

P=A=S=A'

0

c

x

Q=B=B'

T

N'

0

0

r
K

c

x

P=S=A=A' Q=B=B'

T

y

Figure 18: K∠ has maximal inradius and minimal width.

Finally, it is easy to see that, since the angle in A is always the same wherever A
is placed, both the minimal width and the inradius will be maximal when A ≡ A′ (see
Figure 18), this is, when the set is an asymmetric circular wedge K∠ .

A tedious calculation shows that

r
K∠ = 2r

⎛
⎝1− r

RK −
√

R2
K −R2 + r2

R2 − r2

⎞
⎠ ,
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which states inequality (9).

We just have to compute the minimal width of K∠ , which depends on the relation
between R , r and RK . Again, N′ will denote the intersection point of the straight line
cx0 and ∂CK , as shown in Figure 18.

If R � r
√

2(2+
√

2) , then it is easy to see that, for any possible value of RK , the

point T lies on the circular arc
︷ ︷
N′B ⊂ ∂CK (see Figure 19, left). Hence, the minimal

width is the distance from T to the line segment AB :

ω(K2) =
4r(R2− r2)

R4

(
R2−2r2 +2r

√
R2

K −R2 + r2

)
.

Besides, if R = r
√

2(2+
√

2) and RK =
√

R2− r2 , the circumcenter x0 lies on the line

segment AB , and then, T ≡ N′ (see Figure 19, middle).

ω

0

c

P=S=A=A' Q=B=B'

x

TN'

ω

0

c

x

A

B

N=T'

R K 0

c

A
B

x

T N'

ω

Figure 19: Different positions for the point T ∈ ∂CK .

In the case 2r � R � r
√

2(2+
√

2) , T ≡ N′ only if RK = R4/(4r(R2 − 2r2)) .

Hence, if RK � R4/(4r(R2 − 2r2)) , then T lies again on the circular arc
︷ ︷
N′B ; on the

contrary, if RK � R4/(4r(R2 − 2r2)) , then T ∈
︷ ︷
AN′ , and the minimal width is the

distance from N′ to AB (see Figure 19, right):

ω(K2) = RK +
√

R2
K −R2 + r2.

Finally, if R � 2r , the point T always lies on the arc
︷ ︷
AN′ , for any possible value

of the circumradius, and hence, the maximum minimal width is the distance between
N′ and the segment AB (see Figure 18, middle). �
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la théorie des fonctions, Gauthier-Villars, Paris 1929.

[3] T. BONNESEN, W. FENCHEL, Theorie der Konvexen Körper, Springer, Berlin 1934, 1974; Chelsea,
New York 1948.
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345–369.
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