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NONLINEAR PARABOLIC INEQUALITIES

ON A GENERAL CONVEX DOMAIN

B. ACHCHAB, A. AGOUZAL, N. DEBIT, M. KBIRI ALAOUI AND A. SOUISSI

(Communicated by A. Guessab)

Abstract. The paper deals with the existence and uniqueness of solutions of some non linear
parabolic inequalities in the Orlicz-Sobolev spaces framework.

1. Introduction

We consider boundary value problems of type⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ K
∂u
∂ t

+A(u) = f in Q,

u = 0 on ∂Q,
u(x,0) = u0(x) in Ω,

(P)

where
A(u) = −div(a(.,t,∇u)),

Q = Ω× [0,T ], T > 0 and Ω is a bounded domain of R
N , with the segment property.

Further, a : Ω×R×R
N → R

N is a Carathéodory function (measurable with respect to
x in Ω for every (t,ξ ) in R×R×R

N , and continuous with respect to ξ in R×R
N

for almost every x in Ω) such that for all ξ ,ξ ∗ ∈ R
N ,ξ �= ξ ∗,

a(x,t,ξ )ξ � αM(|ξ |), (1.1)

[a(x,t,ξ )−a(x,t,ξ ∗)][ξ − ξ ∗] > 0, (1.2)

|a(x,t,ξ )| � c(x,t)+ k1M
−1

M(k2|ξ |), (1.3)

where c(x, t) ∈ EM(Q),c � 0, ki ∈ R
+ , for i = 1,2 and α ∈ R

+∗ .

f ∈W−1,xEM(Q), f � 0, (1.4)

u0 ∈ L2(Ω)∩K,u0 � 0, (1.5)
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where K is a given closed convex set of W 1
0 LM(Ω) and K is defined by:

K := {v ∈W 1,x
0 LM(Q) : v(t) ∈ K}.

During the last decades, the theory of variational inequalities and complementarity
problems have been applied in different fields such as Mathematical Programming,
Game Theory, Economics and Mathematical Finance. In the last case, the problem is
used for the pricing of American options (see [1] and the references therein). One of
the most interesting and important problems in the theory of variational inequalities is
the development of efficient iterative algorithms to approximate their solutions.

It is well known that (P) admits at least one solution (see Lions [13] and Landes-
Mustonen [15]). In the last papers, the function a(x,t,ξ ) was assumed to satisfy a poly-
nomial growth condition with respect to ∇u . When trying to relax this restriction on
the function a(.,ξ ) , we are led to replace the space Lp(0,T ;W 1,p(Ω)) by an inhomo-
geneous Sobolev space W 1,xLM built from an Orlicz space LM instead of Lp , where the
N-function M which defines LM is related to the actual growth of the Carathéodory’s
function. It is our purpose in this paper, to prove existence results and uniqueness for
the problem (P) in the setting of the inhomogeneous Sobolev space W 1,xLM. For the
sake of simplicity, we suppose through this paper that a(x,t,∇u) = m(|∇u|)

|∇u| ∇u , where

m is the derivative of the N-function M having the representation M(t) =
∫ t

0
m(s) ds.

We refer the reader to [18, 19, 16, 6, 4] for additional recent and classical results
for some parabolic inequalities problems.

2. Preliminaries

Let M : R
+ →R

+ be an N-function, i.e. M is continuous, convex, with M(t) > 0

for t > 0, M(t)
t → 0 as t → 0 and M(t)

t → ∞ as t → ∞ . Equivalently, M admits

the representation: M(t) =
∫ t

0
a(τ)dτ where a : R

+ → R
+ is non-decreasing, right

continuous, with a(0) = 0, a(t) > 0 for t > 0 and a(t)→∞ as t →∞ . The N-function

M conjugate to M is defined by M(t) =
∫ t

0
a(τ)dτ , where a : R

+ → R
+ is given by

a(t) = sup{s : a(s) � t} (see [2], [11] and [12]).
The N-function M is said to satisfy the Δ2 condition if, for some k > 0:

M(2t) � kM(t) for all t � 0. (2.1)

In case this inequality holds only for t � t0 > 0, M is said to satisfy the Δ2 condition
near infinity.

Let P and Q be two N-functions. PlQ means that P grows essentially less rapidly
than Q , i.e., for each ε > 0,

P(t)
Q(ε t)

→ 0 as t → ∞.
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This is the case if and only if

lim
t→∞

Q−1(t)
P−1(t)

= 0.

Let Ω be an open subset of R
N . The Orlicz class LM(Ω) (resp. the Orlicz

space LM(Ω)) is defined as the set of (equivalence classes of) real-valued measurable
functions u on Ω such that:∫

Ω
M(u(x))dx < +∞ (resp.

∫
Ω

M

(
u(x)
λ

)
dx < +∞ for some λ > 0).

Note that LM(Ω) is a Banach space with the norm

‖u‖M,Ω = inf
{
λ > 0 :

∫
Ω

M

(
u(x)
λ

)
dx � 1

}
and LM(Ω) is a convex subset of LM(Ω) . The closure in LM(Ω) of the set of bounded
measurable functions with compact support in Ω is denoted by EM(Ω) . The equality
EM(Ω) = LM(Ω) holds if and only if M satisfies the Δ2 condition, for all t or for t
large, according to whether Ω has infinite measure or not.

The dual of EM(Ω) can be identified with LM(Ω) by means of the pairing∫
Ω

u(x)v(x)dx , and the dual norm on LM(Ω) is equivalent to ‖.‖M,Ω . The space LM(Ω)

is reflexive if and only if M and M satisfy the Δ2 condition, for all t or for t large,
according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space: W 1LM(Ω) (resp. W 1EM(Ω)) the space
of all functions u such that u and its distributional derivatives up to order 1 lie in
LM(Ω) (resp. EM(Ω)). This is a Banach space with the norm

‖u‖1,M,Ω = ∑
|α |�1

‖Dαu‖M,Ω.

Thus W 1LM(Ω) and W 1EM(Ω) can be identified by subspaces of the product of N +1
copies of LM(Ω) . Denoting this product by ΠLM , we will use the weak topologies
σ(ΠLM,ΠEM) and σ(ΠLM,ΠLM) . The space W 1

0 EM(Ω) is defined as the (norm)
closure of the Schwarz space D(Ω) in W 1EM(Ω) and the space W 1

0 LM(Ω) as the
σ(ΠLM,ΠEM) closure of D(Ω) in W 1LM(Ω) . We say that un converges to u for the

modular convergence in W 1LM(Ω) if for some λ > 0,
∫
Ω

M

(
Dαun−Dαu

λ

)
dx → 0

for all |α| � 1. This implies the σ(ΠLM,ΠLM) convergence. If M satisfies the Δ2

condition on R
+ (near infinity only when Ω has finite measure), then modular conver-

gence coincides with norm convergence.
Let W−1LM(Ω) (resp. W−1EM(Ω)) be the space of distributions on Ω which can

be written as sums of derivatives of order � 1 of functions in LM(Ω) (resp. EM(Ω)).
It is a Banach space with the usual quotient norm.

If the open set Ω has the segment property, then the space D(Ω) is dense in
W 1

0 LM(Ω) for the modular convergence and for the topology σ(ΠLM,ΠLM) (cf. [8],



274 B. ACHCHAB, A. AGOUZAL, N. DEBIT, M. KBIRI ALAOUI AND A. SOUISSI

[9]). Consequently, the action of a distribution in W−1LM(Ω) on an element of W 1
0 LM(Ω)

is well defined.
For k > 0, we define the truncation at height k,Tk : R → R by

Tk(s) =
{

s if |s| � k,
k if |s| > k.

The following abstract lemmas will be applied to the truncation operators.

LEMMA 2.1. (see [3]) Let F : R → R be uniformly lipschitzian function such
that F(0) = 0. Let M be an N-function and u ∈W 1

0 LM(Ω) (resp. W 1
0 EM(Ω)). Then

F(u) ∈W 1
0 LM(Ω) (resp. W 1

0 EM(Ω)). Moreover, if the set of discontinuity points of F ′
is finite then

∂
∂xi

F(u) =

⎧⎨
⎩ F ′(u)

∂u
∂xi

a.e. in {x ∈Ω : u(x) �∈ D}
0 a.e. in {x ∈Ω : u(x) ∈ D}.

Proof. By hypothesis, F(u) ∈W 1LM(Ω) for all u ∈W 1LM(Ω) and

‖F(u)‖1,M,Ω � C‖u‖1,M,Ω,

which gives the result. �
Let Ω be a bounded open subset of R

N , T > 0 and set Q = Ω×]0,T [ . Let
m � 1 be an integer and let M be an N-function. For each α ∈ N

N , denote by Dα
x

the distributional derivative on Q of order α with respect to x ∈ R
N . The inhomo-

geneous Orlicz-Sobolev spaces are defined as follows: Wm,xLM(Q) = {u ∈ LM(Q) :
Dα

x u∈ LM(Q) ∀|α|� m}, Wm,xEM(Q) = {u∈ EM(Q) : Dα
x u∈ EM(Q) ∀|α|� m}. This

second space is a subspace of the first one, and both are Banach spaces with the norm

‖u‖ = ∑
|α |�m

‖Dα
x u‖M,Q.

These spaces constitute a complementary system since Ω satisfies the segment prop-
erty. These spaces are considered as subspaces of the product space ΠLM(Q) which
have as many copies as there is α -order derivatives, |α| � m . We shall also con-
sider the weak topologies σ(ΠLM,ΠEM) and σ(ΠLM,ΠLM) . If u ∈Wm,xLM(Q) then
the function : t 
−→ u(t) = u(t, .) is defined on [0,T ] with values in WmLM(Ω) . If
u ∈ Wm,xEM(Q) the concerned function is a WmEM(Ω)-valued and is strongly mea-
surable. Furthermore, the imbedding Wm,xEM(Q) ⊂ L1(0,T ;WmEM(Ω)) holds. The
space Wm,xLM(Q) is not in general separable; for u ∈ Wm,xLM(Q) we cannot con-
clude that the function u(t) is measurable on [0,T ] . However, the scalar function
t 
→ ‖u(t)‖M,Ω ∈ L1(0,T ) . The space Wm,x

0 EM(Q) is defined as the (norm) closure in
Wm,xEM(Q) of D(Q) . We can easily show as in [9] that when Ω has the segment
property then each element u of the closure of D(Q) with respect to the weak * topol-
ogy σ(ΠLM,ΠEM) is limit in Wm,xLM(Q) of some subsequence (ui) ⊂ D(Q) for the
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modular convergence, i.e., there exists λ > 0 such that for all |α| � m ,

∫
Q

M

(
Dα

x ui−Dα
x u

λ

)
dxdt → 0 as i → ∞,

which gives that (ui) converges to u in Wm,xLM(Q) for the weak topology σ(ΠLM,ΠLM) .
Consequently

D(Q)
σ(ΠLM ,ΠEM)

= D(Q)
σ(ΠLM ,ΠLM)

.

The space of functions satisfying such property will be denoted by Wm,x
0 LM(Q) . Fur-

thermore, Wm,x
0 EM(Q) = Wm,x

0 LM(Q) ∩ΠEM . Poincaré’s inequality also holds in
Wm,x

0 LM(Q) i.e. there exists a constant C > 0 such that for all u ∈Wm,x
0 LM(Q) ,

∑
|α |�m

‖Dα
x u‖M,Q � C ∑

|α |=m

‖Dα
x u‖M,Q.

Thus both sides of the last inequality are equivalent norms on Wm,x
0 LM(Q) . We then

have the following complementary system(
Wm,x

0 LM(Q) F
Wm,x

0 EM(Q) F0

)
.

F states for the dual space of Wm,x
0 EM(Q) and can be defined, except for an isomor-

phism, as the quotient of ΠLM by the polar set Wm,x
0 EM(Q)⊥ . It will be denoted by

F = W−m,xLM(Q) with

W−m,xLM(Q) =
{

f = ∑
|α |�m

Dα
x fα : fα ∈ LM(Q)

}
.

This space will be equipped with the usual quotient norm

‖ f‖F = inf ∑
|α |�m

‖ fα‖M,Q,

where the infimum is taken over all possible decompositions

f = ∑
|α |�m

Dα
x fα , fα ∈ LM(Q).

The space F0 is then given by

F0 =
{

f = ∑
|α |�m

Dα
x fα : fα ∈ EM(Q)

}

and is denoted by F0 = W−m,xEM(Q) .

REMARK 2.1. Using lemma 4.4 of [9], we can check that each uniformly lips-
chitzian mapping F such that F(0) = 0, acts in inhomogeneous Orlicz-Sobolev spaces
of order 1, W 1,xLM(Q) and W 1,x

0 LM(Q) .
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3. Main results

THEOREM 3.1. Under the hypotheses (1.1)–(1.5), the problem (P) has at least
one solution in the following sense:⎧⎨

⎩
u ∈ K ∩L2(Q)

〈∂v
∂ t

,u− v〉+
∫
Q

a(.,∇u)(∇u−∇v)dxdt � 〈 f ,u− v〉

for all v∈K ∩L∞(Q)∩D, where D := {v∈W 1,x
0 LM(Q)∩L2(Q) :

∂v
∂ t

∈W−1,xLM(Q)+

L2(Q) and v(0) = u0}.
Proof. In the sequel and throughout the paper, we will omit for simplicity the de-

pendence on t in the function a(x,t,ξ ) and denote ε(n, j,μ , i,s) all quantities (possibly
different) such that

lim
s→∞

lim
i→∞

lim
μ→∞

lim
j→∞

lim
n→∞

ε(n, j,μ , i,s) = 0.

The order in which the parameters will tend to infinity, is, first n , then j,μ , i and
finally s . Similarly, we will skip some parameters such as in ε(n) or ε(n, j), ...to mean
that the limits are taken only on the specified parameters.

Let us define the indicator functional: Φ : W 1,x
0 LM(Q) → R∪{+∞} such that:

Φ(v) :=
{

0 if v(t) ∈ K a.e. (almost everywhere),
+∞ otherwise.

Φ is weakly lower semicontinuous. Let us denote by Sk(t) :=
∫ t

0
Tk(s)ds.

Step 1. Derivation of a priori estimate

Let us consider the following approximate problem:⎧⎨
⎩

∂un

∂ t
+A(un)+nTn(Φ(un)) = f in Q,

un(.,0) = u0n in Ω,

(Pn)

where (u0n) ⊂ D(Ω) such that u0n → u0 strongly in L2(Ω).
For the existence of a weak solution un ∈W 1,x

0 LM(Q)∩L2(Q) , un � 0 of the above

problem, see [7], also (un) satisfies
∂un

∂ t
∈W−1,xLM(Q)+L2(Q) . Let v = un be test

function in (Pn), then

〈∂un

∂ t
,un〉+

∫
Q

a(.,∇un)∇undxdt +
∫

Q
nTn(Φ(un))undxdt � 〈 f ,un〉.

We can deduce that:
(un) is bounded in W 1,x

0 LM(Q),
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∫
Q

a(.,∇un)∇undxdt � C,

∫
Q

nTn(Φ(un))undxdt � C.

Therefore there exists a subsequence (also denoted (un)) and a measurable func-
tion u such that:

un ⇀ u,

weakly in W 1,x
0 LM(Q) for σ(ΠLM,ΠEM),

strongly in EM(Q) and a.e in Q.

Moreover there exists a measurable function h ∈ (LM(Q))N such that:

a(.,∇un) ⇀ h in (LM(Q))N weakly.

Let us consider now v = Tk(un)∈W 1,x
0 LM(Q) as test function in (Pn), which gives

〈∂un

∂ t
,Tk(un)〉+

∫
Q

a(.,∇un)∇Tk(un)dxdt+
∫

Q
nTn(Φ(un))Tk(un)dxdt � 〈 f ,Tk(un)〉�Ck

Since 〈∂un

∂ t
,Tk(un)〉 =

∫
Ω

Sk(un(T ))−
∫
Ω

Sk(un(0)),

∫
Q

nTn(Φ(un))Tk(un)dxdt � Ck.

By letting k tend to zero and using Fatou lemma, one has:∫
Q

nTn(Φ(un))dxdt � Ck,

and since (Tn)n is a continuous increasing sequence, we can deduce

Φ(u) = 0,

which ensures that u ∈ K .

Step 2. Almost everywhere convergence of the gradients

We intend to prove that

lim
n→∞

∫
Q

(a(.,∇un)−a(.,∇u))(∇un−∇u)dxdt = 0.

Let us set
ω i
μ, j = (v j)μ + e−μtψi,
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where v j ∈D(Q) such that v j → u with the modular convergence in W 1,x
0 LM(Q) , ψi a

smooth function such that ψi → u0 strongly in L2(Ω) and ωμ is the mollifier function
defined in [14], and the function ω i

μ, j have the following properties:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ω i
μ, j

∂ t
= μ(v j −ω i

μ, j),ω
i
μ, j(0) = ψi,

ω i
μ, j → uμ + e−μtψiinW

1,x
0 LM(Q) for the modular convergence with respect to j,

uμ + e−μtψi → u in W 1,x
0 LM(Q) for the modular convergence with respect to μ .

Consider now v = un−ω i
μ, j as test function in (Pn),

〈∂un

∂ t
,un −ω i

μ, j〉+
∫
Q

a(.,∇un)(∇un −∇ω i
μ, j)dxdt +

∫
Q

nTn(Φ(un))(un−ω i
μ, j)dxdt

= 〈 f ,un −ω i
μ, j〉.

(3.1)
Since un ∈W 1,x

0 LM(Q), there exists a smooth function unσ (see [7]) such that:

unσ → un for the modular convergence in W 1,x
0 LM(Q),

∂unσ
∂ t

→ ∂un

∂ t
for the modular convergence in W−1,xLM(Q)+L2(Q).

Then,

〈∂un

∂ t
,un−ω i

μ, j〉 = lim
σ→0+

∫
Q
(unσ )′(unσ −ω i

μ, j)dxdt

= lim
σ→0+

(∫
Q
(unσ−ω i

μ, j)
′(unσ−ω i

μ, j)dxdt+
∫

Q
(ω i

μ, j)
′(unσ−ω i

μ, j)dxdt

)

= lim
σ→0+

([
1
2

∫
Ω
(unσ −ω i

μ, j)
2
]T

0
+ μ

∫
Q
(v j −ω i

μ, j)(unσ −ω i
μ, j)dxdt

)

= lim
σ→0+

(I1(σ)+ I2(σ)).

We have,

I1(σ) =
1
2

∫
Ω
(unσ −ω i

μ, j)
2(T )dx− 1

2

∫
Ω
(unσ (0)−ω i

μ, j(0))2dx

� −1
2

∫
Ω
(unσ (0)−ω i

μ, j(0))2dx.

So,
lim sup

σ→0+
I1(σ) � ε(n, j,μ , i).

Similarly, we have
lim sup

σ→0+
I2(σ) = ε(n, j,μ , i),
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hence

〈∂un

∂ t
,un−ω i

μ, j〉 � ε(n, j,μ , i).

Now let us set for s > 0,Qs = {(x,t)∈Q : |∇u|� s} and Qs
j = {(x,t)∈Q : |∇v j|�

s}. Then∫
Q

a(.,∇un)(∇un −∇ω i
μ, j)dxdt =

∫
Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un−∇v jχ s

j)dxdt

+
∫
Q

a(.,∇v jχ s
j)(∇un −∇v jχ s

j)dxdt

+
∫
Q

a(.,∇un)∇v jχ s
jdxdt−

∫
Q

a(.,∇un)∇ω i
μ, jdxdt

=: J1 + J2 + J3 + J4.

We first consider the term

J2 =
∫

Q
a(.,∇v jχ s

j)(∇un −∇v jχ s
j)dxdt =

∫
Q

a(.,∇v jχ s
j)(∇u−∇v jχ s

j)dxdt + ε(n).

Since a(.,∇v jχ s
j) → a(.,∇uχ s) strongly in (EM(Q))N and ∇v jχ s

j →∇uχ s strongly in
(LM(Q))N , one has

J2 = ε(n, j).

The same technique as in J2 gives,

J3 =
∫

Q
h∇udxdt + ε(n, j,s),

and
J4 = −

∫
Q

h∇ω i
μ, jdxdt + ε(n) = −

∫
Q

h∇udxdt + ε(n, j,μ , i).

Then,∫
Q

a(.,∇un)(∇un −∇ω i
μ, j)dxdt =

∫
Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un −∇v jχ s

j)dxdt

+ ε(n, j,μ , i,s).

Since terms
∫

Q
nTn(Φ(un))(un −ω i

μ, j)dxdt and = 〈 f ,un −ω i
μ, j〉 in (3.1) are of

the form ε(n), we obtain:∫
Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un−∇v jχ s

j)dxdt � ε(n, j,μ , i). (3.2)

On the other hand,∫
Q

(a(.,∇un)−a(.,∇uχ s)) (∇un−∇uχ s)dxdt

−
∫
Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un−∇v jχ s

j)dxdt
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=
∫

Q
a(.,∇un)(∇v jχ s

j −∇uχ s)dxdt−
∫

Q
a(.,∇u)(∇v jχ s

j −∇unχ s)dxdt

+
∫
Q

a(.,∇v jχ s
j)(∇un −∇v jχ s

j)dxdt.

Since all terms are of the last sum are ε(n, j,s), then∫
Q

(a(.,∇un)−a(.,∇uχ s)) (∇un−∇uχ s)dxdt

=
∫

Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un−∇v jχ s

j)dxdt + ε(n, j,s)
(3.3)

Finally, for r < s, we get:

lim
n→∞

∫
Qr

(a(.,∇un)−a(.,∇u))(∇un −∇u)dxdt = 0,

which gives by the same argument as in [3],

∇un → ∇u a.e. in Q.

Step 3. The passage to the limit

Let us consider v ∈ K ∩L∞(Q)∩D and 0 < θ < 1. Using un−θv as test function in
(Pn) , the fact that

〈∂un

∂ t
,un−θv〉= 〈∂ (un −θv)

∂ t
,un−θv〉+θ 〈∂v

∂ t
,un−θv〉

and letting n tend to infinity and θ to 1, we obtain

〈∂v
∂ t

,u−θv〉+
∫
Q

a(.,∇u)(∇u−∇v)dxdt � 〈 f ,u− v〉.

So u is a weak solution of the problem (P) . �

THEOREM 3.2. The solution u∈K ∩L2(Q) of the problem (P) obtained as limit
of approximations of solutions (un) of the problem (Pn) is unique.

Proof.

Step1: The modular convergence of the gradients

We have to prove that

∇un → ∇u in (LM(Q))N for the modular convergence.

Let us recall that∫
Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un −∇v jχ s

j)dxdt � ε(n, j,μ , i)
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and ∫
Q

(a(.,∇un)−a(.,∇uχ s))(∇un −∇uχ s)dxdt

=
∫

Q

(
a(.,∇un)−a(.,∇v jχ s

j)
)
(∇un−∇v jχ s

j)dxdt + ε(n, j,s).

Then,∫
Q

a(.,∇un)∇undxdt �
∫

Q
a(.,∇un)∇uχ sdxdt +

∫
Q

a(.,∇uχ s)(∇un −∇uχ s)dxdt

+ ε(n, j,μ , i),

and,

limsup
n

∫
Q

a(.,∇un)∇undxdt �
∫

Q
a(.,∇u)∇uχ sdxdt � liminf

n

∫
Q

a(.,∇un)∇undxdt.

Then,
a(.,∇un)∇un → a(.,∇u)∇u.χ s strongly in L1(Q),

and
a(.,∇un)∇un → a(.,∇u)∇u strongly in L1(Q).

By a Vitali argument, we deduce

∇un → ∇u in (LM(Q))N for the modular convergence. (3.4)

Step 2: Uniqueness

Suppose there exist two solutions u1,u2 of the problem (P) obtained as limit of ap-
proximations of solutions of (Pn) such that u1(0) = u2(0) = u0. Let un

1 and un
2 be the

sequences associated respectively to u1 and u2 . If we consider v = (un
1 −un

2)χ(0,τ) as
test function in the approximate problem (where we omit the index τ ), we can deduce
that:

〈∂ (un
1 −un

2)
∂ t

,un
1−un

2〉+
∫
Q
(a(.,∇un

1)−a(.,∇un
2))(∇un

1 −∇un
2)dxdt

+
∫

Q
n(Tn(Φ(un

1))−Tn(Φ(un
2))(u

n
1 −un

2) = 0.
(3.5)

Four situations may occur in the treatment of

J(n) :=
∫

Q
n(Tn(Φ(un

1))−Tn(Φ(un
2))(u

n
1−un

2) :

i) There exist two subsequences un
1,u

n
2 belonging to K .

ii) All subsequences un
1,u

n
2 are not in K .

iii) There exist two subsequences un
1,u

n
2 such that un

1 �∈ K and un
2 ∈ K .

iv) There exist two subsequences un
1,u

n
2 such that un

1 ∈ K and un
2 �∈ K .
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The cases i) and ii) are simple since J(n) = 0 and

〈∂ (un
1−un

2)
∂ t

,un
1−un

2〉+
∫

Q
(a(.,∇un

1)−a(.,∇un
2))(∇un

1 −∇un
2)dxdt = 0.

Then,

1
2

∫
Ω
|un

1(τ)−un
2(τ)|2dx+

∫
Q
(a(.,∇un

1)−a(.,∇un
2))(∇un

1 −∇un
2)dxdt

=
1
2

∫
Ω
|un

1(0)−un
2(0)|2dx.

Letting n tend to infinity and using (3.4), we obtain:

1
2

∫
Ω
|u1(τ)−u2(τ)|2dx+

∫
Q
(a(.,∇u1)−a(.,∇u2))(∇u1 −∇u2)dxdt = 0,

which gives u1(τ) = u2(τ) for all τ ∈ (0,T ) , and using (1.2) , ∇u1 = ∇u2 a.e. in Q.
Then

u1 = u2 a.e. in Q.

The cases iii) and iv) are similar. Let us consider case iii).
We have

1
2

∫
Ω
|u1(τ)−u2(τ)|2dx+

∫
Q
(a(.,∇u1)−a(.,∇u2))(∇u1 −∇u2)dxdt

+ lim
n→∞

[
n2
∫

Q
(un

1−un
2)
]

= 0,

which gives as previously u1 = u2 a.e. in Q. �

REMARK 3.1. The existence result of theorem 3.1 remains true if a depends on
x,t,u,∇u and condition (1.3) is replaced by the following one

|a(x, t,s,ξ )| � c(x,t)+ k1P
−1

M(k2|s|)+ k3M
−1

M(k4|ξ |),

where c(x, t) ∈ EM(Q),c � 0 and ki ∈ R
+, i = 1,2,3,4.

REMARK 3.2. The technique used in the proof of theorem 3.1 can be adapted to
prove an existence result for solutions of the following parabolic inequalities:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u ∈ K ∩L2(Q),∫ T

0
〈∂v
∂ t

,u−v〉dt+
∫

Q
a(x,t,∇u)∇(u−v)dxdt +

∫
Q

H(x,t,u,∇u)(u−v)dxdt � 〈 f ,u−v〉,
for all v ∈ K ∩D ∩L ∞(Q),
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where H is a given Carathéodory function satisfying, for all (s,ζ ) ∈ R×R
N and a.e.

(x,t) ∈ Q , the following conditions

|H(x,t,s,ζ )| � λ (|s|)(δ (x,t)+ |ζ |p),

and
H(x,t,s,ζ )s � 0;

with λ : R
+ → R

+ is a continuous increasing function and δ (x,t) is a given positive
function in L1(Q) .
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