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Dedicated to Professor Josip Pečarić
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Abstract. We derive a corrected version of the weighted two-point quadrature formula, which
provides a better approximation accuracy than the ordinary two-point quadrature formulae. In the
corrected two-point formula the integral is approximated both with the values of the integrand in
nodes −x and x , and the values of its first derivative at the endpoints of the interval [−1,1] . The
error estimates under various regularity conditions for such formulae are established. As special
cases, the corrected two-point formulae of Gauss type are obtained. Also, corrected version of
weighted trapezoid, midpoint, two-point Maclaurin and two-point Newton-Cotes formulae are
considered.

1. Introduction

The ordinary two-point quadrature formula states that

∫ 1

−1
f (t)w(t)dt ≈ Aw [ f (−x)+ f (x)] . (1.1)

Here, x ∈ [0,1] , f is an integrable function defined on [−1,1] , w : [−1,1]→ R+ is an
even integrable function called weight and

Aw =
∫ 1

0
w(t)dt. (1.2)

Recently, A. Guessab and G. Schmeisser ([1]) studied a class of two-point formulae for
w ≡ 1. Some of the most famous quadrature rules belong to this group: trapezoid for-
mula (x = 1), Newton-Cotes two-point formula (x = 1

3 ) , Maclaurin two-point formula
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(x = 1
2 ) and midpoint formula (x = 0). These formulae are exact for all polynomials of

order � 1. Guessab and Schmeisser established the sharp estimates for the remainder

E( f ,x) :=
1

b−a

∫ b

a
f (t)dt − 1

2
[ f (x)+ f (a+b− x)] (1.3)

under various regularity conditions. They proved the following theorem

THEOREM 1. Let f be a function defined on [a,b] and having there a piecewise
continuous n− th derivative. Let Qn be any monic polynomial of degree n such that
Qn(t) ≡ (−1)nQn(a+b− t). Define

Kn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t−a)n, for a � t � x

Qn(t), for x < t � a+b− x

(t−b)n, for a+b− x < t � b.

(1.4)

Then, for the remainder in (1.3), we have

E( f ;x) =
n−1

∑
ν=1

[ (x−a)ν+1

(ν +1)!
− Q(n−ν−1)

n (x)
n!

] f (ν)(a+b− x)+ (−1)ν f (ν)(x)
b−a

+
(−1)n

n!(b−a)

∫ b

a
Kn(t) f (n)(t)dt. (1.5)

A number of error estimates for the identity (1.5) are obtained, and various exam-
ples of the general two-point quadrature formula are given in [2].

The goal of this paper is to establish two-point quadrature formulae with a higher
degree of exactness. Such formulae will contain the first derivative at the endpoints of
the interval, that is

∫ 1

−1
f (t)w(t)dt ≈ Aw [ f (−x)+ f (x)]+Bw(x)

[
f ′(1)− f ′(−1)

]
. (1.6)

Here,

Bw(x) =
1
2

∫ 1

0
(t2− x2)w(t)dt. (1.7)

Quadrature formulae of this form are usually called corrected.
The main tool used are the w−harmonic sequences of functions and related weighted

integral identity obtained in [3].

DEFINITION 1. Let w : [a,b] → R be an integrable weight function and wk :
[a,b]→R are differentiable functions for k ∈N . We say that {wk}k∈N is w−harmonic
sequence of functions if for k � 2, w′

k(t) = wk−1(t) and w′
1(t) = w(t) , for t ∈ [a,b].
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Given a subdivision σ = {a = x0 < x1 < .. . < xm = b} of the interval [a,b] , let
us consider different w−harmonic sequences of functions {wjk}k∈N on each interval
[x j−1,x j], j ∈ {1,2, . . . ,m} . Define

Wn,w(t,σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1n(t), t ∈ [a,x1]
w2n(t), t ∈ (x1,x2]
...
wmn(t), t ∈ (xm−1,b],

(1.8)

Then for every function f : [a,b] → R such that f (n) is piecewise continuous on [a,b]
it is proved in [3] that∫ b

a
w(t) f (t)dt =

n

∑
k=1

(−1)k−1
[
wmk(b) f (k−1)(b) (1.9)

+
m−1

∑
j=1

[
wjk(x j)−wj+1,k(x j)

]
f (k−1)(x j)−w1k(a) f (k−1)(a)

]

+ (−1)n
∫ b

a
Wn,w(t,σ) f (n)(t)dt.

Throughout the paper we use the convention 00 = 1.

2. General weighted corrected two-point formula

Let w : [−1,1] → R be an even weight function and x ∈ [0,1]. Consider a subdi-
vision

σ = {x0 = −1,x1 = −x,x2 = x,x3 = 1} (2.1)

of the interval [−1,1]. Define

C1,w(x) := −
∫ 1

0
(x− s)w(s)ds−Bw(x)

C2,w(x) := −1
6

∫ 1

0
(x3 − s3)w(s)ds− 1

2
Bw(x)

C3,w(x) := − 1
120

∫ 1

0
(x5 − s5)w(s)ds− 1

24
Bw(x).

For k ∈ N define

w1k(t) =
1

(k−1)!

∫ t

−1
(t− s)k−1w(s)ds−Bw(x)

(t +1)k−2

(k−2)!
1{k�2}

w2k(t) =
1

(k−1)!

∫ t

0
(t − s)k−1w(s)ds+C1,w(x)

tk−2

(k−2)!
1{k�2}

+ C2,w(x)
tk−4

(k−4)!
1{k�4} +C3,w(x)

tk−6

(k−6)!
1{k�6}

w3k(t) =
−1

(k−1)!

∫ 1

t
(t − s)k−1w(s)ds−Bw(x)

(t −1)k−2

(k−2)!
1{k�2}.
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LEMMA 1. The sequences {wjk}k∈N are w−harmonic sequences of functions on
(−1,1) , i.e. for j = 1,2,3 we have

w′
jk(t) = wj,k−1(t), ∀t ∈ (−1,1), ∀k � 2

w′
j1(t) = w(t), ∀t ∈ (−1,1).

Proof. The proof follows by direct differentiation of functions wjk .

LEMMA 2. We have

w1k(t) = (−1)kw3k(−t), ∀t ∈ [−1,−x],

w2k(t) = (−1)kw2k(−t), ∀t ∈ [−x,x].

Further, w1k(−1) = 0 , ∀k �= 2 and w12(−1) = −Bw(x).

Proof. Let t ∈ [−1,−x] . Then −t ∈ [x,1] hence we obtain

w3k(−t) =
−1

(k−1)!

∫ 1

−t
(−t− s)k−1w(s)ds−Bw(x)

(−t−1)k−2

(k−2)!
1{k�2}

= (y := −s) =
1

(k−1)!

∫ −1

t
(−t + y)k−1w(−y)dy−Bw(x)

(−t −1)k−2

(k−2)!
1{k�2}

=
(−1)k

(k−1)!

∫ t

−1
(t− y)k−1w(y)dy− (−1)kBw(x)

(t +1)k−2

(k−2)!
1{k�2} = (−1)kw1k(t).

Now let t ∈ [−x,x] . We have

w2k(−t) =
1

(k−1)!

∫ −t

0
(−t− s)k−1w(s)ds+C1,w(x)

(−t)k−2

(k−2)!
1{k�2}

+ C2,w(x)
(−t)k−4

(k−4)!
1{k�4} +C3,w(x)

(−t)k−6

(k−6)!
1{k�6}

= (y := −s) =
−1

(k−1)!

∫ t

0
(−t + y)k−1w(−y)dy+C1,w(x)

(−t)k−2

(k−2)!
1{k�2}

+ C2,w(x)
(−t)k−4

(k−4)!
1{k�4} +C3,w(x)

(−t)k−6

(k−6)!
1{k�6} = (−1)kw2k(t).

For k �= 2 we obviously have w1k(−1) = 0. On the other hand, for k = 2 we have

w12(−1) =
∫ −1

−1
(t− s)w(s)ds−Bw(x) = −Bw(x).

Put Hk,w(x) := (−1)k−1 [w1k(−x)−w2k(−x)] , for k ∈ N.

LEMMA 3. The coefficients Hk,w(x) satisfy the following identities:

a) Hk,w(x) = w2k(x)−w3k(x)
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b) H1,w(x) = Aw

c) Hk,w(x) = 0, for k = 2,3,4

d) For k � 5 we have

Hk,w(x) =
1

(k−1)!

∫ 1

0
(x− s)k−1w(s)ds+

C1,w(x)xk−2 +Bw(x)(x−1)k−2

(k−2)!

+
C2,w(x)xk−4

(k−4)!
+

C3,w(x)xk−6

(k−6)!
1{k�6}

Proof. In view of the definition of Hk,w(x) the identities follow directly from
Lemma 2.
Let f : [−1,1]→ R be such that f (n−1) exists on [−1,1] for some n � 1. We introduce
the following notation:

Tn,w(x) = 0, for n ∈ {1,2,3,4}

Tn,w(x) =
n

∑
k=5

Hk,w(x)
[
f (k−1)(−x)+ (−1)k−1 f (k−1)(x)

]
, for n � 5.

and

Wn,w(t,x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1n(t) for t ∈ [−1,−x],

w2n(t) for t ∈ (−x,x],

w3n(t) for t ∈ (x,1].

In the next theorem we establish the identity which plays the key role in this paper.
We call it the corrected weighted two-point quadrature formula.

THEOREM 2. Let f : [−1,1] → R be such that f (n) is piecewise continuous on
[−1,1] , for some n ∈ N . Then

∫ 1

−1
w(t) f (t)dt = Aw [ f (−x)+ f (x)]+Bw(x)

[
f ′(1)− f ′(−1)

]
+ Tn,w(x)+ (−1)n

∫ 1

−1
Wn,w(t,x) f (n)(t)dt. (2.2)

Proof. We apply the general (m+1)-point formula (1.9) to the special case m = 3
with the subdivision (2.1). It follows∫ 1

−1
w(t) f (t)dt =

n

∑
k=1

(−1)k−1
[
w3k(1) f (k−1)(1)

+ [w1k(−x)−w2k(−x)] f (k−1)(−x)+ [w2k(x)−w3k(x)] f (k−1)(x)

− w1k(−1) f (k−1)(−1)
]
+(−1)n

∫ 1

−1
Wn,w(t,x) f (n)(t)dt.
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According to Lemma 2, the terms in front of f (k−1)(1) and f (k−1)(−1) vanish for
k �= 2. On the other hand, the term in front of f ′(1) and − f ′(−1) equals Bw(x). By
Lemmas 2 and 3 the terms in front of f (k−1)(−x) and (−1)k−1 f (k−1)(x) equal Hk,w(x).
Now the assertion follows directly.

THEOREM 3. Assume (p,q) is a pair of conjugate exponents, that is 1 � p,q � ∞,
1
p + 1

q = 1. Let f : [−1,1]→ R be such that f (n) ∈ Lp[−1,1] for some n ∈ N . Then we
have ∣∣∣∫ 1

−1
f (t)w(t)dt − Aw [ f (−x)+ f (x)]−Bw(x)

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣

� Cw(n,x,q) · ‖ f (n)‖p, (2.3)

where

Cw(n,x,q) =

⎧⎪⎪⎨
⎪⎪⎩

2 ·
[∫ −x

−1 |w1n(t)|qdt +
∫ 0
−x |w2n(t)|qdt

] 1
q
,1 � q < ∞,

max{supt∈[−1,−x] |w1n(t)|,supt∈[0,x] |w2n(t)|},q = ∞.

The inequality is the best possible for p = 1 and sharp for 1 < p � ∞. The equality is
attained for every function f such that

f (t) = M · f∗(t)+ pn−1(t), (2.4)

where M ∈ R , pn−1 is an arbitrary polynomial of degree at most n−1 , and f∗ is the
function on [a,b] defined by

f∗(t) =
∫ t

−1

(t − ξ )n−1

(n−1)!
sgnWn,w(ξ ,x) · |Wn,w(ξ ,x)| 1

p−1 dξ , (2.5)

for 1 < p < ∞ , and

f∗(t) =
∫ t

−1

(t− ξ )n−1

(n−1)!
sgnWn,w(ξ ,x)dξ , (2.6)

for p = ∞.

Proof. Applying Hölder inequality to the integral (−1)n ∫ 1
−1Wn,w(t,x) f (n)(t)dt

we get∣∣∣∣(−1)n
∫ 1

−1
Wn,w(t,x) f (n)(t)dt

∣∣∣∣ � ‖Wn,w(·,x)‖q · ‖ f (n)‖p = Cw(n,x,q) · ‖ f (n)‖p,

so the inequality (2.3) follows. In order to prove the sharpness, we need to find function
f such that ∣∣∣∫ 1

−1
Wn,w(t,x) f (n)(t)dt

∣∣∣ = Cw(n,x,q) · ‖ f (n)‖p,

for 1 < p � ∞ and 1 � q < ∞ such that 1
p + 1

q = 1. The function f∗ defined by (2.5)
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and (2.6) is n times differentiable, and its n− th derivative is a piecewise continuous
function. Further, we have

f (n)
∗ (t) =

⎧⎨
⎩

sgnWn,w(t,x), p = ∞

|Wn,w(t,x)| 1
p−1 sgnWn,w(t,x), 1 < p < ∞,

The function f : [a,b] → R defined by (2.4) is also n times differentiable and satisfies

f (n) ∈ Lp[a,b] and f (n)(t) = M f (n)
∗ (t).

Obviously, for p = ∞ and q = 1 there is ‖ f (n)‖∞ = |M| , so we have∣∣∣∣
∫ 1

−1
Wn,w(t,x) f (n)(t)dt

∣∣∣∣ =
∣∣∣∣M

∫ 1

−1
Wn,w(t,x) f (n)

∗ (t)dt

∣∣∣∣
=

∣∣∣∣M
∫ 1

−1
Wn,w(t,x)sgnWn,w(t,x)dt

∣∣∣∣
= |M|

∫ 1

−1
|Wn,w(t,x)|dt = Cw(n,x,1)‖ f (n)‖∞.

On the other hand if 1 < p < ∞ and 1 < q < ∞ we get

‖ f (n)‖p = |M|
[∫ 1

−1
|Wn,w(t,x)| p

p−1 dt

] 1
p

= |M|
[∫ 1

−1
|Wn,w(t,x)|q dt

] 1
p

,

which implies∣∣∣∣
∫ 1

−1
Wn,w(t,x) f (n)(t)dt

∣∣∣∣ =
∣∣∣∣M

∫ 1

−1
Wn,w(t,x) f (n)

∗ (t)dt

∣∣∣∣
=

∣∣∣∣M
∫ 1

−1
Wn,w(t,x) |Wn,w(t,x)| 1

p−1 sgnWn,w(t,x)dt

∣∣∣∣
= |M|

∫ 1

−1
|Wn,w(t,x)| p

p−1 dt = |M|
∫ 1

−1
|Wn,w(t,x)|q dt = Cw(n,x,q)‖ f (n)‖p,

so we proved the equality in (2.3). For p = 1 and q = ∞ we shall prove that

∣∣∣∫ 1

−1
Wn,w(t,x) f (n)(t)dt

∣∣∣ � sup
t∈[−1,1]

|Wn,w(t,x)| ·
∫ 1

−1
| f (n)(t)|dt (2.7)

is the best possible inequality. Suppose that |Wn,w(t,x)| attains its supremum at the
point t0 ∈ [−1,1] and let supt∈[−1,1] |Wn,w(t,x)| = |wkn(t0)| , for some k = 1,2,3. First,

let us assume that wkn(t0) > 0. For ε small enough define f (n−1)
ε (t) by

f (n−1)
ε (t) =

⎧⎨
⎩

0, t � t0− ε
t−t0+ε

ε , t ∈ [t0 − ε, t0]
1, t � t0,
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if t0 ∈ (xk−1,xk] . Then, for ε small enough,

∣∣∣∫ 1

−1
Wn,w(t,x) f (n)

ε dt
∣∣∣ =

∣∣∣∫ t0

t0−ε
wkn(t)

1
ε
dt

∣∣∣ =
1
ε

∫ t0

t0−ε
wkn(t)dt. (2.8)

Now, relation (2.7) implies

1
ε

∫ t0

t0−ε
wkn(t)dt � wkn(t0)

∫ t0

t0−ε
1
ε
dt = wkn(t0). (2.9)

Since

lim
ε→0

1
ε

∫ t0

t0−ε
wkn(t)dt = wkn(t0),

the statement follows.
If t0 = xk−1, then we define, for ε > 0 small enough, the function f (n−1)

ε (t) by

f (n−1)
ε (t) =

⎧⎨
⎩

0, t � t0
t−t0
ε , t ∈ [t0,t0 + ε]

1, t � t0 + ε,

and we argue as above.
For the case wkn(t0) < 0 the proof is similar.

THEOREM 4. Assume that for some even n, f (n) is a continuous function on
[−1,1] and Wn,w(·,x) has a constant sign on [−1,0] . Then there exists η ∈ (−1,1)
such that the following identity holds:

∫ 1

−1
w(t) f (t)dt = Aw [ f (−x)+ f (x)]+Bw(x)

[
f ′(1)− f ′(−1)

]
+ Tn,w(x)+2Hn+1,w(x) · f (n)(η). (2.10)

Proof. According to the relation (2.2), we have to prove the identity

∫ 1

−1
Wn,w(t,x) f (n)(t)dt = 2Hn+1,w(x) · f (n)(η).

Observe that Wn,w(·,x) is an even function. Since Wn,w(·,x) does not change the sign,
then by the mean value theorem there exists η ∈ (−1,1) such that

∫ 1

−1
Wn,w(t,x) f (n)(t)dt = f (n)(η) ·

∫ 1

−1
Wn,w(t,x)dt

= f (n)(η) ·2 ·
∫ 1

0
Wn,w(t,x)dt = 2 f (n)(η)(w2,n+1(x)−w3,n+1(x))

= 2Hn+1,w(x) · f (n)(η).
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REMARK 1. In particular, for n = 4 we get

∫ 1

−1
w(t) f (t)dt = Aw [ f (−x)+ f (x)]+Bw(x)

[
f ′(1)− f ′(−1)

]
+2H5,w(x) · f (4)(η).

(2.11)

Imposing x = 0, 1
3 , 1

2 ,1 in (2.11) we get the corrected version of midpoint, Newton-
Cotes two-point formula, Maclaurin two-point formula and trapezoid formula, respec-
tively. By choosing x ∈ [0,1] such that Bw(x) = 0, the two-point quadrature formula
of Gauss type is obtained. These formulae are exact for all polynomials of order � 3.

REMARK 2. In particular, for n = 6, the following formula is obtained:

∫ 1

−1
w(t) f (t)dt = Aw [ f (−x)+ f (x)]+Bw(x)

[
f ′(1)− f ′(−1)

]
+H5,w(x)

[
f (4)(−x)+ f (4)(x)

]
+H6,w(x)

[
f (5)(−x)− f (5)(x)

]
+2H7,w(x) · f (6)(η). (2.12)

From the condition H5,w(x) = 0, a unique solution x ∈ [0,1] is obtained. For that x
formula (2.12) becomes the corrected version of Gauss type quadrature formula. That
formula is more accurate than the ordinary Gauss formula. In fact, it is exact for all
polynomials of order � 5.

3. Special cases

In this section we apply the results of the second section to the special cases of
weights: w(t) = 1, w(t) = 1√

1−t2
and w(t) =

√
1− t2 , and we establish the corrected

version of quadrature formulae of Gauss type. All the computations were done using
the Wolfram Mathematica software.

3.1. The case w(t) = 1

In this case we compute

Aw = 1, Bw(x) =
1
6
− x2

2
, C1,w(x) =

x2

2
− x+

1
3
,

C2,w(x) = −x3

6
+

x2

4
− 1

24
, C3,w(x) = − x5

120
+

x2

48
− 1

180
,

H5,w(x) = − x4

24
+

x2

12
− 7

360
.
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COROLLARY 1. Let f : [−1,1]→ R be such that f (n) is piecewise continuous on
[−1,1] , for some n ∈ N . Then

∫ 1

−1
f (t)dt = f (−x)+ f (x)+

(
1
6
− x2

2

)[
f ′(1)− f ′(−1)

]
+ Tn,w(x)+ (−1)n

∫ 1

−1
Wn,w(t,x) f (n)(t)dt.

Proof. Apply Theorem 2 for the case w(t) = 1.
Let us consider special cases for x ∈ [0,1] :

a) For x = 0 we get the corrected midpoint formula. In this case we compute
Bw(0) = 1

6 and H5,w(0) = − 7
360 . If f (4) is continuous, then we have by Theorem 4

∫ 1

−1
f (t)dt = 2 f (0)+

1
6

[
f ′(1)− f ′(−1)

]− 7
180

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:∣∣∣∣
∫ 1

−1
f (t)dt −2 f (0)− 1

6

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣ � Cw(n,0,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,0,1) =
4

9
√

3
≈ 0.25660011

Cw(2,0,∞) =
1
3
≈ 0.33333333

Cw(3,0,1) =
1
12

≈ 0.08333333

Cw(3,0,∞) =
1

9
√

3
≈ 0.06415003

Cw(4,0,1) =
7

180
≈ 0.03888888

Cw(4,0,∞) =
1
24

≈ 0.04166667.

REMARK 3. For n∈ {2,3,4} and q∈ {1,∞} the same constants Cw(n,0,q) have
been obtained in [6].

b) For x = 1
3 the corrected Newton-Cotes two-point formula is established. In

this case we compute Bw( 1
3 ) = 1

9 and H5,w( 1
3 ) = − 13

1215 . If f (4) is continuous, then we
have by Theorem 4

∫ 1

−1
f (t)dt = f

(
−1

3

)
+ f

(
1
3

)
+

1
9

[
f ′(1)− f ′(−1)

]− 26
1215

· f (4)(η).
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If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1
f (t)dt − f

(
−1

3

)
− f

(
1
3

)
− 1

9

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣

� Cw(n,
1
3
,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,
1
3
,1) =

8
√

2
81

≈ 0.13967541

Cw(2,
1
3
,∞) =

1
9
≈ 0,11111111

Cw(3,
1
3
,1) =

13
324

≈ 0.04012345

Cw(3,
1
3
,∞) =

2
√

2
81

≈ 0.03491885

Cw(4,
1
3
,1) =

26
1215

≈ 0.02139917

Cw(4,
1
3
,∞) =

13
648

≈ 0.02006172.

REMARK 4. For n ∈ {3,4} and q ∈ {1,∞} the same constants Cw(n, 1
3 ,q) have

been obtained in [7].

c) For x = 1
2 we get the corrected Maclaurin two-point formula. In this case we

compute Bw( 1
2 ) = 1

24 and H5,w( 1
2 ) = − 7

5760 . If f (4) is continuous, then we have by
Theorem 4

∫ 1

−1
f (t)dt = f

(
−1

2

)
+ f

(
1
2

)
+

1
24

[
f ′(1)− f ′(−1)

]− 7
2880

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1
f (t)dt − f

(
−1

2

)
− f

(
1
2

)
− 1

24

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣

� Cw(n,
1
2
,q)‖ f (n)‖p.
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In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,
1
2
,1) =

1

9
√

3
≈ 0.06415002

Cw(2,
1
2
,∞) =

1
12

≈ 0.08333333

Cw(3,
1
2
,1) =

1
96

≈ 0.01041666

Cw(3,
1
2
,∞) =

1

72
√

3
≈ 0.00801875

Cw(4,
1
2
,1) =

7
2880

≈ 0.00243055

Cw(4,
1
2
,∞) =

1
384

≈ 0.00260416.

REMARK 5. The constants Cw(2, 1
2 ,∞), Cw(3, 1

2 ,∞) and Cw(2, 1
2 ,1) are better

than the constants obtained for Maclaurin two-point formula in [2], while the con-
stant Cw(4, 1

2 ,1) is weaker than the constant obtained for Maclaurin two-point formula.
The constants Cw(4, 1

2 ,∞) and Cw(3, 1
2 ,1) are the same as the appropriate constants

obtained for Maclaurin formula in [2].

d) For x = 1 we get the corrected trapezoid formula. In this case we compute
Bw(1) = − 1

3 and H5,w(1) = 1
45 . If f (4) is continuous, then we have by Theorem 4

∫ 1

−1
f (t)dt = f (−1)+ f (1)− 1

3

[
f ′(1)− f ′(−1)

]
+

2
45

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:∣∣∣∣
∫ 1

−1
f (t)dt − f (−1)− f (1)+

1
3

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣ � Cw(n,1,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,1,1) =
4

9
√

3
≈ 0.25660011

Cw(2,1,∞) =
1
3
≈ 0.33333333

Cw(3,1,1) =
1
12

≈ 0.08333333

Cw(3,1,∞) =
1

9
√

3
≈ 0.06415002

Cw(4,1,1) =
2
45

≈ 0.04444444

Cw(4,1,∞) =
1
24

≈ 0.04166666.



THE CORRECTED TWO-POINT WEIGHTED QUADRATURE FORMULAE 249

REMARK 6. For n∈ {2,3,4} and q∈ {1,∞} the same constants Cw(n,1,q) have
been obtained in [5].

e) The condition H5,w(x) = 0 implies x =
√

1− 2
√

30
15 . In this case we compute

Bw(x) =
√

30−5
15 , H6,w(x) = 0 and H7,w(x) = 7

√
30−45

70875 . If f (6) is continuous, then we
have by Theorem 4

∫ 1

−1
f (t)dt = f

⎛
⎝−

√
1− 2

√
30

15

⎞
⎠+ f

⎛
⎝

√
1− 2

√
30

15

⎞
⎠

+
√

30−5
15

[
f ′(1)− f ′(−1)

]− 90−14
√

30
70875

· f (6)(η),

which we call a corrected Gauss-Legendre two-point formula. If f (n) ∈ Lp[−1,1] , then
Theorem 3 implies:

∣∣∣∣∣∣
∫ 1

−1
f (t)dt − f

⎛
⎝−

√
1− 2

√
30

15

⎞
⎠− f

⎛
⎝

√
1− 2

√
30

15

⎞
⎠

−
√

30−5
15

[
f ′(1)− f ′(−1)

]−Tn,w(x)

∣∣∣∣∣ � Cw(n,x,q)‖ f (n)‖p.

In particular, for n = 2,3,4,5,6 there is Tn,w(x) = 0, so we have

Cw(2,x,1) ≈ 0.06502076

Cw(2,x,∞) ≈ 0.08370696

Cw(3,x,1) ≈ 0.010903178

Cw(3,x,∞) ≈ 0.01090496

Cw(4,x,1) ≈ 0.00209576

Cw(4,x,∞) ≈ 0.00241499

Cw(5,x,1) ≈ 0.00050307

Cw(5,x,∞) ≈ 0.00052394

Cw(6,x,1) =
90−14

√
30

70875
≈ 0.00018792

Cw(6,x,∞) ≈ 0.00025153.

REMARK 7. The same constants for the corrected Gauss-Legendre formula have
been obtained in [4].
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3.2. The case w(t) = 1√
1−t2

In this case we compute

Aw =
π
2

, Bw(x) =
π
8
− πx2

4
, C1,w(x) =

πx2

4
− πx

2
+1− π

8
,

C2,w(x) = −πx3

12
+
πx2

8
+

1
9
− π

16
, C3,w(x) = −πx5

240
+
πx2

96
− π

192
+

1
225

H5,x(x) = −πx4

48
+
πx2

24
− 5π

384
.

COROLLARY 2. Let f : [−1,1]→ R be such that f (n) is piecewise continuous on
[−1,1] , for some n ∈ N . Then

∫ 1

−1

f (t)√
1− t2

dt =
π
2

[ f (−x)+ f (x)]+
(
π
8
− πx2

4

)[
f ′(1)− f ′(−1)

]
+ Tn,w(x)+ (−1)n

∫ 1

−1
Wn,w(t,x) f (n)(t)dt.

Proof. Apply Theorem 2 for the case w(t) = 1√
1−t2

.

Let us consider special cases for x ∈ [0,1] : a) For x = 0 we get the corrected mid-
point formula. In this case we compute Bw(0) = π

8 and H5,w(0) = − 5π
384 . If f (4) is

continuous, then we have by Theorem 4

∫ 1

−1

f (t)√
1− t2

dt = π f (0)+
π
8

[
f ′(1)− f ′(−1)

]− 5π
192

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt−π f (0)− π
8

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣ � Cw(n,0,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,0,1) ≈ 0.51838540

Cw(2,0,∞) = 1− π
8
≈ 0.60730091

Cw(3,0,1) =
π
8
− 2

9
≈ 0.17047685

Cw(3,0,∞) ≈ 0.12959635

Cw(4,0,1) =
5π
192

≈ 0.08181230

Cw(4,0,∞) =
1
9
− π

16
≈ 0.08523842.
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b) For x = 1
3 we established the corrected Newton-Cotes two-point formula. In

this case we compute Bw( 1
3 ) = 7π

72 and H5,w( 1
3 ) = −269π

31104 . If f (4) is continuous, then
we have by Theorem 4

∫ 1

−1

f (t)√
1− t2

dt =
π
2

(
f

(
−1

3

)
+ f

(
1
3

))
+

7π
72

[
f ′(1)− f ′(−1)

]− 269π
15552

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
2

(
f

(
−1

3

)
+ f

(
1
3

))
− 7π

72

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣

� Cw(n,
1
3
,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,
1
3
,1) ≈ 0.34175596

Cw(2,
1
3
,∞) =

7π
92

≈ 0.30543261

Cw(3,
1
3
,1) ≈ 0.10260294

Cw(3,
1
3
,∞) ≈ 0.08543899

Cw(4,
1
3
,1) =

269π
15552

≈ 0.05433953

Cw(4,
1
3
,∞) =

67π−144
1296

≈ 0.05130147.

c) For x = 1
2 we get the corrected Maclaurin two-point formula. In this case we

compute Bw( 1
2 ) = π

16 and H5,w( 1
2 ) = − π

256 . If f (4) is continuous, then we have by
Theorem 4

∫ 1

−1

f (t)√
1− t2

dt =
π
2

(
f

(
−1

2

)
+ f

(
1
2

))
+

π
16

[
f ′(1)− f ′(−1)

]− π
128

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
2

(
f

(
−1

2

)
+ f

(
1
2

))
− π

16

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣

� Cw(n,
1
2
,q)‖ f (n)‖p.
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In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,
1
2
,1) ≈ 0.16414959

Cw(2,
1
2
,∞) =

π
16

≈ 0.19634954

Cw(3,
1
2
,1) ≈ 0.03957716

Cw(3,
1
2
,∞) ≈ 0.04103739

Cw(4,
1
2
,1) =

π
128

≈ 0.02454369

Cw(4,
1
2
,∞) =

8−3π
72

≈ 0.01978858.

d) For x = 1 we get the corrected trapezoid formula. In this case we compute
Bw(1) = − π

8 and H5,w(1) = π
128 . If f (4) is continuous, then we have by Theorem 4∫ 1

−1

f (t)√
1− t2

dt =
π
2

( f (−1)+ f (1))− π
8

[
f ′(1)− f ′(−1)

]
+

π
64

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:∣∣∣∣
∫ 1

−1

f (t)√
1− t2

dt− π
2

( f (−1)+ f (1))+
π
8

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣ � Cw(n,1,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,1,1) ≈ 0.28081219

Cw(2,1,∞) =
π
8
≈ 0.39269908

Cw(3,1,1) =
2
9
− π

24
≈ 0.09132252

Cw(3,1,∞) ≈ 0.07020304

Cw(4,1,1) =
π
64

≈ 0.04908738

Cw(4,1,∞) =
16−3π

144
≈ 0.04566126.

e) The condition H5,w(x) = 0 implies x =
√

1−
√

6
4 . In this case we compute

Bw(x) = π(
√

6−2)
16 , H6,w(x) = 0 and H7,w(x) = (3

√
6−10)π

46080 . If f (6) is continuous, then
we have by Theorem 4

∫ 1

−1

f (t)√
1− t2

dt =
π
2

⎛
⎝ f

⎛
⎝−

√
1−

√
6

4

⎞
⎠+ f

⎛
⎝

√
1−

√
6

4

⎞
⎠

⎞
⎠

+
π(

√
6−2)
16

[
f ′(1)− f ′(−1)

]
+

(3
√

6−10)π
23040

· f (6)(η),
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which we call a corrected Gauss-Chebyshev two-point formula. If f (n) ∈ Lp[−1,1] ,
then Theorem 3 implies:∣∣∣∣∣∣

∫ 1

−1

f (t)√
1− t2

dt− π
2

⎛
⎝ f

⎛
⎝−

√
1−

√
6

4

⎞
⎠+ f

⎛
⎝

√
1−

√
6

4

⎞
⎠

⎞
⎠

−π(
√

6−2)
16

[
f ′(1)− f ′(−1)

]−Tn,w(x)

∣∣∣∣∣ � Cw(n,x,q)‖ f (n)‖p.

In particular, for n = 2,3,4,5,6 there is Tn,w(x) = 0, so we have

Cw(2,x,1) ≈ 0.10751580

Cw(2,x,∞) ≈ 0.13473273

Cw(3,x,1) ≈ 0.01835509

Cw(3,x,∞) ≈ 0.01601592

Cw(4,x,1) ≈ 0.00362114

Cw(4,x,∞) ≈ 0.00380096

Cw(5,x,1) ≈ 0.00091496

Cw(5,x,∞) ≈ 0.00090528

Cw(6,x,1) =
(3
√

6−10)π
23040

≈ 0.00036154

Cw(6,x,∞) ≈ 0.00045748.

3.3. The case w(t) =
√

1− t2

In this case we compute

Aw =
π
4

, Bw(x) =
π
32

− πx2

8
, C1,w(x) =

πx2

8
− πx

4
+

1
3
− π

32

C2,w(x) = −πx3

24
+
πx2

16
− π

64
+

1
45

C3,w(x) = −πx5

480
+
πx2

192
+

1
1575

− π
768

H5,w(x) = −πx4

96
+
πx2

48
− π

256
.

COROLLARY 3. Let f : [−1,1]→ R be such that f (n) is piecewise continuous on
[−1,1] , for some n ∈ N . Then

∫ 1

−1
f (t)

√
1− t2dt =

π
4

[ f (−x)+ f (x)]+
(
π
32

− πx2

8

)[
f ′(1)− f ′(−1)

]
+ Tn,w(x)+ (−1)n

∫ 1

−1
Wn,w(t,x) f (n)(t)dt.
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Proof. Apply Theorem 2 for the case w(t) =
√

1− t2.

Let us consider special cases for x ∈ [0,1] :

a) For x = 0 we get the corrected midpoint formula. In this case we compute
Bw(0) = π

32 and H5,w(0) = − π
256 . If f (4) is continuous, then we have by Theorem 4

∫ 1

−1
f (t)

√
1− t2dt =

π
2

f (0)+
π
32

[
f ′(1)− f ′(−1)

]− π
128

· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1
f (t)

√
1− t2dt− π

2
f (0)− π

32

[
f ′(1)− f ′(−1)

]∣∣∣∣ � Cw(n,0,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,0,1) ≈ 0.16724762

Cw(2,0,∞) ≈ 0.23515856

Cw(3,0,1) ≈ 0.05373032

Cw(3,0,∞) ≈ 0.04181190

Cw(4,0,1) =
π

128
≈ 0.02454369

Cw(4,0,∞) ≈ 0.02686516.

b) For x = 1
3 we established the corrected Newton-Cotes two-point formula. In

this case we compute Bw( 1
3 ) = 5π

288 and H5,w( 1
3 ) = − 107π

62208 . If f (4) is continuous, then
we have by Theorem 4

∫ 1

−1
f (t)

√
1− t2dt =

π
4

(
f

(
−1

3

)
+ f

(
1
3

))
+

5π
288

[
f ′(1)− f ′(−1)

]
− 107π

31104
· f (4)(η).

If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1
f (t)

√
1− t2dt− π

4

(
f

(
−1

3

)
+ f

(
1
3

))
− 5π

288

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣

� Cw(n,
1
3
,q)‖ f (n)‖p.
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In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,
1
3
,1) ≈ 0.07309774

Cw(2,
1
3
,∞) ≈ 0.07202776

Cw(3,
1
3
,1) ≈ 0.01979336

Cw(3,
1
3
,∞) ≈ 0.01827443

Cw(4,
1
3
,1) =

107π
31104

≈ 0.01080730

Cw(4,
1
3
,∞) =

576−265π
25920

≈ 0.00989668.

c) For x = 1
2 we get Bw( 1

2 ) = 0 and H5,w( 1
2 ) = π

1536 , so the term associated with
the first derivative disappears. If f (4) is continuous, then we have by Theorem 4

∫ 1

−1
f (t)

√
1− t2dt =

π
4

(
f

(
−1

2

)
+ f

(
1
2

))
+

π
768

· f (4)(η),

which is well-known Chebyshev-Gauss two-point quadrature formula of the second
kind. If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:∣∣∣∣

∫ 1

−1
f (t)

√
1− t2dt− π

4

(
f

(
−1

2

)
+ f

(
1
2

))
−Tn,w(x)

∣∣∣∣ � Cw(n,
1
2
,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,
1
2
,1) ≈ 0.05471452

Cw(2,
1
2
,∞) ≈ 0.06296013

Cw(3,
1
2
,1) ≈ 0.01171952

Cw(3,
1
2
,∞) ≈ 0.01367863

Cw(4,
1
2
,1) =

π
768

≈ 0.00409061

Cw(4,
1
2
,∞) =

64−15π
2880

≈ 0.00585976.

d) For x = 1 we get the corrected trapezoid formula. In this case we compute
Bw(1) = − 3π

32 and H5,w(1) = 5π
768 . If f (4) is continuous, then we have by Theorem 4

∫ 1

−1
f (t)

√
1− t2dt =

π
4

( f (−1)+ f (1))− 3π
32

[
f ′(1)− f ′(−1)

]
+

5π
768

· f (4)(η).
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If f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣
∫ 1

−1
f (t)

√
1− t2dt− π

4
( f (−1)+ f (1))+

3π
32

[
f ′(1)− f ′(−1)

]−Tn,w(x)
∣∣∣∣

� Cw(n,1,q)‖ f (n)‖p.

In particular, for n = 2,3,4 there is Tn,w(x) = 0, so we have

Cw(2,1,1) ≈ 0.23778656

Cw(2,1,∞) =
3π
32

≈ 0.29452431

Cw(3,1,1) =
2
45

+
π
96

≈ 0.07716936

Cw(3,1,∞) ≈ 0.05944664

Cw(4,1,1) =
5π
384

≈ 0.04090615

Cw(4,1,∞) =
64+4π
2880

≈ 0.03858468.

e) The condition H5,w(x) = 0 implies x =
√

1−
√

10
4 . In this case we compute

Bw(x) = π(
√

10−3)
32 , H6,w(x) = 0 and H7,w(x) = (2

√
10−7)π

36864 , If f (6) is continuous, then
we have by Theorem 4

∫ 1

−1
f (t)

√
1− t2dt =

π
4

⎛
⎝ f

⎛
⎝−

√
1−

√
10
4

⎞
⎠+ f

⎛
⎝

√
1−

√
10
4

⎞
⎠

⎞
⎠

+
π(

√
10−4)
16

[
f ′(1)− f ′(−1)

]
+

(2
√

10−7)π
18432

· f (6)(η).

which we call a corrected Gauss-Chebyshev two-point formula of the second kind. If
f (n) ∈ Lp[−1,1] , then Theorem 3 implies:

∣∣∣∣∣∣
∫ 1

−1
f (t)

√
1− t2dt− π

4

⎛
⎝ f

⎛
⎝−

√
1−

√
10
4

⎞
⎠+ f

⎛
⎝

√
1−

√
10
4

⎞
⎠

⎞
⎠

−π(
√

10−4)
16

[
f ′(1)− f ′(−1)

]∣∣∣∣∣ � Cw(n,x,q)‖ f (n)‖p.
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In particular, for n = 2,3,4,5,6 there is Tn,w(x) = 0, so we have

Cw(2,x,1) ≈ 0.04552286

Cw(2,x,∞) ≈ 0.06082252

Cw(3,x,1) ≈ 0.00736171

Cw(3,x,∞) ≈ 0.00813962

Cw(4,x,1) ≈ 0.00138313

Cw(4,x,∞) ≈ 0.00171062

Cw(5,x,1) ≈ 0.00032053

Cw(5,x,∞) ≈ 0.00034578

Cw(6,x,1) =
(7−2

√
10)π

18432
≈ 0.00011512

Cw(6,x,∞) ≈ 0.00016026.

REMARK 8. The results introduced in Example 3.2 and Example 3.3 are new, and
they could be helpful in approximation of a wider class of integrals where an integrand
is a product of two functions: n− times differentiable function f and weight w with
possible discontinuities. In both cases, the maximum degree of exactness is achieved
when applying a node x which is a solution of the equation H5,w(x) = 0. Also, by
comparing the constants Cw(n,x,q) , it is obvious that the best constants are reached in
examples 3.2 e) and 3.3 e), that is for the corrected Gauss quadrature formulae.
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