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EXPONENTIAL CONVEXITY, POSITIVE SEMI-DEFINITE
MATRICES AND FUNDAMENTAL INEQUALITIES

M. ANWAR, J. JAKSETIC, J. PECARIC AND ATIQ UR REHMAN

(Communicated by A. Cizmesija)

Abstract. The first two chapters of the classical book [6] on inequalities are devoted to funda-
mental inequalities and positive definiteness. In this paper we obtain results which give connec-
tion between fundamental inequalities and positive definiteness using the notion of exponential
convexity.

1. Introduction and preliminaries
A real symmetric matrix A is positive semi-definite, A > 0, if
bAb' > 0 (1.1)

for all row vectors b. This definition may seem abstruse, but positive semi-definite
matrices have a number of interesting properties. One of these is that all the eigenvalues
of a positive semi-definite matrix are real and nonnegative.

As was noted in [6, p. 59—61] a very important positive semi-definite matrix is
Grami matrix. The corresponding determinantal inequality is well known as Gram’s
inequality: Let k € N and x,...,x; be vectors in some Euclidean space and (x;,x;)
denotes the inner product of two vectors x; and x;. Then Gram’s inequality is

det [(x;,x})]; ;>0 (1.2)

(see [10]).

Gram’s inequality can be seen in many books. For instance [21, p. 595-609], [17,
p. 345-357] and [9, p. 176-187].

Gram’s inequality for positive linear functionals is as follows. Let £ be a nonempty
set and L be a linear class of real valued functions f : E — R having the properties:

f,.g€L=af+bgeclL, foralla,b € R, (LD
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ifleL< f(t)=1for t € E, then f € L. (L2)

A positive linear functional is a mapping A : L — R with properties
A(af +bg) =aA(f)+DA(g) for f,geL, a,beR, (AD)
fEL, f(t) >00nE = A(f) > 0 (A is positive). (A2)

If A(1) =1 we say that A is normalized functional.

THEOREM 1. Let A be a positive linear functional and fi, f>,. .., fn be real func-
tions such that fifj € L forall i,j=1,2,...,n. Then the following inequality is valid

A =1 20, (1.3)
forall ke {1,...,n}.

Proof. Suppose that (ug,...,u;) € RF | then we have

2
Zuujf, <2u,fl ) > 0.

i,j=1
Then
k k
A ( Z u,-ujf,-fj> = Z u,-ujA (flfj) > 0. (14)
i,j=1 i,j=1

From the last expression we have that [A (f; fj)}].‘ >0 and (1.3)is valid. O

ij=1

In this paper we show that we can use a lot of fundamental inequalities to obtain
positive semi-definite matrices, that is we can give determinantal form of some fun-
damental inequalities. Very specific form of these determinantal forms enable us to
interpret our results in a form of exponentially convex functions. This is a sub-class of
convex functions introduced by Bernstein in [7] (see also [1], [20], [21]).

DEFINITION 1. A function % : (a,b) — R is exponentially convex if it is contin-
uous and

n
2 gié,'h (x,-—|—xj) >0
ij=1
forall n € N and all choices §; € R, i =1,...,n such that x; +x; € (a,b), 1 <i,j<n.
PROPOSITION 1. Let h: (a,b) — R. The following propositions are equivalent.

(i) h is exponentially convex.

(ii) h is continuous and

3 &Eh (*) >0,

i,j=1

forall n € N and all choices & € R and every x; € (a,b), 1 <i<n.



EXPONENTIAL CONVEXITY, POSITIVE SEMI-DEFINITE MATRICES AND INEQUALITIES 173

COROLLARY 1. If h is exponentially convex, then

det | (X1 >0,
2 ij=1

forallneN, and all x; € (a,b), i=1,...,n.

COROLLARY 2. If h: (a,b) — (0,0) is exponentially convex function, then h is
a log-convex function:

h <x¥> < Vh(x)h(y), forall x,y € (a,b).

REMARK 1. In Definition 1 and Proposition 1 it could have been required proper-
ties of mesurability and finiteness almost everywhere instead of continuity because of
the following theorem (see [12], p. 105, and [28]):

If a function A : (a,b) — RU{+eo} is measurable and finite almost everywhere

and if
5 x+y < h(x)+h(y)
2 2
then # is continuous function.

Finiteness almost everywhere is very mild condition for our applications, and all
results in following sections can be restated under that assumption.

(a<x,y<b),

REMARK 2. In the next sections we cover results about log-convexity from [2, 3,
4,5, 14, 15, 26, 27] and then extending them to exponential convexity.

2. Jensen’s inequality

Jessen (see [22], p—47) gave the following generalization of Jensen’s inequality
for functionals.

THEOREM 2. Let L satisfy L1, L2 on a nonempty set E, and assume that ¢ is

a continuous convex function on an interval I C R. If A is a linear positive functional
with A(1) = 1, then for all f € L such that ¢(f) € L we have A(f) € I and

d(A(f)) <A(D(S))- 2.1
LEMMA 1. [2] Let us define the following family of functions
X .
ma ! 7& 07 l,
@ (x) =4 —logx, t =0; (2.2)
xlogx, t=1.

Then %(p, (x) = X' 72, that is x — @;(x) is convex on (0,%) for every t € R.



174 M. ANWAR, J. JAKSETIC, J. PECARIC AND ATIQ UR REHMAN

THEOREM 3. Let L satisfy properties L1, L2 on a nonempty set E. Let a positive
function f € L be such that f" € L for r € I\ {0,1}, I is an interval from R, let
logfeLifr=0€land flogf € L if r=1. Let us define

=A@ () — o (A(S)) (2.3)
Then

n
(i) for every n € N and for every pp €1, k=1,2,...,n, the matrix |:Api+pj:| is
—z

ij=1
a positive semi-definite matrix. Particularly

n
det [A ] >0, 2.4)
T 1ij=1
(ii) if the function t — A; is continuous on I, then it is exponentially convex on I.

Proof. Consider the function

n
x) = Zuiuj(pmj (x)
i,j

for x >0, u; € R andpuelwherepu—p’ﬂ’ Then

2
n n .
= Zu,-ujxpif*z = (214,-)61;[1) >0 for x>0.
ij i
So f is a convex function. Therefore by applying (2.1) we get
n

Z uiuj/\pij >0
ij=1

concluding positive semi-definiteness. Assuming continuity and using Proposition 1
we have also exponential convexity of the function 7 — A,. [

Let us note that the well known Jensen-Steffensen inequality is valid (see, for
example [22], pp. 57-58).

THEOREM 4. If f:I — R is a convex function, X = (x1,...,Xm) is a real mono-
tonic m-tuple such that x; €I (i=1,...,m), and p = (p1,...,pm) is a real n-tuple such
that

0K P <Py=1(k=1,..,m), where P, = Zp, (2.5)

is satisfied. Then

f (Z pixi> <Y pif(x). (2.6)
i=1 i=1
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As in the proof of Theorem 3 we can get:

THEOREM 5. Let (xi,...,xn) be a monotonic m-tuple of positive numbers, p; € R
such that conditions of Theorem 4 are valid and define the function

A= Zpiq)t(xi) —® (Z pm) .
i=1 i=1

Then

n
(i) forevery n € N and for every t; € R, k=1,2,...,n, the matrix |:)Lt,-;rj:| isa
i,j=1
positive semi-definite matrix. Particularly

n
det |:)L/,-+tj:| > 0; 2.7
7 lij=1

(ii) the function t — A, is exponentially convex.

Proof. 1t is easy to check continuity of the function ¢ — A;. Now we complete the
proof similarly as in Theorem 3. [J

Moreover, we can also use related integral analogues of Jensen-Steffensen in-
equality and generalizations (see Jensen-Steffensen’s, Jensen-Boas and Jensen-Brunk
inequalities as well as Theorem 2.26 from [22], pp. 59-65 ).

LEMMA 2. [2] Let us define the following family of functions
1 tx
e, 1 7é O;
¢ (x) = { t

%xz, t=0.
Then %q&, (x) = €%, that is x — ¢, (x) is a convex function on R for every t € R.
THEOREM 6. Theorems 3 and 5 are still valid if we set @ = ¢y.

Proof. Similar to the proof of Theorem 3. [

3. Some results of Aczél’s type
The following version of Jensen’s inequality is valid ([22], p. 124-125).

THEOREM 7. Let L satisfy properties L1, L2 on a nonempty set E, and A satisfy

conditions Al, A2. Let I be an interval, I CR, f and w two arbitrary real functions
defined on E such that w, wf € L. Suppose 0 < A(w) <u € R, %EX{)) elacl
and  is a continuous convex function on I and wy(f) € L. Then

ua —A(wf) uy(a) —A(wy(f))
"’( —A(w) )2 u—Aw)

3.1)
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Similarly to the proof of Theorem 3 we can prove the following theorem (see [2] for
preliminary result on log-convexity)

THEOREM 8. Let us suppose that the conditions of Theorem T are satisfied for an
interval I C (0,4-o0) and for function v = @, (@, is defined by (2.2)) for every t € R.

Let us define
ua —A(wf) _MQDt(a)_A(W(Pt(f))
A ) A . (3.2)

Q=@ (
Then

n
(i) forevery n € N and for every py € J, k=1,2,....n, the matrix |:Qpi+pj:| is
7 1ij=1
a positive semi-definite matrix. Particularly

n

det [szpﬁp_,} > 0; (3.3)
2

i,j=1
(ii) if the function t — Q; is continuous, then it is exponentially convex on R.

Let us note that the following converse of Jensen-Steffensen’s inequality was given
by J. E. Pecari¢ ([23], see also [22], pp. 83-84).

THEOREM 9. Let I CR be some interval, let X = (x1,x2,...,Xm) and (p1,D2, ..., Pm)
be the real m-tuples such that x; € I (1 <i<m), P, =1, ¥I" | pix; €1, X is monotonic,
and there exists an 1 € {1,2,...,n} such that

P<0(k<l), 1<P_, (k>1). (3.4)

If f:1— R is a convex function, then

f <2pixi> > Y pif(xi). (3.5)
=1 =1

We can use Theorem 9 in similar way for the proof of the following result.

THEOREM 10. Let the conditions of Theorem 9 be satisfied for an interval I for
Sunction @ = @, (as is defined by (2.2)) for t in some interval J C R. Let us define

A=, ( Y pm) — pigu(x;) (3.6)
i=1 i=1
Then
- n
(i) forevery n € N and for every t; € R, k=1,2,...,n, the matrix [)Ltm]} isa
21 j=1

positive semi-definite matrix. Particularly

- n
det |:)L/,-+tj:| > 0; 3.7

2 lij=1

(ii) the function t — A is exponentially convex.
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REMARK 3. We can also use related integral analogues of Jensen-Steffensen in-
equality(see for example [22], pp. 84-87).

4. Some results of Mercer’s type
The following version of Jessen’s inequality is valid (see [8]).

THEOREM 11. Let L satisfy properties L1, L2 on a nonempty set E, and let ¢
be a convex function on an interval I = [m,M] (—eo <m < M < o). If A is a positive
linear functional on L with A(1) = 1, then forall g € L such that ¢(g),p(m+M—g) €
L (so that m < g(t) < M for all t € E), we have the following variant of Jessen’n
inequality

p(m+M—A(g)) < @(m)+ (M) —A(p(g))- 4.1

As previously we can prove the following two theorems.

THEOREM 12. Let the conditions of Theorem 11 be satisfied for an interval I =
[m,M] C (0,°) and for function ¢ = @, (as is defined by (2.2)) for t in some interval
J CR. Let us define

Q = 0 (m) + @ (M) —A((8)) — or(m+M—A(g)).
Then

n
(i) forevery n € N and for every t, € J, k=1,2,...,n, the matrix |:Qti+tj:| isa
2

ij=1
positive semi-definite matrix. Particularly

det {Qt,ﬂ,} >0; (4.2)
2 i,j=1

(ii) if the function t — Q, is continuous, then it is exponentially convex on J.

THEOREM 13. Let the conditions of Theorem 11 be satisfied for an interval I =
[m,M] for function @ = ¢ (as is defined Lemma 2) for s in some interval in J C R.
Let us define

Q= ¢y (m) + (M) — A(6r(g)) — & (m+M—A(g)).
Then

n
(i) forevery n € N and for every t, € J, k=1,2,...,n, the matrix |:Qli4;tj:| isa
ij=1
positive semi-definite matrix. Particularly

n
det {Qt,.ﬂj} >0; (4.3)
2 lij=1

(ii) if the function t — C is continuous, then it is exponentially convex on J.
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5. Levinson’s inequality

It is well known that Ky-Fan’s inequality can be obtained from the Levinson in-
equality (see [18]; see also [22], p. 71).

THEOREM 14. Let a > 0 be any real number and let f be a real valued 3— convex
function on [0,2a]. Then for 0 <x; <a, p; >0,i=1,...,m we have

m

m
%Zpif(x,-)—f(%nz“pixo\ pr (2a—x;) ( Zp, (2a— x,) (5.1)
i=1 i=1
LEMMA 3. [3] Let us define the following family of functions
4 L 1#£0,1,2;

(e=1)(t—

1
> logx, t=0;

o) =1’ (5.2)
—xlogx, t=1;

Ix*logx, t=2.
Then %(p, (x) =73, that is x — @, (x) is 3— convex on (0,) for every t € R.
THEOREM 15. Define the function

= Y pi(02a—x) - %)) — 420~ 3 + 0 (D), (53)
i=1

Sfor m—tuples (x1,...,%y) and (p1,...,pm) asin Theorem 14 and for the function f =
¢, (as is defined by (5.2)). Then

n
(i) forevery n € N and for every ty € R, k=1,2,...,n, the matrix |:€t,—+tj:| isa
2 lij=1

positive semi-definite matrix. Particularly
n
det [5r,—+t_,-] = 0; (5.4)
2 i,j=1
(ii) the function t — & is exponentially convex on R.

Proof. Consider the function

0) = Yt (x)

for x>0, u; € R and ;; € I where 1;; = ti;tj. Then

2
I 3
( Zuuf'f <2u,~x22> >0 for x>0.
;
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So f(x) is a 3-convex function. Therefore by applying inequality (5.1) we get

n

2 uiujét,'j 2 0

=1

It can be easily checked that the function ¢ — & is continuous function concluding that
it is exponentially convex function. [J

In [25] the third author proved the following result.

THEOREM 16. Let a > 0 be any real number and let f be a real valued 3— convex
Sfunction on [0,2a)] and x; € [0,2a] (1 <i<m). Then

m m

S =1 (3 o) <

i=1 i=1 i

M§

pif(a+x) —f<%m Zpi(a+xi)>. (5.5)
i=1

1

THEOREM 17. Let a > 0 be any real number. Define the function

Ms

1
po= o X i 0la+x) = o)) — @ula+3) + ¢, (3), (56)
mi=1

Sfor m—tuples (x1,...,xy) and (p1,...,pm) as in Theorem 16 and for the function f =
o (as is defined by (5.2)). Then

n
(i) forevery n € N and for every t, € R, k=1,2,...,n, the matrix [p:,_;i} isa
ij=1

positive semi-definite matrix. Particularly

det |:pt,-+rj:| > 0; 5.7)
7 lij=1

(ii) the function t — py is exponentially convex on R.
Proof. The proof is quite similar to the proof of Theorem 15. [

6. Power sums

Let (xi,...,X») be a positive m-tuple. The well-known inequality for power sums
of order s and r, for s > r > 0 ([22], p—164), states that

m 1/s m 1/r
(fo) < <2x{> ) (6.1)
i=1 i=1



180 M. ANWAR, J. JAKSETIC, J. PECARIC AND ATIQ UR REHMAN

Moreover, if (p1,...,pm) is a positive m-tuple such that p; > 1 (i = 1,...,m), then for
s >r >0 ([22], p—165), we have

m 1/s m 1/r
(2 p,-x;-‘> < (2 pix; ) : (6.2)
i=1 i=1

Let us note that (6.2) can also be obtained from the following theorem ([22], p—152):

THEOREM 18. Let (x1,...,Xn) and (p1,...,pm) be two non-negative m-tuples such
that x; € (0,a] (i=1,...,m) and

zznzlp,-x,- > xj, for j=1,...m and er."zlp,-x,- € (0,q]. (6.3)

If f(x)/x is an increasing function on (0,a], then

f (2 pm) > pif(x). (6.4
i=1 i=1
LEMMA 4. [26] Let us define the following family of functions

(p,(x):{”ft_l’ r#£1;

xlogx, t =1.
Then x — ¢,T(x) is a strictly increasing function on (0,00) for every t € R.

THEOREM 19. Define the function

=AMXP) =@ (Z szz>

SJor m—tuples (xi,...,%y) and (p1,...,pm) (n>=2) as in Theorem 18 and for function
f =@ (asis defined in Lemma 4). Then

(6.5)

HMS

(i) for every n € N and for every t; € R, k= 1,2,...,n, the matrix [A;,—w,} is a
2

positive semi-definite matrix. Particularly

det {A/,-Hj] > 0;

"7 1=l
(ii) the function t — A; is exponentially convex on R.

Proof. (i) Consider the function

n
x) = Zuiuj(plij (x)
iJ
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i ;tj . Then

(fi) l};uuw* <2u,x7—1>2

So @ is an increasing function. After we apply inequality (6.4) to function f we get

for x>0, u; €R and 7;; € R where #;; =

n
2 u,-ujA,ij >0
i

(i1) Since lin}At = A, t — A, is continuous function, concluding its exponential con-
r—
vexityon R. [

The following similar result is also valid ([22], p—153):

THEOREM 20. Let f(x)/x be an increasing function on (0,4+e0). If 0 < xj <
.. < x,y and

(i) if there exist an (< n) such that

Pi>Py>..>P>1, P =..=P,=0, (6.6)
where P, = E?:l Pi, Pk =Pu—Pi_ (k=2,...,m) and Py = Py,, then (6.4) holds.
(ii) If there exists an 1(< n) such that
0<P <P <..<P <1, Py=...=P, =0, (6.7)
then the reverse of inequality in (6.4) holds.

Now make two applications of Theorem 20 :

THEOREM 21. Define the function

o=@ (2 Pixi> - Zpi(Pt(xi)
i=1 i=1

Sfor n—tuples (xq,...,xm) and (p1,...,pm) (m = 2) as in (i)-part of Theorem 20 and
for function f = @, (as is defined in Lemma 4). Then

(i) For every n € N and for every ty € R, k= 1,2,...,n, the matrix |:¢ti+tj:| isa
=

positive semi-definite matrix. Particularly

det |:¢t,-+tj:| > 0; (6.8)

2 lij=1



182 M. ANWAR, J. JAKSETIC, J. PECARIC AND ATIQ UR REHMAN
(ii) the function t — @, is exponentially convex on R.

THEOREM 22. Define the function

q;; = Zpiq)t(xi) — ¢ (Z pm)
i=1 i=1

Sfor m—tuples (x1,...,xn) and (p1,...,pm) (n=2) asin (ii)-part of Theorem 20 and
for function f = @y (as is defined in Lemma 4). Then
(i) For every n € N and for every t, € R, k= 1,2,...,n, the matrix |:(5ti+tj:| isa
=
positive semi-definite matrix. Particularly

n

det [ql,.ﬂj} >0. (6.9)
"2 lij=1

(ii) The function t — q;t is exponentially convex on R.

Let us note that power sums inequalities can be also obtained by using related inequal-
ities for convex functions.

LEMMA 5. [27] Let us define the following family of functions

X
et L
T ()C) = { 1(t=1) #

xlogx, t =1.
where t € RT and x > 0. Then x — 7,(x) is convex function on [0,e) for every t € RT.

THEOREM 23. Let (x1,...,%y) and (p1,...,pm) be two positive m-tuples such
that condition (6.3) is satisfied. Let

— — A
m:&mmzf

be function defined on (0,°0) where the function t — A, is defined in (6.5). Then

(i) For every n € N and for every t; € (0,), k =1,2,...,n, the matrix |:Ktl+2tjj| is
a positive semi-definite matrix. Particularly

det |:Kt,—+tj:| > 0.
“Z i,

(ii) The function t — A, is exponentially convex on (0,).



EXPONENTIAL CONVEXITY, POSITIVE SEMI-DEFINITE MATRICES AND INEQUALITIES 183

Proof. (i)For x>0, u; R and t; € (0,00), i=1,...,n letus consider the function

flx)= i”i”jrti_/ (x)

ti+t; . .
where #;; = “5 and 7 is defined as in Lemma 5. Then

2
n n )
f”(x) = Zuiuj'{ijfz = <Zuixt2'1> 2 O
LJ i

So f is convex function. After we apply Petrovi¢ inequality (see [22], p. 154)

f (ZPW) <Y pif (x) + (l - ZPi) £(0)
i=1 =1 ;
we get
zn:u,-uj&ij > 0.
ij

(ii) Since lin%& = A, t — A, is continuous function on (0,0), concluding its expo-
11—

nential convexity on (0,0). [

COROLLARY 3. Let (x1,...,%n) and (p1,-..,pm) be two positive m-tuples such
that condition (6.3) is satisfied, and let s € (0,0). Let

s { (S pe)f = S pt | L
STy pi) log (T pix) — s 3y pixilogxi}, 1 = s.

be function defined on (0,°0). Then

(i) for every n € N and for every t; € (0,0), k=1,2,....n, the matrix [@iﬁ,j} is
]
a positive semi-definite matrix. Particularly

n
det[ S,I.+,j] > 0. (6.10)
= i j=1

(ii) the function t — ©; is exponentially convex on (0,c0).

Proof. The proof follows from Theorem 23 after substitutions x; — x}, t —1/s. O
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7. Results on integral inequalities

Let us consider the following result from [22, page 159].

THEOREM 24. Let 1 € [a,b] be fixed, h be continuous and monotonic with h(ty) =
0, g be a function of bounded variation and

)= [ ag), Gy = [ agt

0<G@E)<1 for a<t<ty, 0<G(t) <1 forty<t<b, (7.1)

(a) If

then for every convex function f: I — R such that h(x) € I for all x € [a,b], we
have

b

/f ) dg(t) > f /h Vg(t) | + /dg(t)—l £0). (7.2

(b) Ifffh(t)dg(t) € I and either
there exists an s < to suchthat G(t) <0 for t <s,
G(t) =1 for s <t <tyand G(t) <0 fort >ty (7.3)
or
there exists an s >ty such that G(t) <0 for t < 1y,
G(t) =1 fortg<t<s, and G(t) <0 fort >, (7.4)

then for every convex function f : I — R such that h(x) € I for all x € [a,b], the
reverse of the inequality in (7.2) holds.

In the sequel we extend results from [27] from log-convexity to exponential con-
vexity.

The proofs of the following two theorems are quite similar to proof Theorem 23
and therefore they are omitted.

THEOREM 25. Let 1y € [a,b] be fixed, h be continuous and monotonic with h(ty)
=0, g be a function of bounded variation that satisfies (7.3) or (7.4). Let t — A; be
Sunction defined on (0,°) as

A= Mabing) = [ ) ds(x) ( [ h(x)dg<x>), @.5)

where @ is defined as in Lemma 5. Then
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(i) For every n € N and for every 1t € (0,00), k= 1,2,...,n, the matrix |:Ar,—+rj:| is
-

a positive semi-definite matrix. Particularly

n
det |:At,-+lj-:| = 0. (76)
2 lij=1

(ii) The function t — A, is exponentially convex on (0,0).

THEOREM 26. Let ty € [a,b] be fixed, h be continuous and monotonic with h(ty) =

0, g be a function of bounded variation that satisfies (7.1). Let t — A, be function de-
fined on (0,%0) as

~ b b
A= nabng =0 ([ 10de)) - [0t a0
where @ is defined as in Lemma 5. Then

(i) For every n € N and for every 1, € (0,00), k =1,2,....n, the matrix |:Kti+tj:| is
e

a positive semi-definite matrix. Particularly

det [K,,-+tj] > 0. (7.8)
2 lij=1

(ii) The function t — A is exponentially convex on (0,0).

8. Steffensen’s inequality
The well-known Steffensen inequality reads as follows:

THEOREM 27. Suppose that f is decreasing and g is integrable on |a,b] with
0<g<land A = ffg(t)dt. Then

a+A

b b
[ r0a< [fwgwar< [ s, (5.1)
—A a

b a

The inequalities are reversed for an increasing function f.

In the sequel we extend results from [15] from log-convexity to exponential con-
vexity. We will need the following lemma.

LEMMA 6. Let us define the following family of functions

X

PR t 7é O;

nx) =< " (8.2)
logx, t =0.

Then 4, (x) =x'""1, that is x — 1, (x) is increasing function on (0,0) for every t € R.
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Let x,y be fixed real numbers and x < y. Let f be decreasing, positive function, and
g is integrable function on [x,y] with 0 < g <1 and A = [Yg(r)dt. Let us define
functions ¢ and y on R with

x+A y
%( J f’(t)dt—ff’(t)g(t)dt) r#0;
¢(r) = ! ! (8.3)

T iog f0yar — Jstoytog fivyar, r=o.

%(ff’(%(r)dz— I f’(z)dr>, r£0;
v(in=4 V' o (8.4)
Jg(@)logf(t)dr — fllogf(t)dt, r=0.

y

THEOREM 28. Let ¢ and y be two functions defined in (8.3) and (8.4).

Lot n
(i) Forevery n € N and for every t; € R, k=1,2,...,n, the matrices [(]) (%)} '
irj

titti \ 1" .. . . .
and =L are positive semi-definite matrices.
. p
ij

2
det [¢ (Hthﬂ >0, 8.5)

i,J

ti+t:\1"
det [I]/ (%ﬂ >0. (8.6)
i,j

(ii) The functions ¢ and y are exponentially convex functions on (0,).

Particularly

and

Proof. () Forv>0, uy;€R and t; € R, i =1,...n let us consider the function
n
h(v) = Zuiujntij )
ij
where #;; = HTZJ and 7 is defined as in Lemma 6. Then

2
" 7 1;—1
()= Zuiujvt"f_l = (2”1"’_2_) > 0.
i f

So 4 is the increasing function and hence ko f is the decreasing function. After we
apply Steffensen’s inequality (8.1) for function ho f we get

n
Zuiuj(])(t,‘j) >0
L]
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and

Y uittjy (i) = 0.
i

(ii) Since lir%q)(t) = ¢(0) and lin(} v (t) =w(0), ¢ and y are continuous functions on
1— 1—

R concluding their exponential convexity on R. [J

Similarly, using Steffensen’s inequality, we can extend results on log-convexity
from [14] to exponential convexity(assumptions on function g are same from beginning
of this section):

THEOREM 29. Let 0 < x <y < oo, and let ¢(r), Y(r) are defined as

y .,
L (ft"lg(t)dt— W) , r#0,1;
~ y
o(r)= ("”) /&%y, r=0; (8.7)
y
Jg(t)logtdt — (x+A)log (x+A) +xlogx, r=1,

and
ﬁ(y(yr’” ft’_lg(t)dt>7 r#£0,1;
W(r)= j%—"dr—log(ﬁ), r=0; (8.8)
ylogy — (v~ A)log(y—2) — [ g(t)logtdi — A, r=1.

(i) For every n € N and for every t; € R, k=1,2,...,n, the matrices [(;)\( ’+t’>] '
iJ

~ (ti+1;\ 1" .. . . . .
and [l[/ ( '; / )] g are positive semi-definite matrices. Particularly

[~ i+t \1"
det ¢<L> >0, (8.9)
L 2 dij
and
[ (ti+t:\]"
det | litl >0, (8.10)
L 2 ij

(i) The functions q? and Y are exponentially convex on R.
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