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ON ALZER’S INEQUALITY AND ITS GENERALIZED FORMS
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Abstract. By using the theory of multiplicatively convex functions, we present some general
forms of Alzer’s inequality. As consequence, some relevant results in the literature are recovered
and an open problem by J. S. Ume [12] is also solved.

1. Introduction

Several authors including Alzer [1], Sandor [2], Ume [3], and Kuang [4] proved
the following inequality:
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(n = 1,2, ...), (1.1)

where r > 0. The proof of this inequality involves the principle of mathematical in-
duction and other analytical methods. Recently, Bennett [8] also proved it by using the
Ratio Principle and showed that the inequality (1.1) holds for r < 0. It is easy to find
that the inequality (1.1) can also be rephrased as monotonic result.

THEOREM 1.1. If r > 0 , then the sequence

1r +2r + ...+nr

nr+1 (n = 1,2, ...)

decreases with n.

On the other hand, it should be noted that there are many generalizations of Alzer’s
inequality (1.1). See, for example, [5-13] and the references cited therein.

Qi [5] offered the first generalization of Alzer’s inequality by replacing the se-
quence {n}∞n=1 with the sequences {n+ k}∞n=1 , and obtained: Let n and m be natural
numbers, k a nonnegative integer. Then
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where r is any given positive real number.

Qi and Debnath[6] also considered “abstract” version of Alzer’s inequality and
established the following extension.
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THEOREM 1.2. ([6], Corollary 2.2) Let n and m be natural numbers. Suppose
that {an}∞n=1 is a positive and increasing sequence satisfying

a2
n+1 � anan+2 (log− concave), (1.3)
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(n = 1,2, ...). (1.4)

Then, for any given positive number r , we have the inequality
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The lower bound of (1.5) is best possible.

Z. Xu and D. Xu [7] also obtained the inequality (1.5) under certain conditions
different from those of Theorem 1.2. The authors proved the following

THEOREM 1.3. Let n and m be natural numbers, r a positive number. Suppose
that {an}∞n=1 is an increasing positive sequence satisfying (1.3) and
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then we have the inequality (1.5).

REMARK 1.4. The condition (1.4) is stronger than the hypotheses (1.6). This
shows that Theorem 1.3, to some extent, improves Theorem 1.2.

As a matter of fact, if (1.3) and (1.4) hold, then we have
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From this, one can easily deduce that
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Using (1.7) and the arithmetic-geometric mean inequality, we obtain
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This implies that the inequality (1.6) holds.

Recently, Bennett [8] announced without proof the following generalization of
Alzer’s inequality as Theorem 14 of [8], from which one can see that the condition
(1.3) may be superfluous.
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THEOREM 1.5. ([8], Theorem 14) If the sequences
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)n

,

both increase (respectively decrease) with n, then the sequence
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) 1
r

an
(r �= 0) (1.8)

decreases (respectively increases) with n.

It should be noted that Niculescu [10] systemically stated the theory of multiplica-
tively convex functions, which is similar to that of classical convex functions. However,
they differ from each other. In many cases, the inequalities based on multiplicatively
convexity are better than the direct application of the usual inequalities of convexity.
For the more details, the reader is referred to [10] and [11, p. 65–87]. Here we still cite
the following conclusions for the sake of convenience.

DEFINITION 1.6. Suppose that I is a subinterval of (0,∞) . A function f : I →
(0,∞) is called multiplicatively convex if for all x,y ∈ I and λ ∈ [0,1] ,

f (x1−λ yλ ) � f (x)1−λ f (y)λ . (1.9)

If (1.9) is strict for all x �= y and λ ∈ (0,1) , then f is said to be strictly multiplica-
tively convex.

If the inequality in (1.9) is reversed, then f is said to be multiplicatively concave.
If inequality (1.9) is reversed and strict for all x �= y and λ ∈ (0,1) , then f is said to
be strictly multiplicatively concave.

THEOREM 1.7. Let f : I → (0,∞) be a twice differentiable function defined on a
subinterval of (0,∞) . Then f is multiplicatively convex (concave) if and only if

x[ f (x) f ′′(x)− f ′2(x)]+ f (x) f ′(x) � 0 (� 0), f or all x ∈ I.

The corresponding variants for the strictly multiplicatively convex (concave) functions
also work.

Our main purpose of this paper is to present some new generalizations of Alzer’s
inequality by using the theory of multiplicatively convex functions. The presented re-
sults contain some relevant results in the literature as their special cases.

2. Main results

In this section, we investigate the monotonicity of some sequences involving mul-
tiplicatively convex function and convex sequence. Some new generalized versions
of Alzer’s inequality are presented. As consequences, some general forms of Alzer’s
inequality in the literature are recovered.
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THEOREM 2.1. Let f be a positive function defined in (0,1] . Suppose that

{an}∞n=1 is an increasing positive sequence such that the sequence
{(
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)n}∞
n=1

in-
creases.

(1) If f is an increasing and multiplicatively convex (concave) function, then the
sequence (
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(2) If f is decreasing and multiplicatively convex (concave), then the sequence
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increases with n.

Proof. Here we only give the proof of (1), since that of (2) is similar and we omit
it.

Since the sequences {an}∞n=1 and
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Since f is increasing, from (2.2) and (2.3), we get
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If f is multiplicatively concave, then

f

((
ai+1

an+1

) i
n+1
(

ai

an+1

)1− i
n+1
)

�
(

f

(
ai+1

an+1

)) i
n+1
(

f

(
ai

an+1

))1− i
n+1

. (2.6)



ON ALZER’S INEQUALITY AND ITS GENERALIZED FORMS 165

A combination of (2.4) with (2.6) leads to
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Multiplying the two sides of (2.7) from i = 1 to n , we have
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This shows that inequality (2.1) holds.
If f is multiplicatively convex, then
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This together with (2.5) yields

f

(
ai

an+1

)
�
(

f

(
ai−1

an

)) i−1
n
(

f

(
ai

an

))1− i−1
n

, i = 2, ...,n. (2.8)

It is easy to see that
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From (2.8)− (2.10) , we can deduce that
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and hence, as desired, the inequality (2.1) also follows. The proof is complete. �

THEOREM 2.2. Let f : (0,1]→ [1,+∞) be a real-valued function and {an}∞n=1 an

increasing positive sequence such that the sequence
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increases. Then

the following statements are valid.
(1) If f is an increasing and multiplicatively convex (concave) function and {an}∞n=0

is convex sequence, i.e., an−1 + an+1 � 2an(n = 1,2, ...) , where a0 = 0 , then the se-
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decreases with n. That is(
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(2) If f is decreasing and multiplicatively convex (concave) and {an}∞n=0 is con-
cave sequence, i.e., an−1 +an+1 � 2an(n = 1,2, ...) , then the sequence
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Proof. As the proofs are similar, here we only give the proof of (1) and that of (2)
is omitted.
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Since f is increasing, from (2.12) and (2.13), we obtain
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If f is multiplicatively concave, then
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A combination of (2.14) with (2.16) leads to
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Multiplying the two sides of (2.17) from i = 1 to n , respectively, we have
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Since {an}∞n=0 is convex sequence, it is easy to verify that
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This shows that inequality (2.11) holds.
If f is multiplicatively convex, then
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Since f (x) � 1, from (2.19) and (2.23), we can deduce that
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and hence, as desired, the inequality (2.11) also holds and so the proof is complete. �

From Lemma 2.3.4 of [11, p. 79], we can easily obtain: If a function f is in-
creasing (decreasing) and multiplicatively convex (concave), then the function 1/ f is
decreasing (increasing) and multiplicatively concave (convex). Therefore, it is easy to
find that Theorem 2.2 is equivalent to the following result.
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THEOREM 2.2′ .. Let f : (0,1]→ (0,1] be a real-valued function and {an}∞n=1 an

increasing positive sequence such that the sequence
{(

an+1
an

)an
}∞

n=1
increases.

(1) If f is an increasing and multiplicatively convex (concave) function and {an}∞n=0
is concave sequence, where a0 = 0 , then the sequence
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COROLLARY 2.3. ([8], Theorem 8) If the sequences
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both increase (respectively decrease) with n, then the sequence
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decreases (respectively increases) with n.

Proof. (Increasing case). Differentiating the function f (x) = exp(xr) (x > 0) ,
we obtain

f ′(x) = r f (x)xr−1, f ′′(x) = f (x)(r(r−1)xr−2 + r2x2r−2).

Thus,
x[ f (x) f ′′(x)− ( f ′(x))2]+ f (x) f ′(x) = (r f (x))2xr−1 > 0.

By Theorem 1.2, it is easy to see that f is increasing and multiplicatively convex for
r > 0, and decreasing and multiplicatively convex for r < 0.

Taking f (x) = exp(xr) (x > 0) in Theorem 2.1 and noticing that
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decreases for r > 0, and increases for r < 0, which shows that the sequence

( 1
n ∑

n
i=1 ar

i )
1
r

an
(n = 1,2, ...)

decreases with n .
(Decreasing case). We apply the above version (increasing case) with the sequence

{an}∞n=1 replaced by the sequence
{

1
an

}∞
n=1

. �

REMARK 2.4. If taking an = n+ k (n = 1,2, ...) in (2.24), where k is a nonneg-
ative integer, one can easily see that inequality (1.2) holds for any given real number
r(�= 0) .

If taking f (x) = exp(xr) (0 < x � 1) in Theorem 2.2, we can establish

COROLLARY 2.5. Let {an}∞n=1 be an increasing positive sequence such that the

sequence
{(

an+1
an

)an
}∞

n=1
increases. Then

(1) If {an}∞n=0 is a convex sequence, where a0 = 0 , then, for any r > 0 , the se-
quence

ar
1 +ar

2 + ...+ar
n

ar+1
n

(n = 1,2, ...) (2.25)

decreases with n;
(2) If {an}∞n=0 is a concave sequence, then, for any r < 0 , the sequence

ar
1 +ar

2 + ...+ar
n

ar+1
n

(n = 1,2, ...) (2.26)

is increasing with n.

REMARK 2.6. It is easy to see that the sequence {n}∞n=0 satisfies all conditions of
Corollary 2.5. Taking an = n , we see that Corollary 2.5 contains Theorem 10′ of [8].

Ume[12] considered yet another variant on Alzer’s inequality, but his results are
too complicated to be described in details here. He showed that the sequence

∑k+n
i=k+1 irp

np(k+n)rp (n = 1,2, ...)

decreases with n , where k is a nonnegative integer, r > 0, and p = 1 or p � 2. And he
asked whether this assertion continues to hold for all 1 < p < 2. We shall give positive
answer.

COROLLARY 2.7. Let n be a natural number and k a nonnegative integer. Then
(1) When p � 1 and r > 0 , the sequence

∑k+n
i=k+1 irp

np(k+n)rp (n = 1,2, ...)
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decreases with n;
(2) When 0 < p � 1 and r < 0 , the sequence

∑k+n
i=k+1 irp

(k+n)p(r+1) (n = 1,2, ...)

increases with n.

Proof. It is easy to see that the sequence (0,(k + 1)p,(k + 2)p, ...) is convex for

p � 1, and concave for 0 < p � 1. Since the sequence { (n+l)p

np }∞n=1 (p > 0) is decreas-
ing, taking an = n+k (n = 1,2, ...) in Corollary 2.5, we have completed the proof. �
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