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Abstract. The approximation properties of Nörlund (Nn) and Riesz (Rn) means of trigono-
metric Fourier series are investigated in generalized Lebesgue spaces Lp(x) . The deviations
‖ f −Nn( f )‖p(x) and ‖ f −Rn( f )‖p(x) are estimated by n−α for f ∈ Lip(α , p(x)) (0 < α � 1) .

1. Introduction and main results

Let p : R → [1,∞) be a measurable 2π−periodic function, that is p(x+2π) =
p(x) . Denote by Lp(x) = Lp(x) ([0,2π ]) the set of all measurable 2π−periodic functions
f such that mp (λ f ) < ∞ for some λ = λ ( f ) > 0, where

mp( f ) :=
2π∫
0

| f (x)|p(x) dx.

Lp(x) becomes a Banach space with respect to the norm

‖ f‖p(x) = inf

{
λ > 0 : mp

(
f
λ

)
� 1

}
.

If p(x) ≡ p is constant (1 � p < ∞) , then the space Lp(x) is isometrically isomorphic
to the Lebesgue space Lp.

If the function p satisfies

1 < p− := ess inf p(x)
x∈[0,2π ]

, p+ := esssup p(x)
x∈[0,2π ]

< ∞ (1)

then the function

p′(x) :=
p(x)

p(x)−1

is well defined and satisfies (1) itself.
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The space Lp(x) consists of all measurable 2π−periodic functions f such that

2π∫
0

| f (x)g(x)|dx < ∞

for all measurable g with mp′ (g) � 1 and

‖ f‖∗p(x) = sup

⎧⎨⎩
2π∫
0

| f (x)g(x)|dx : mp′ (g) � 1

⎫⎬⎭
is also a norm on Lp(x). It is known that the inequalities

‖ f‖p(x) � ‖ f‖∗p(x) � rp ‖ f‖p(x)

satisfied for all functions f ∈ Lp(x), where

rp := 1+
1
p−

− 1
p+

,

and hence the norms ‖ f‖p(x) and ‖ f‖∗p(x) are equivalent. We refer to [13], [9], [10] and

[7] for properties above and for more general information about Lp(x) spaces.
Denote by M the Hardy-Littlewood maximal operator, defined for f ∈ L1 by

M( f )(x) = sup
I

1
|I|

∫
I

| f (t)|dt, x ∈ [0,2π ] ,

where the supremum is taken over all intervals I with x ∈ I.
The boundedness problem of the operator M on the space Lp(x) was studied by

many authors ([5], [8], [17], [18], etc.).
In [8] it was proved that if the function p satisfies (1) and the condition

|p(x)− p(y)| � C
− ln |x− y| , 0 < |x− y|� 1

2
, (2)

then the maximal operator M is bounded on Lp(x), that is,

‖M( f )‖p(x) � c‖ f‖p(x) (3)

for all f ∈ Lp(x), where c is a constant depends only on p.
The set of all measurable 2π−periodic functions p : R → [1,∞) satisfies the con-

ditions (1) and (2) will be denoted by M .
Let p ∈ M and f ∈ Lp(x). The modulus of continuity of the function f is defined

by

Ωp(x) ( f ,δ ) = sup
|h|�δ

‖Th( f )‖p(x) , δ > 0, (4)
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where

Th( f )(x) :=
1
h

h∫
0

| f (x+ t)− f (x)|dt. (5)

The existence of Ωp(x) ( f ,δ ) follows from (3), and also the inequality

Ωp(x) ( f ,δ ) � c‖ f‖p(x)

satisfied for all δ > 0.
The modulus Ωp(x) ( f , ·) is nonnegative, continuous function such that

lim
δ→0

Ωp(x) ( f ,δ ) = 0, Ωp(x) ( f1 + f2, ·) � Ωp(x) ( f1, ·)+Ωp(x) ( f2, ·) .

In the Lebesgue spaces Lp (1 < p < ∞) , the classical modulus of continuity
ωp ( f , ·) is defined by

ωp ( f ,δ ) = sup
|h|�δ

∥∥T ′
h( f )

∥∥
p , δ > 0, (6)

where
T ′
h( f )(x) := f (x+h)− f (x) .

It is known that in the Lebesgue spaces Lp the moduli of continuity (4) and (6) are
equivalent (see [14]).

We define in the spaces Lp(x) the modulus of continuity by using the shift (5),
because the space Lp(x) is not translation invariant, in general (see, for example [13,
Example 2.9]).

Let p ∈ M and 0 < α � 1. We define the Lipschitz class Lip(α, p(x)) as

Lip(α, p(x)) =
{

f ∈ Lp(x) :Ωp(x) ( f ,δ ) = O(δα) ,δ > 0
}

.

Let f ∈ L1 has the Fourier series

f (x) ∼ a0

2
+

∞

∑
k=1

(ak coskx+bk sinkx) . (7)

Denote by Sn( f )(x), n = 0,1, ... the n th partial sums of the series (7) at the point x,
that is,

Sn( f )(x) =
n

∑
k=0

Ak( f )(x),

where

A0( f )(x) =
a0

2
, Ak ( f ) (x) = ak coskx+bk sinkx, k = 1,2, ....

Let {pn}∞0 be a sequence of positive real numbers. We consider two means of the
series (7) defined by

Nn( f )(x) =
1
Pn

n

∑
m=0

pn−mSm( f )(x)
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and

Rn( f )(x) =
1
Pn

n

∑
m=0

pmSm( f )(x),

where Pn :=
n
∑

m=0
pm, p−1 = P−1 := 0. The means Nn( f ) and Rn( f ) are called the

Nörlund and Riesz means of the series (7), respectively. In the case pn = 1,n � 0, both
of Nn( f ) and Rn( f ) are equal to the Cesàro mean

σn( f )(x) =
1

n+1

n

∑
m=0

Sm( f )(x).

If we take pn = Aβ−1
n (β > 0) , where

Aβ
0 := 1, Aβ

k :=
β (β +1) ...(β + k)

k!
, k � 1,

the mean Nn( f ) be the generalized Cesàro mean σβ
n ( f )(x), that is

Nn( f )(x) =
1

Aβ
n

n

∑
m=0

Aβ−1
n−mSm( f )(x).

The approximation properties of the Cesàro means σn in Lipschitz classes Lip(α, p),
1 � p < ∞, 0 < α � 1 were investigated by Quade in [19]. The generalizations
of Quade’s results were studied by Mohapatra and Russell [16], Chandra ([1], [2],
[3], [4]) and Leindler [15]. In [1], Chandra obtained estimates for ‖ f −Nn( f )‖p ,
where 1 < p <∞. Chandra also gave estimates for the difference ‖ f −Rn( f )‖p , where
f ∈ Lip(α, p) , 1 < p <∞, 0 < α � 1 [2]. In the paper [4], Chandra gave some condi-
tions on the sequence {pn}∞0 and obtained very satisfactory results about approximation
by the means Nn( f ) and Rn( f ) in Lip(α, p) , 1 � p < ∞, 0 < α � 1. Later, Leindler
in [15] weakened the conditions given by Chandra on the sequence {pn}∞0 and general-
ized his results. In [11], the analogues of Chandra’s results was obtained for weighted
Lebesgue spaces.

In the present paper we give Lp(x) analogues of the results obtained by Leindler in
[15] and Chandra in [4].

We shall use the notations

Δgn := gn−gn+1, Δmg(n,m) := g(n,m)−g(n,m+1).

A sequence of positive real numbers {pn}∞0 is called almost monotone decreasing
(increasing) if there exists a constant c, depending only on the sequence {pn}∞0 such
that for all n � m the inequality

pn � c pm (c pn � pm)

holds. Such sequences will be denoted by {pn}∞0 ∈ AMDS ({pn}∞0 ∈ AMIS) .
Our main results are the following.
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THEOREM 1. Let p∈M , 0 <α < 1, f ∈ Lip(α, p(x)) and {pn}∞0 be a sequence
of positive numbers. If

{pn}∞0 ∈ AMDS,

or
{pn}∞0 ∈ AMIS and (n+1) pn = O(Pn) ,

then
‖ f −Nn( f )‖p(x) = O

(
n−α

)
.

THEOREM 2. Let p∈M , f ∈ Lip(1, p(x)) and {pn}∞0 be a sequence of positive
numbers. If

n−1

∑
k=1

k |Δpk| = O(Pn) ,

or
n−1

∑
k=0

|Δpk| = O

(
Pn

n

)
,

then the estimate
‖ f −Nn( f )‖p(x) = O

(
n−1)

holds for n = 1,2, ... .

THEOREM 3. Let p∈M , 0 <α � 1, f ∈ Lip(α, p(x)) and {pn}∞0 be a sequence
of positive numbers. If

n−1

∑
m=0

∣∣∣∣Δ( Pm

m+1

)∣∣∣∣= O

(
Pn

n+1

)
, (8)

then for n = 1,2, ... the estimate

‖ f −Rn( f )‖p(x) = O
(
n−α

)
holds.

In the classical Lebesgue spaces Lp, the analogues of Theorem 1 and Theorem 2
were proved by Leindler in [15], and Theorem 3 in Lp spaces was obtained by Chandra
[4].

2. Some auxiliary results

In this section c will denote the constants (in general, different in different rela-
tions) depend only on quantities that are not important for the questions of interest.

Let p ∈ M . Denote by En( f )p(x) (n = 0,1, ...) the best approximation of f ∈
Lp(x) in Πn (the set of trigonometric polynomials of degree at most n ), that is

En( f )p(x) = inf
{
‖ f − tn‖p(x) : tn ∈Πn

}
.
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It follows that, for example from Theorem 1.1 in [6], there exists a trigonometric poly-
nomial t∗n ∈Πn such that

En( f )p(x) = ‖ f − t∗n‖p(x)

for n = 0,1, ... .
By W p(x) = W p(x) ([0,2π ]) we denote the set of absolutely continuous functions

f such that f ′ ∈ Lp(x).

LEMMA 1. Let p ∈ M and f ∈W p(x). Then the estimate

En( f )p(x) = O

(
1
n

∥∥ f ′
∥∥

p(x)

)
(9)

holds for n = 1,2, ... .

Proof. It follows from Theorem 6.1 of [21] that

‖ f −Sn( f )‖p(x) → 0, n → ∞.

It is easy to see that

Ak

(
f̃ ′
)

(x) = kAk ( f ) (x), k = 1,2, ...,

where f̃ ′ is the conjugate function of f ′. By considering the uniform boundedness of
{Sn}∞0 and the boundedness of the conjugation operator in the space Lp(x) (see [21]),
we get

‖ f −Sn( f )‖p(x) =

∥∥∥∥∥ ∞

∑
k=n+1

Ak( f )

∥∥∥∥∥
p(x)

=

∥∥∥∥∥ ∞

∑
k=n+1

1
k
Ak

(
f̃ ′
)∥∥∥∥∥

p(x)

=

∥∥∥∥∥ ∞

∑
k=n+1

(
1
k
− 1

k+1

)(
Sk

(
f̃ ′
)
− f̃ ′

)
+

1
n+1

(
Sn

(
f̃ ′
)
− f̃ ′

)∥∥∥∥∥
p(x)

�
∞

∑
k=n+1

(
1
k
− 1

k+1

)∥∥∥Sk

(
f̃ ′
)
− f̃ ′

∥∥∥
p(x)

+
1

n+1

∥∥∥Sn

(
f̃ ′
)
− f̃ ′

∥∥∥
p(x)

� c

{
∞

∑
k=n+1

(
1
k
− 1

k+1

)}∥∥ f ′
∥∥

p(x) +
1

n+1

∥∥ f ′
∥∥

p(x)

� c
n

∥∥ f ′
∥∥

p(x) ,

and hence (9) follows. �

LEMMA 2. If p ∈ M , the Jackson type inequality

En( f )p(x) = O

(
Ωp(x)

(
f ,

1
n

))
, n = 1,2, ...
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holds for f ∈ Lp(x).

Proof. Let f ∈ Lp(x). Consider the transform

Uδ ( f )(x) :=
2
δ

δ∫
δ/2

⎛⎝1
h

h∫
0

f (x+ t)dt

⎞⎠dh, δ > 0.

It is clear that Uδ ( f ) ∈W p(x) for each δ > 0 and

(Uδ ( f ))′ (x) =
2
δ

δ∫
δ/2

1
h

( f (x+h)− f (x))dh

for almost all x. Since

∣∣(Uδ ( f ))′ (x)
∣∣� 4

δ

⎛⎝ 1
δ

δ∫
0

| f (x+h)− f (x)|dh

⎞⎠ ,

it follows from definition of Ωp(x) ( f ,δ ) that

∥∥(Uδ ( f ))′
∥∥

p(x) � 4
δ

∥∥∥∥∥∥ 1
δ

δ∫
0

| f (·+h)− f |dh

∥∥∥∥∥∥
p(x)

� 4
δ
Ωp(x) ( f ,δ ) .

On the other hand, since

Uδ ( f )(x)− f (x) =
2
δ

δ∫
δ/2

⎛⎝1
h

h∫
0

( f (x+ t)− f (x))dt

⎞⎠dh,

we get

‖Uδ ( f )− f‖p(x) � 2
δ

δ∫
δ/2

∥∥∥∥∥∥1
h

h∫
0

| f (·+ t)− f |dt

∥∥∥∥∥∥
p(x)

dh

� sup
δ/2�h�δ

2
δ

δ∫
δ/2

∥∥∥∥∥∥1
h

h∫
0

| f (·+ t)− f |dt

∥∥∥∥∥∥
p(x)

dh

� 2
δ

δ∫
δ/2

⎛⎜⎝ sup
δ/2�h�δ

∥∥∥∥∥∥1
h

h∫
0

| f (·+ t)− f |dt

∥∥∥∥∥∥
p(x)

dh

⎞⎟⎠
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= sup
δ/2�h�δ

∥∥∥∥∥∥1
h

h∫
0

| f (·+ t)− f |dt

∥∥∥∥∥∥
p(x)

� Ωp(x) ( f ,δ ) .

Hence, by subadditivity of the best approximation and (9) we obtain

En( f )p(x) � En
(
f −U1/n ( f )

)
p(x) +En

(
U1/n( f )

)
p(x)

�
∥∥ f −U1/n( f )

∥∥
p(x) +

c
n

∥∥∥(U1/n( f )
)′∥∥∥

p(x)

� Ωp(x)

(
f ,

1
n

)
+

c
n
4nΩp(x)

(
f ,

1
n

)
,

which finishes the proof. �

LEMMA 3. Let p ∈ M and 0 < α � 1. Then for every f ∈ Lip(α, p(x)) the
estimate

‖ f −Sn( f )‖p(x) = O
(
n−α

)
, n = 1,2, ...

holds.

Proof. Let t∗n (n = 0,1, ...) be the trigonometric polynomial of best approxima-
tion to f ∈ Lip(α, p(x)) . By Lemma 2

‖ f − t∗n‖p(x) = O
(
Ωp(x) ( f ,1/n)

)
,

and hence
‖ f − t∗n‖p(x) = O

(
n−α

)
.

By the uniform boundedness of the partial sums Sn( f ) in the space Lp(x) (see [21]), we
get

‖ f −Sn( f )‖p(x) � ‖ f − t∗n‖p(x) +‖t∗n −Sn( f )‖p(x)

= ‖ f − t∗n‖p(x) +‖Sn (t∗n − f )‖p(x)

= O
(
‖ f − t∗n‖p(x)

)
= O

(
n−α

)
. �

LEMMA 4. Let p ∈M . If f ∈ Lip(1, p(x)) , then f is absolutely continuous and
f ′ ∈ Lp(x), that is f ∈W p(x).

Proof. Let f ∈ Lip(1, p(x)) and δ > 0. Since p− � p(x) almost everywhere, by
Theorem 2.8 of [13] the space Lp(x) is continuously embedded in Lp− . Hence we have

‖Th( f )‖p− � c‖Th( f )‖p(x)

for every h with |h| � δ . This inequality and equivalence of ωp− ( f , ·) and Ωp− ( f , ·)
yield

ωp− ( f ,δ ) � c Ωp(x) ( f ,δ ) .
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Hence, f ∈ Lip(1, p(x)) implies ωp− ( f ,δ ) = O(δ ) , and this implies that f is abso-
lutely continuous and f ′ ∈ Lp− ([6, pp. 51–54]).

Since the relation

f (x+ t)− f (x)
t

→ f ′ (x) , t → 0

holds almost everywhere, for almost all x we get

2
δ

δ∫
δ/2

| f (x+ t)− f (x)|
t

dt → ∣∣ f ′(x)∣∣ , δ → 0+.

By Fatou Lemma, for every measurable function g with mp′ (g) � 1,

2π∫
0

∣∣ f ′(x)∣∣ |g(x)|dx =
2π∫
0

⎛⎜⎝ lim
δ→0+

2
δ

δ∫
δ/2

| f (x+ t)− f (x)|
t

dt

⎞⎟⎠ |g(x)|dx

� liminf
δ→0+

2π∫
0

⎛⎜⎝ 2
δ

δ∫
δ/2

| f (x+ t)− f (x)|
t

dt

⎞⎟⎠ |g(x)|dx

� liminf
δ→0+

4
δ

2π∫
0

⎛⎝ 1
δ

δ∫
0

| f (x+ t)− f (x)|dt

⎞⎠ |g(x)|dx

= liminf
δ→0+

4
δ

2π∫
0

Tδ ( f )(x) |g(x)|dx

� liminf
δ→0+

4
δ
‖Tδ ( f )‖p(x) � liminf

δ→0+

4
δ
Ωp(x) ( f ,δ )

= liminf
δ→0+

4
δ

O(δ ) = O(1) ,

and this means that f ′ ∈ Lp(x). �

LEMMA 5. Let p ∈ M and f ∈ Lip(1, p(x)). Then for n = 1,2, ... the estimate

‖Sn( f )−σn( f )‖p(x) = O
(
n−1)

holds.

Proof. By Lemma 4, f ∈W p(x). If f has the Fourier series

f (x) ∼
∞

∑
k=0

Ak ( f ) (x),
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then the Fourier series of the conjugate function f̃ ′ be

f̃ ′(x) ∼
∞

∑
k=1

kAk( f )(x).

On the other hand,

Sn( f )(x)−σn( f )(x) =
n

∑
k=1

k
n+1

Ak ( f ) (x)

=
1

n+1
Sn

(
f̃ ′
)

(x).

Hence, by considering the uniform boundedness of the partial sums and the conjugation
operator in the space Lp(x) (see [21]), we obtain

‖Sn( f )−σn( f )‖p(x) = O
(
n−1)

for n = 1,2, ... . �
The following Lemma was proved in [15].

LEMMA 6. Let {pn}∞0 be a sequence of positive numbers. If {pn}∞0 ∈ AMDS, or
{pn}∞0 ∈ AMIS and (n+1)pn = O(Pn) , then

n

∑
m=1

m−α pn−m = O
(
n−αPn

)
for 0 < α < 1.

3. Proofs of the main results

Proof of Theorem 1. Since

f (x) =
1
Pn

n

∑
m=0

pn−m f (x),

we have

f (x)−Nn( f )(x) =
1
Pn

n

∑
m=0

pn−m { f (x)−Sm( f )(x)} .

By Lemma 3 and Lemma 6 we obtain

‖ f −Nn( f )‖p(x) � 1
Pn

n

∑
m=0

pn−m ‖ f −Sm( f )‖p(x)

=
1
Pn

n

∑
m=1

pn−mO
(
m−α)+

pn

Pn
‖ f −S0( f )‖p(x)

=
1
Pn

O
(
n−αPn

)
+O

(
1

n+1

)
= O

(
n−α

)
. �
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Proof of Theorem 2. It is clear that

Nn( f )(x) =
1
Pn

n

∑
m=0

Pn−mAm( f )(x).

By Abel transform,

Sn( f )(x)−Nn( f )(x) =
1
Pn

n

∑
m=1

(Pn−Pn−m)Am( f )(x)

=
1
Pn

n

∑
m=1

Δm

(
Pn−Pn−m

m

)( m

∑
k=1

kAk( f )(x)

)
+

1
n+1

n

∑
k=1

kAk( f )(x),

and hence

‖Sn( f )−Nn( f )‖p(x) � 1
Pn

n

∑
m=1

∣∣∣∣Δm

(
Pn−Pn−m

m

)∣∣∣∣
∥∥∥∥∥ m

∑
k=1

kAk( f )

∥∥∥∥∥
p(x)

+
1

n+1

∥∥∥∥∥ n

∑
k=1

kAk ( f )

∥∥∥∥∥
p(x)

.

Since

Sn( f )(x)−σn( f )(x) =
1

n+1

n

∑
k=1

kAk ( f ) (x),

by Lemma 5 we get

1
n+1

∥∥∥∥∥ n

∑
k=1

kAk ( f )

∥∥∥∥∥
p(x)

= ‖Sn( f )−σn( f )‖p(x) = O
(
n−1) .

Hence,

‖Sn( f )−Nn( f )‖p(x) = O

(
1
Pn

) n

∑
m=1

∣∣∣∣Δm

(
Pn−Pn−m

m

)∣∣∣∣+O
(
n−1) . (10)

Suppose the condition
n−1

∑
k=1

k |Δpk| = O(Pn)

holds. This implies that (see [15])

n

∑
m=1

∣∣∣∣Δm

(
Pn−Pn−m

m

)∣∣∣∣= O

(
Pn

n

)
,

and hence by (10) we have

‖Sn( f )−Nn( f )‖p(x) = O
(
n−1) .
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This relation and Lemma 3 yield

‖ f −Nn( f )‖p(x) = O
(
n−1) .

Now let
n−1

∑
k=0

|Δpk| = O

(
Pn

n

)
. (11)

A simple calculation yields

Δm

(
Pn−Pn−m

m

)
=

1
m(m+1)

(
n

∑
k=n−m

pk − (m+1) pn−m

)
,

and by induction one can easily get∣∣∣∣∣ n

∑
k=n−m

pk − (m+1) pn−m

∣∣∣∣∣� m

∑
k=1

k |pn−k+1− pn−k| .

Thus,

n

∑
m=1

∣∣∣∣Δm

(
Pn−Pn−m

m

)∣∣∣∣ �
n

∑
m=1

1
m(m+1)

(
m

∑
k=1

k |pn−k+1− pn−k|
)

=
n

∑
k=1

k |pn−k+1− pn−k|
(

n

∑
m=k

1
m(m+1)

)

�
n

∑
k=1

k |pn−k+1− pn−k|
(

∞

∑
m=k

1
m(m+1)

)

=
n

∑
k=1

|pn−k+1− pn−k| =
n−1

∑
k=0

|Δpk| .

Combining this, the assumption (11) and (10) we get

‖Sn( f )−Nn( f )‖p(x) = O
(
n−1) ,

and considering Lemma 3 again we obtain the desired result. �

Proof of Theorem 3. Let 0 < α < 1. By definition of Rn( f )(x),

f (x)−Rn( f )(x) =
1
Pn

n

∑
m=0

pm { f (x)−Sm ( f ) (x)} .

From Lemma 3, we get

‖ f −Rn( f )‖p(x) � 1
Pn

n

∑
m=0

pm ‖ f −Sm( f )‖p(x) (12)

= O

(
1
Pn

) n

∑
m=1

pmm−α +
p0

Pn
‖ f −S0( f )‖p(x)

= O

(
1
Pn

) n

∑
m=1

pmm−α .
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By Abel transform,

n

∑
m=1

pmm−α =
n−1

∑
m=1

Pm
{
m−α − (m+1)−α

}
+n−αPn

�
n−1

∑
m=1

m−α Pm

m+1
+n−αPn,

and

n−1

∑
m=1

m−α Pm

m+1
=

n−1

∑
m=1

Δ
(

Pm

m+1

)( m

∑
k=1

k−α
)

+
Pn

n+1

n−1

∑
m=1

m−α

= O
(
n−αPn

)
by condition (8). This yields

n

∑
m=1

pmm−α = O
(
n−αPn

)
and from this and (12) we get

‖ f −Rn( f )‖p(x) = O
(
n−α

)
.

Let’s consider the case α = 1.
By Abel transform,

Rn( f )(x) =
1
Pn

n−1

∑
m=0

{Pm (Sm( f )(x)−Sm+1( f )(x))+PnSn ( f ) (x)}

=
1
Pn

n−1

∑
m=0

Pm (−Am+1( f )(x))+Sn( f )(x) ,

and hence

Rn( f )(x)−Sn( f )(x) = − 1
Pn

n−1

∑
m=0

PmAm+1 ( f ) (x).

Using Abel transform again yields

n−1

∑
m=0

PmAm+1( f )(x) =
n−1

∑
m=0

Pm

m+1
(m+1)Am+1( f )(x)

=
n−1

∑
m=0

Δ
(

Pm

m+1

)( m

∑
k=0

(k+1)Ak+1( f )(x)

)

+
Pn

n+1

n−1

∑
k=0

(k+1)Ak+1( f )(x).
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Thus, by considering Lemma 5 and (8) we obtain∥∥∥∥∥n−1

∑
m=0

PmAm+1( f )

∥∥∥∥∥
p(x)

�
n−1

∑
m=0

∣∣∣∣Δ( Pm

m+1

)∣∣∣∣
∥∥∥∥∥ m

∑
k=0

(k+1)Ak+1( f )

∥∥∥∥∥
p(x)

+
Pn

n+1

∥∥∥∥∥n−1

∑
k=0

(k+1)Ak+1( f )

∥∥∥∥∥
p(x)

=
n−1

∑
m=0

∣∣∣∣Δ( Pm

m+1

)∣∣∣∣(m+2)‖Sm+1( f )−σm+1( f )‖p(x)

+Pn‖Sn( f )−σn( f )‖p(x)

= O(1)
n−1

∑
m=0

∣∣∣∣Δ( Pm

m+1

)∣∣∣∣+O

(
Pn

n

)
.

This gives

‖Rn( f )−Sn( f )‖p(x) =
1
Pn

∥∥∥∥∥n−1

∑
m=0

PmAm+1( f )

∥∥∥∥∥
p(x)

=
1
Pn

O

(
Pn

n

)
= O

(
1
n

)
.

Combining this estimate with Lemma 3 yields

‖ f −Rn( f )‖p(x) = O
(
n−1) . �
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