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EXPONENTIAL CONVEXITY, POSITIVE SEMI–DEFINITE

MATRICES AND FUNDAMENTAL INEQUALITIES

M. ANWAR, J. JAKŠETIĆ, J. PEČARIĆ AND ATIQ UR REHMAN

(Communicated by A. Čizmešija)

Abstract. The first two chapters of the classical book [6] on inequalities are devoted to funda-
mental inequalities and positive definiteness. In this paper we obtain results which give connec-
tion between fundamental inequalities and positive definiteness using the notion of exponential
convexity.

1. Introduction and preliminaries

A real symmetric matrix A is positive semi-definite, A � 0, if

bAbt � 0 (1.1)

for all row vectors b . This definition may seem abstruse, but positive semi-definite
matrices have a number of interesting properties. One of these is that all the eigenvalues
of a positive semi-definite matrix are real and nonnegative.

As was noted in [6, p. 59–61] a very important positive semi-definite matrix is
Grami matrix. The corresponding determinantal inequality is well known as Gram’s
inequality: Let k ∈ N and x1, . . . ,xk be vectors in some Euclidean space and 〈xi,x j〉
denotes the inner product of two vectors xi and x j . Then Gram’s inequality is

det [〈xi,x j〉]ki, j=1 � 0 (1.2)

(see [10]).
Gram’s inequality can be seen in many books. For instance [21, p. 595–609], [17,

p. 345–357] and [9, p. 176–187].
Gram’s inequality for positive linear functionals is as follows. Let E be a nonempty

set and L be a linear class of real valued functions f : E −→ R having the properties:

f ,g ∈ L ⇒ a f +bg∈ L, forall a,b ∈ R, (L1)
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if 1 ∈ L ⇔ f (t) = 1 for t ∈ E, then f ∈ L. (L2)

A positive linear functional is a mapping A : L −→ R with properties

A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L, a,b ∈ R, (A1)

f ∈ L, f (t) � 0 on E ⇒ A( f ) � 0 (A is positive). (A2)

If A(1) = 1 we say that A is normalized functional.

THEOREM 1. Let A be a positive linear functional and f1, f2, . . . , fn be real func-
tions such that fi f j ∈ L for all i, j = 1,2, . . . ,n. Then the following inequality is valid

[A( fi f j)]ki, j=1 � 0, (1.3)

for all k ∈ {1, . . . ,n}.

Proof. Suppose that (u1, . . . ,uk) ∈ R
k , then we have

k

∑
i, j=1

uiu j fi(x) f j(x) =

(
k

∑
i=1

ui fi(x)

)2

� 0.

Then

A

(
k

∑
i, j=1

uiu j fi f j

)
=

k

∑
i, j=1

uiu jA( fi f j) � 0. (1.4)

From the last expression we have that [A( fi f j)]
k
i, j=1 � 0 and (1.3) is valid. �

In this paper we show that we can use a lot of fundamental inequalities to obtain
positive semi-definite matrices, that is we can give determinantal form of some fun-
damental inequalities. Very specific form of these determinantal forms enable us to
interpret our results in a form of exponentially convex functions. This is a sub-class of
convex functions introduced by Bernstein in [7] (see also [1], [20], [21]).

DEFINITION 1. A function h : (a,b) → R is exponentially convex if it is contin-
uous and

n

∑
i, j=1

ξiξ jh(xi + x j) � 0

for all n ∈ N and all choices ξi ∈ R, i = 1, . . . ,n such that xi +x j ∈ (a,b), 1 � i, j � n.

PROPOSITION 1. Let h : (a,b) → R. The following propositions are equivalent.

(i) h is exponentially convex.

(ii) h is continuous and
n

∑
i, j=1

ξiξ jh

(
xi + x j

2

)
� 0,

for all n ∈ N and all choices ξi ∈ R and every xi ∈ (a,b), 1 � i � n.



EXPONENTIAL CONVEXITY, POSITIVE SEMI-DEFINITE MATRICES AND INEQUALITIES 173

COROLLARY 1. If h is exponentially convex, then

det

[
h

(
xi + x j

2

)]n

i, j=1
� 0,

for all n ∈ N , and all xi ∈ (a,b), i = 1, . . . ,n.

COROLLARY 2. If h : (a,b) → (0,∞) is exponentially convex function, then h is
a log-convex function:

h

(
x+ y

2

)
�
√

h(x)h(y), for all x,y ∈ (a,b).

REMARK 1. In Definition 1 and Proposition 1 it could have been required proper-
ties of mesurability and finiteness almost everywhere instead of continuity because of
the following theorem (see [12], p. 105, and [28]):

If a function h : (a,b) → R∪{+∞} is measurable and finite almost everywhere
and if

h

(
x+ y

2

)
� h(x)+h(y)

2
(a < x,y < b),

then h is continuous function.
Finiteness almost everywhere is very mild condition for our applications, and all

results in following sections can be restated under that assumption.

REMARK 2. In the next sections we cover results about log-convexity from [2, 3,
4, 5, 14, 15, 26, 27] and then extending them to exponential convexity.

2. Jensen’s inequality

Jessen (see [22], p–47) gave the following generalization of Jensen’s inequality
for functionals.

THEOREM 2. Let L satisfy L1, L2 on a nonempty set E , and assume that φ is
a continuous convex function on an interval I ⊂ R . If A is a linear positive functional
with A(1) = 1, then for all f ∈ L such that φ( f ) ∈ L we have A( f ) ∈ I and

φ(A( f )) � A(φ( f )). (2.1)

LEMMA 1. [2] Let us define the following family of functions

ϕt(x) =

⎧⎪⎪⎨⎪⎪⎩
xt

t(t−1) , t 
= 0,1;

− logx, t = 0;

x logx, t = 1.

(2.2)

Then d2

dx2ϕt(x) = xt−2 , that is x �→ ϕt(x) is convex on (0,∞) for every t ∈ R.
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THEOREM 3. Let L satisfy properties L1, L2 on a nonempty set E . Let a positive
function f ∈ L be such that f r ∈ L for r ∈ I \ {0,1} , I is an interval from R , let
log f ∈ L if r = 0 ∈ I and f log f ∈ L if r = 1 . Let us define

Λt = A(ϕt( f ))−ϕt(A( f )). (2.3)

Then

(i) for every n ∈ N and for every pk ∈ I, k = 1,2, ...,n, the matrix

[
Λ pi+p j

2

]n

i, j=1
is

a positive semi-definite matrix. Particularly

det

[
Λ pi+p j

2

]n

i, j=1
� 0; (2.4)

(ii) if the function t �→ Λt is continuous on I, then it is exponentially convex on I.

Proof. Consider the function

f (x) =
n

∑
i, j

uiu jϕpi j(x)

for x > 0, ui ∈ R and pi j ∈ I where pi j = pi+p j
2 . Then

f ′′(x) =
n

∑
i, j

uiu jx
pi j−2 =

(
n

∑
i

uix
pi
2 −1

)2

� 0 for x > 0.

So f is a convex function. Therefore by applying (2.1) we get

n

∑
i, j=1

uiu jΛpi j � 0,

concluding positive semi-definiteness. Assuming continuity and using Proposition 1
we have also exponential convexity of the function t �→ Λt . �

Let us note that the well known Jensen-Steffensen inequality is valid (see, for
example [22], pp. 57–58 ).

THEOREM 4. If f : I → R is a convex function, x = (x1, ...,xm) is a real mono-
tonic m-tuple such that xi ∈ I (i = 1, ...,m) , and p = (p1, ..., pm) is a real n-tuple such
that

0 � Pk � Pm = 1 (k = 1, ..,m), where Pk =
k

∑
i=1

pi (2.5)

is satisfied. Then

f

(
m

∑
i=1

pixi

)
�

m

∑
i=1

pi f (xi). (2.6)
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As in the proof of Theorem 3 we can get:

THEOREM 5. Let (x1, ...,xm) be a monotonic m-tuple of positive numbers, pi ∈R

such that conditions of Theorem 4 are valid and define the function

λt =
n

∑
i=1

piϕt(xi)−ϕt

(
n

∑
i=1

pixi

)
.

Then

(i) for every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
λ ti+t j

2

]n

i, j=1
is a

positive semi-definite matrix. Particularly

det

[
λ ti+t j

2

]n

i, j=1
� 0; (2.7)

(ii) the function t �→ λt is exponentially convex.

Proof. It is easy to check continuity of the function t �→ λt . Now we complete the
proof similarly as in Theorem 3. �

Moreover, we can also use related integral analogues of Jensen-Steffensen in-
equality and generalizations (see Jensen-Steffensen’s, Jensen-Boas and Jensen-Brunk
inequalities as well as Theorem 2.26 from [22], pp. 59–65 ).

LEMMA 2. [2] Let us define the following family of functions

φt(x) =

{
1
t2

etx, t 
= 0;

1
2x2, t = 0.

Then d2

dx2 φt(x) = etx , that is x �→ φt(x) is a convex function on R for every t ∈ R.

THEOREM 6. Theorems 3 and 5 are still valid if we set ϕt = φt .

Proof. Similar to the proof of Theorem 3. �

3. Some results of Aczél’s type

The following version of Jensen’s inequality is valid ([22], p. 124–125).

THEOREM 7. Let L satisfy properties L1, L2 on a nonempty set E, and A satisfy
conditions A1, A2. Let I be an interval, I ⊂ R, f and w two arbitrary real functions
defined on E such that w, wf ∈ L. Suppose 0 < A(w) < u ∈ R , (ua−A(w f ))

u−A(w) ∈ I,a ∈ I

and ψ is a continuous convex function on I and wψ( f ) ∈ L. Then

ψ
(

ua−A(wf )
u−A(w)

)
� uψ(a)−A(wψ( f ))

u−A(w)
. (3.1)
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Similarly to the proof of Theorem 3 we can prove the following theorem (see [2] for
preliminary result on log-convexity)

THEOREM 8. Let us suppose that the conditions of Theorem 7 are satisfied for an
interval I ⊆ (0,+∞) and for function ψ = ϕt (ϕt is defined by (2.2)) for every t ∈ R.
Let us define

Ωt = ϕt

(
ua−A(wf )
u−A(w)

)
− uϕt(a)−A(wϕt( f ))

u−A(w)
. (3.2)

Then

(i) for every n ∈ N and for every pk ∈ J, k = 1,2, ...,n, the matrix

[
Ω pi+p j

2

]n

i, j=1
is

a positive semi-definite matrix. Particularly

det

[
Ω pi+p j

2

]n

i, j=1
� 0; (3.3)

(ii) if the function t �→Ωt is continuous, then it is exponentially convex on R.

Let us note that the following converse of Jensen-Steffensen’s inequality was given
by J. E. Pečarić ([23], see also [22], pp. 83–84).

THEOREM 9. Let I ⊆R be some interval, let x = (x1,x2, ...,xm) and (p1, p2, ..., pm)
be the real m-tuples such that xi ∈ I (1 � i � m), Pm = 1 , ∑m

i=1 pixi ∈ I , x is monotonic,
and there exists an l ∈ {1,2, ...,n} such that

Pk � 0 (k < l), 1 � Pk−1 (k > l). (3.4)

If f : I → R is a convex function, then

f

(
m

∑
i=1

pixi

)
�

m

∑
i=1

pi f (xi). (3.5)

We can use Theorem 9 in similar way for the proof of the following result.

THEOREM 10. Let the conditions of Theorem 9 be satisfied for an interval I for
function ϕ = ϕt (as is defined by (2.2)) for t in some interval J ⊆ R . Let us define

λ̃t = ϕt

( m

∑
i=1

pixi

)
−

m

∑
i=1

piϕt(xi) (3.6)

Then

(i) for every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
λ̃ ti+t j

2

]n

i, j=1
is a

positive semi-definite matrix. Particularly

det

[
λ̃ ti+t j

2

]n

i, j=1
� 0; (3.7)

(ii) the function t �→ λ̃t is exponentially convex.
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REMARK 3. We can also use related integral analogues of Jensen-Steffensen in-
equality(see for example [22], pp. 84–87).

4. Some results of Mercer’s type

The following version of Jessen’s inequality is valid (see [8]).

THEOREM 11. Let L satisfy properties L1, L2 on a nonempty set E, and let ϕ
be a convex function on an interval I = [m,M] (−∞< m < M < ∞). If A is a positive
linear functional on L with A(1)= 1 , then for all g∈ L such that ϕ(g),ϕ(m+M−g)∈
L (so that m � g(t) � M for all t ∈ E ), we have the following variant of Jessen’n
inequality

ϕ(m+M−A(g)) � ϕ(m)+ϕ(M)−A(ϕ(g)). (4.1)

As previously we can prove the following two theorems.

THEOREM 12. Let the conditions of Theorem 11 be satisfied for an interval I =
[m,M] ⊆ (0,∞) and for function ϕ = ϕt (as is defined by (2.2)) for t in some interval
J ⊆ R . Let us define

Ω̃t = ϕt(m)+ϕt(M)−A(ϕt(g))−ϕt(m+M−A(g)).

Then

(i) for every n ∈ N and for every tk ∈ J, k = 1,2, ...,n, the matrix

[
Ω̃ ti+t j

2

]n

i, j=1
is a

positive semi-definite matrix. Particularly

det

[
Ω̃ ti+t j

2

]n

i, j=1
� 0; (4.2)

(ii) if the function t �→ Ω̃t is continuous, then it is exponentially convex on J.

THEOREM 13. Let the conditions of Theorem 11 be satisfied for an interval I =
[m,M] for function ϕ = φt (as is defined Lemma 2) for s in some interval in J ⊆ R .
Let us define

Ω̂t = φt(m)+φt(M)−A(φt(g))−φt(m+M−A(g)).

Then

(i) for every n ∈ N and for every tk ∈ J, k = 1,2, ...,n, the matrix

[
Ω̂ ti+t j

2

]n

i, j=1
is a

positive semi-definite matrix. Particularly

det

[
Ω̂ ti+t j

2

]n

i, j=1
� 0; (4.3)

(ii) if the function t �→ Ω̂t is continuous, then it is exponentially convex on J.
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5. Levinson’s inequality

It is well known that Ky-Fan’s inequality can be obtained from the Levinson in-
equality (see [18]; see also [22], p. 71).

THEOREM 14. Let a > 0 be any real number and let f be a real valued 3−convex
function on [0,2a]. Then for 0 < xi < a, pi > 0, i = 1, . . . ,m we have

1
Pm

m

∑
i=1

pi f (xi)− f
(

1
Pn

m

∑
i=1

pixi

)
� 1

Pm

m

∑
i=1

pi f (2a− xi)− f
(

1
Pm

m

∑
i=1

pi(2a− xi)
)
. (5.1)

LEMMA 3. [3] Let us define the following family of functions

ϕt(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xt

t(t−1)(t−2) , t 
= 0,1,2;

1
2 logx, t = 0;

−x logx, t = 1;

1
2x2 logx, t = 2.

(5.2)

Then d3

dx3ϕt(x) = xt−3, that is x �→ ϕt(x) is 3−convex on (0,∞) for every t ∈ R.

THEOREM 15. Define the function

ξt = 1
Pm

m

∑
i=1

pi

(
ϕt(2a− xi)−ϕt(xi)

)
−ϕt(2a− x)+ϕt(x), (5.3)

for m− tuples (x1, . . . ,xm) and (p1, . . . , pm) as in Theorem 14 and for the function f =
ϕt (as is defined by (5.2)) . Then

(i) for every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
ξ ti+t j

2

]n

i, j=1
is a

positive semi-definite matrix. Particularly

det

[
ξ ti+t j

2

]n

i, j=1
� 0; (5.4)

(ii) the function t �→ ξt is exponentially convex on R.

Proof. Consider the function

f (x) =
n

∑
i, j

uiu jξti j (x)

for x > 0, ui ∈ R and ti j ∈ I where ti j = ti+t j
2 . Then

f ′′′(x) =
n

∑
i, j

uiu jx
ti j−3 =

(
n

∑
i

uix
ti
2 − 3

2

)2

� 0 for x > 0.
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So f (x) is a 3-convex function. Therefore by applying inequality (5.1) we get

n

∑
i, j=1

uiu jξti j � 0.

It can be easily checked that the function t �→ ξt is continuous function concluding that
it is exponentially convex function. �

In [25] the third author proved the following result.

THEOREM 16. Let a > 0 be any real number and let f be a real valued 3−convex
function on [0,2a] and xi ∈ [0,2a] (1 � i � m). Then

1
Pm

m

∑
i=1

pi f (xi)− f
(

1
Pm

m

∑
i=1

pixi

)
� 1

Pm

m

∑
i=1

pi f (a+ xi)− f
(

1
Pm

m

∑
i=1

pi(a+ xi)
)
. (5.5)

THEOREM 17. Let a > 0 be any real number. Define the function

ρs =
1
Pm

m

∑
i=1

pi

(
ϕs(a+ xi)−ϕs(xi)

)
−ϕs(a+ x)+ϕs(x), (5.6)

for m− tuples (x1, . . . ,xm) and (p1, . . . , pm) as in Theorem 16 and for the function f =
ϕt (as is defined by (5.2)) . Then

(i) for every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
ρ ti+t j

2

]n

i, j=1
is a

positive semi-definite matrix. Particularly

det

[
ρ ti+t j

2

]n

i, j=1
� 0; (5.7)

(ii) the function t �→ ρt is exponentially convex on R.

Proof. The proof is quite similar to the proof of Theorem 15. �

6. Power sums

Let (x1, ...,xm) be a positive m-tuple. The well-known inequality for power sums
of order s and r , for s > r > 0 ([22], p–164), states that(

m

∑
i=1

xs
i

)1/s

<

(
m

∑
i=1

xr
i

)1/r

. (6.1)
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Moreover, if (p1, ..., pm) is a positive m-tuple such that pi � 1 (i = 1, ...,m), then for
s > r > 0 ([22], p–165), we have(

m

∑
i=1

pix
s
i

)1/s

<

(
m

∑
i=1

pix
r
i

)1/r

. (6.2)

Let us note that (6.2) can also be obtained from the following theorem ([22], p–152):

THEOREM 18. Let (x1, ...,xm) and (p1, ..., pm) be two non-negativem-tuples such
that xi ∈ (0,a] (i = 1, ...,m) and

∑m
i=1 pixi � x j, f or j = 1, ...,m and ∑m

i=1 pixi ∈ (0,a]. (6.3)

If f (x)/x is an increasing function on (0,a] , then

f

(
m

∑
i=1

pixi

)
�

m

∑
i=1

pi f (xi). (6.4)

LEMMA 4. [26] Let us define the following family of functions

ϕt(x) =

{
xt

t−1 , t 
= 1;

x logx, t = 1.

Then x �→ ϕt(x)
x is a strictly increasing function on (0,∞) for every t ∈ R.

THEOREM 19. Define the function

Δt = Δt (x;p) = ϕt

(
m

∑
i=1

pixi

)
−

m

∑
i=1

piϕt(xi) (6.5)

for m− tuples (x1, . . . ,xm) and (p1, . . . , pm) (n � 2) as in Theorem 18 and for function
f = ϕt (as is defined in Lemma 4). Then

(i) for every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
Δ ti+t j

2

]
is a

positive semi-definite matrix. Particularly

det

[
Δ ti+t j

2

]n

i, j=1
� 0;

(ii) the function t �→ Δt is exponentially convex on R.

Proof. (i) Consider the function

f (x) =
n

∑
i, j

uiu jϕti j (x)
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for x > 0, ui ∈ R and ti j ∈ R where ti j = ti+t j
2 . Then

(
f (x)
x

)′
=

n

∑
i, j

uiu jx
ti j−2 =

(
n

∑
i

uix
ti
2 −1

)2

� 0.

So f (x)
x is an increasing function. After we apply inequality (6.4) to function f we get

n

∑
i, j

uiu jΔti j � 0.

(ii) Since lim
t→1

Δt = Δ1, t �→ Δt is continuous function, concluding its exponential con-

vexity on R. �

The following similar result is also valid ([22], p–153):

THEOREM 20. Let f (x)/x be an increasing function on (0,+∞) . If 0 < x1 �
... � xm and

(i) if there exist an l(� n) such that

P1 � P2 � ... � Pl � 1, Pl+1 = ... = Pm = 0, (6.6)

where Pk =∑k
i=1 pi, Pk = Pm−Pk−1 (k = 2, ...,m) and P1 = Pm , then (6.4) holds.

(ii) If there exists an l(� n) such that

0 � P1 � P2 � ... � Pl � 1, Pl+1 = ... = Pm = 0, (6.7)

then the reverse of inequality in (6.4) holds.

Now make two applications of Theorem 20 :

THEOREM 21. Define the function

φt = ϕt

(
m

∑
i=1

pixi

)
−

m

∑
i=1

piϕt(xi)

for n− tuples (x1, . . . ,xm) and (p1, . . . , pm) (m � 2) as in (i)-part of Theorem 20 and
for function f = ϕt (as is defined in Lemma 4). Then

(i) For every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
φ ti+t j

2

]
is a

positive semi-definite matrix. Particularly

det

[
φ ti+t j

2

]n

i, j=1
� 0; (6.8)
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(ii) the function t �→ φt is exponentially convex on R.

THEOREM 22. Define the function

φ t =
m

∑
i=1

piϕt(xi)−ϕt

(
m

∑
i=1

pixi

)
for m− tuples (x1, . . . ,xm) and (p1, . . . , pm) (n � 2) as in (ii)-part of Theorem 20 and
for function f = ϕt (as is defined in Lemma 4). Then

(i) For every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrix

[
φ ti+t j

2

]
is a

positive semi-definite matrix. Particularly

det

[
φ ti+t j

2

]n

i, j=1
� 0. (6.9)

(ii) The function t �→ φ t is exponentially convex on R.

Let us note that power sums inequalities can be also obtained by using related inequal-
ities for convex functions.

LEMMA 5. [27] Let us define the following family of functions

τt(x) =

{
xt

t(t−1) , t 
= 1;

x logx, t = 1.

where t ∈R
+ and x � 0 . Then x �→ τt(x) is convex function on [0,∞) for every t ∈R

+.

THEOREM 23. Let (x1, . . . ,xm) and (p1, . . . , pm) be two positive m-tuples such
that condition (6.3) is satisfied. Let

Δt = Δt (x;p) =
Δt

t

be function defined on (0,∞) where the function t �→ Δt is defined in (6.5). Then

(i) For every n ∈ N and for every tk ∈ (0,∞), k = 1,2, ...,n, the matrix

[
Δ ti+t j

2

]
is

a positive semi-definite matrix. Particularly

det

[
Δ ti+t j

2

]n

i, j
� 0.

(ii) The function t �→ Δt is exponentially convex on (0,∞).
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Proof. (i) For x > 0, ui ∈R and ti ∈ (0,∞), i = 1, . . . ,n let us consider the function

f (x) =
n

∑
i, j

uiu jτti j (x)

where ti j = ti+t j
2 and τ is defined as in Lemma 5. Then

f ′′(x) =
n

∑
i, j

uiu jx
ti j−2 =

(
n

∑
i

uix
ti
2 −1

)2

� 0.

So f is convex function. After we apply Petrović inequality (see [22], p. 154)

f

(
m

∑
i=1

pixi

)
�

m

∑
i=1

pi f (xi)+

(
1−

m

∑
i=1

pi

)
f (0)

we get
n

∑
i, j

uiu jΔti j � 0.

(ii) Since lim
t→1

Δt = Δ1, t �→ Δt is continuous function on (0,∞) , concluding its expo-

nential convexity on (0,∞). �

COROLLARY 3. Let (x1, . . . ,xm) and (p1, . . . , pm) be two positive m-tuples such
that condition (6.3) is satisfied, and let s ∈ (0,∞). Let

Θs
t =

⎧⎨⎩
1

t(t−s)

{
(∑n

i=1 pixs
i )

t
s −∑n

i=1 pixt
i

}
, t 
= s;

1
s2
{(∑n

i=1 pixs
i ) log(∑n

i=1 pixs
i )− s∑n

i=1 pixs
i logxi} , t = s.

be function defined on (0,∞). Then

(i) for every n ∈ N and for every tk ∈ (0,∞), k = 1,2, ...,n, the matrix

[
Θs

ti+t j
2

]
is

a positive semi-definite matrix. Particularly

det

[
Θs

ti+t j
2

]n

i, j=1
� 0. (6.10)

(ii) the function t �→Θs
t is exponentially convex on (0,∞).

Proof. The proof follows from Theorem23 after substitutions xi → xs
i , t → t/s. �
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7. Results on integral inequalities

Let us consider the following result from [22, page 159].

THEOREM 24. Let t0 ∈ [a,b] be fixed, h be continuous and monotonic with h(t0)=
0 , g be a function of bounded variation and

G(t) :=
∫ t

a
dg(x), G(t) :=

∫ b

t
dg(x).

(a) If
0 � G(t) � 1 f or a � t � t0, 0 � G(t) � 1 f or t0 � t � b, (7.1)

then for every convex function f : I → R such that h(x) ∈ I for all x ∈ [a,b] , we
have

b∫
a

f (h(t))dg(t) � f

⎛⎝ b∫
a

h(t)dg(t)

⎞⎠+

⎛⎝ b∫
a

dg(t)−1

⎞⎠ f (0). (7.2)

(b) If
∫ b
a h(t)dg(t) ∈ I and either

there exists an s � t0 such that G(t) � 0 f or t < s,

G(t) � 1 f or s � t � t0 and G(t) � 0 f or t > t0 (7.3)

or

there exists an s � t0 such that G(t) � 0 f or t < t0,

G(t) � 1 f or t0 < t < s, and G(t) � 0 f or t � s, (7.4)

then for every convex function f : I → R such that h(x) ∈ I for all x ∈ [a,b] , the
reverse of the inequality in (7.2) holds.

In the sequel we extend results from [27] from log-convexity to exponential con-
vexity.

The proofs of the following two theorems are quite similar to proof Theorem 23
and therefore they are omitted.

THEOREM 25. Let t0 ∈ [a,b] be fixed, h be continuous and monotonic with h(t0)
= 0 , g be a function of bounded variation that satisfies (7.3) or (7.4). Let t �→ Λt be
function defined on (0,∞) as

Λt = Λt (a,b,h,g) =
∫ b

a
ϕt (h(x)) dg(x) − ϕt

(∫ b

a
h(x)dg(x)

)
, (7.5)

where ϕ is defined as in Lemma 5. Then
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(i) For every n ∈ N and for every tk ∈ (0,∞), k = 1,2, ...,n, the matrix

[
Λ ti+t j

2

]
is

a positive semi-definite matrix. Particularly

det

[
Λ ti+t j

2

]n

i, j=1
� 0. (7.6)

(ii) The function t �→ Λt is exponentially convex on (0,∞).

THEOREM 26. Let t0 ∈ [a,b] be fixed, h be continuous and monotonic with h(t0)=
0 , g be a function of bounded variation that satisfies (7.1). Let t �→ Λ̃t be function de-
fined on (0,∞) as

Λ̃t = Λt (a,b,h,g) = ϕt

(∫ b

a
h(x)dg(x)

)
−
∫ b

a
ϕt (h(x)) dg(x), (7.7)

where ϕ is defined as in Lemma 5. Then

(i) For every n ∈ N and for every tk ∈ (0,∞), k = 1,2, ...,n, the matrix

[
Λ̃ ti+t j

2

]
is

a positive semi-definite matrix. Particularly

det

[
Λ̃ ti+t j

2

]n

i, j=1
� 0. (7.8)

(ii) The function t �→ Λ̃t is exponentially convex on (0,∞).

8. Steffensen’s inequality

The well-known Steffensen inequality reads as follows:

THEOREM 27. Suppose that f is decreasing and g is integrable on [a,b] with
0 � g � 1 and λ =

∫ b
a g(t)dt. Then

b∫
b−λ

f (t)dt �
b∫

a

f (t)g(t)dt �
a+λ∫
a

f (t)dt. (8.1)

The inequalities are reversed for an increasing function f .

In the sequel we extend results from [15] from log-convexity to exponential con-
vexity. We will need the following lemma.

LEMMA 6. Let us define the following family of functions

ηt(x) =

{
xt

t , t 
= 0;

logx, t = 0.
(8.2)

Then d
dxηt(x) = xt−1, that is x �→ηt(x) is increasing function on (0,∞) for every t ∈R.
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Let x,y be fixed real numbers and x < y. Let f be decreasing, positive function, and
g is integrable function on [x,y] with 0 � g � 1 and λ =

∫ y
x g(t)dt. Let us define

functions φ and ψ on R with

φ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
r

(
x+λ∫
x

f r(t)dt−
y∫
x

f r(t)g(t)dt

)
, r 
= 0;

x+λ∫
x

log f (t)dt−
y∫
x

g(t) log f (t)dt, r = 0.

(8.3)

ψ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
r

(
y∫
x

f r(t)g(t)dt−
y∫

y−λ
f r(t)dt

)
, r 
= 0;

y∫
x

g(t) log f (t)dt −
y∫

y−λ
log f (t)dt, r = 0.

(8.4)

THEOREM 28. Let φ and ψ be two functions defined in (8.3) and (8.4).

(i) For every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrices
[
φ
(

ti+t j
2

)]n
i, j

and
[
ψ
(

ti+t j
2

)]n
i, j

are positive semi-definite matrices.

Particularly

det

[
φ
(

ti + t j

2

)]n

i, j
� 0, (8.5)

and

det

[
ψ
(

ti + t j

2

)]n

i, j
� 0. (8.6)

(ii) The functions φ and ψ are exponentially convex functions on (0,∞).

Proof. (i) For v > 0, ui ∈ R and ti ∈ R, i = 1, . . .n let us consider the function

h(v) =
n

∑
i, j

uiu jηti j (v)

where ti j = ti+t j
2 and η is defined as in Lemma 6. Then

h′(v) =
n

∑
i, j

uiu jv
ti j−1 =

(
n

∑
i

uiv
ti−1

2

)2

� 0.

So h is the increasing function and hence h ◦ f is the decreasing function. After we
apply Steffensen’s inequality (8.1) for function h ◦ f we get

n

∑
i, j

uiu jφ(ti j) � 0
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and
n

∑
i, j

uiu jψ(ti j) � 0.

(ii) Since lim
t→0

φ(t) = φ(0) and lim
t→0

ψ(t) = ψ(0) , φ and ψ are continuous functions on

R concluding their exponential convexity on R. �

Similarly, using Steffensen’s inequality, we can extend results on log-convexity
from [14] to exponential convexity(assumptions on function g are same from beginning
of this section):

THEOREM 29. Let 0 < x < y < ∞ , and let φ̂ (r) , ψ̂(r) are defined as

φ̂ (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r−1

( y∫
x
tr−1g(t)dt− (x+λ )r−xr

r

)
, r 
= 0,1;

ln
(

x+λ
x

)
−

y∫
x

g(t)
t dt, r = 0;

y∫
x

g(t) logtdt− (x+λ ) log(x+λ )+ x logx, r = 1,

(8.7)

and

ψ̂(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
r−1

(
yr−(y−λ )r

r −
y∫
x
tr−1g(t)dt

)
, r 
= 0,1;

y∫
x

g(t)
t dt− log

(
y

y−λ
)

, r = 0;

y logy− (y−λ ) log(y−λ )−
y∫
x

g(t) log tdt−λ , r = 1.

(8.8)

(i) For every n ∈ N and for every tk ∈ R, k = 1,2, ...,n, the matrices
[
φ̂
(

ti+t j
2

)]n
i, j

and
[
ψ̂
(

ti+t j
2

)]n
i, j

are positive semi-definite matrices. Particularly

det

[
φ̂
(

ti + t j

2

)]n

i, j
� 0, (8.9)

and

det

[
ψ̂
(

ti + t j

2

)]n

i, j
� 0, (8.10)

(i) The functions φ̂ and ψ̂ are exponentially convex on R.
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[5] M. ANWAR AND J. PEČARIĆ, Cauchy’s Means of Levinson Type, JIPAM, 9, 4 (2008), Article 120.
[6] E. BECKENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1961.
[7] S. N. BERNSTEIN, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1–66.
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