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Abstract. The main object of the present paper is to derive several sufficient conditions for in-
tegral operator defined by Bessel functions of the first kind to be convex and strongly convex of
given order in the open unit disk.

1. Introduction and definitions

Let A denote the class of functions of the form:

f (z) = z+
∞

∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk D = {z : |z| < 1}. A function f (z) belonging
to A is said to be convex of order γ if it satisfies

Re

(
1+

z f ′′(z)
f ′(z)

)
> γ (z ∈ D)

for some γ(0 � γ < 1). We denote by C (γ) the subclass of A consisting of functions
which are convex of order γ in D . If f (z) ∈ A satisfies∣∣∣∣arg

(
1+

z f ′′(z)
f ′(z)

− γ
)∣∣∣∣< π

2
β (z ∈ D)

for some γ(0 � γ < 1) and β (0 < β � 1), then f (z) is said to be strongly convex of
order β and type γ in D , and we denote by C γ (β ) the class of such functions. It is
clear that C 0(β ) ≡ C (β ) the class of strongly convex of order β in D and C 0(1) ≡
C the class of all convex functions in D .

The Bessel function of the first kind of order ν is defined by the infinite series

Jν(z) =
∞

∑
n=0

(−1)n(z/2)2n+ν

n!Γ(n+ν+1)
,
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where Γ stands for the Euler gamma function, z ∈ C and ν ∈ R. Recently, Szász and
Kupán [8] investigated the univalence of the normalized Bessel function of the first kind
gν : D → C, defined by

gν(z) = 2νΓ(ν +1)z1−ν/2Jν(z1/2) = z+
∞

∑
n=1

(−1)nzn+1

4nn!(ν+1) . . .(ν+n)
. (1.2)

Baricz and Frasin [1] have obtained various sufficient conditions for the univalence
of the following integral operators defined by Bessel functions of the first kind:

Fν1,...,νn,α1,...,αn,β (z) =

⎧⎨
⎩β

z∫
0

tβ−1
n

∏
i=1

(
gνi(t)

t

)1/αi

dt

⎫⎬
⎭

1/β

,

Fν1,...,νn,α ,n(z) =

⎧⎨
⎩(nα +1)

z∫
0

n

∏
i=1

(gνi(t))
α dt

⎫⎬
⎭

1/(nα+1)

and

Fν,γ(z) =

⎧⎨
⎩γ

z∫
0

tγ−1
(
egν (t)

)γ
dt

⎫⎬
⎭

1/γ

.

In this paper we are mainly interested on some integral operators of the following
types which involve the normalized Bessel function of the first kind:

Fν1,...,νn,α1,...,αn(z) =
z∫

0

n

∏
i=1

(
gνi(t)

t

)αi

dt (1.3)

More precisely, we would like to obtain some sufficient conditions for Fν1,...,νn,α1,...,αn(z)
to be in the classes C (γ) . Also, we prove new results, which involves strongly con-
vexity of the integral operator of the type (1.3) when n = 1. In particular, we obtain
simple sufficient conditions for some integral operators which involve the sine and co-
sine functions.

For the integral operators of the form (1.3) which involve the normalized analytic
function of the form (1.1) see the references [2, 3, 4, 5, 6, 7].

In the proofs of our results we need the following result based on [8].

LEMMA 1.1. Let ν > (−5+
√

5)/4 and consider the normalized Bessel function
of the first kind gν : D → C, defined by gν(z) = 2νΓ(ν + 1)z1−ν/2Jν(z1/2), where Jν
stands for the Bessel function of the first kind. Then the following inequality hold for
all z ∈ D ∣∣∣∣zg′ν (z)gν(z)

−1

∣∣∣∣� ν +2
4ν2 +10ν+5

(1.4)
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2. Convexity of integral operators involving Bessel functions

Our first result provides sufficient conditions for integral operator of the type (1.3)
to be convex of given order δ .

THEOREM 2.1. Let n be a natural number and let ν1,ν2, . . . ,νn > (−5+
√

5)/4.
Consider the functions gνi : D → C, defined by

gνi(z) = 2νiΓ(νi +1)z1−νi/2Jνi(z
1/2). (2.1)

Let ν = min{ν1,ν2, . . . ,νn} and α1,α2, . . . ,αn be positive real numbers. Moreover,
suppose that these numbers satisfy the following inequality

0 � 1− 2+ν
4ν2 +10ν+5

n

∑
i=1

αi < 1.

Then the function Fν1,...,νn,α1,...,αn : D → C, defined by

Fν1,...,νn,α1,...,αn(z) =
z∫

0

n

∏
i=1

(
gνi(t)

t

)αi

dt, (2.2)

is in C (δ ) , where

δ =1− 2+ν
4ν2 +10ν+5

n

∑
i=1

αi.

Proof. First observe that, since for all i∈{1,2, . . . ,n} we have gνi∈A , i.e. gνi(0)
=g′νi

(0)−1=0, clearly Fν1,...,νn,α1,...,αn ∈A , i.e. Fν1,...,νn,α1,...,αn(0)=F ′
ν1,...,νn,α1,...,αn

(0)
−1 = 0. On the other hand, it is easy to see that

F ′
ν1,...,νn,α1,...,αn

(z) =
n

∏
i=1

(
gνi(z)

z

)αi

and
zF ′′

ν1,...,νn,α1,...,αn
(z)

F ′
ν1,...,νn,α1,...,αn

(z)
=

n

∑
i=1

αi

(
zg′νi

(z)
gνi(z)

−1

)
.

or, equivalently,

1+
zF ′′

ν1,...,νn,α1,...,αn
(z)

F ′
ν1,...,νn,α1,...,αn

(z)
=

n

∑
i=1

αi

(
zg′νi

(z)
gνi(z)

)
+1−

n

∑
i=1

αi. (2.3)

Taking the real part of both terms of (2.3), we have

Re

{
1+

zF ′′
ν1,...,νn,α1,...,αn

(z)
F ′
ν1,...,νn,α1,...,αn

(z)

}
=

n

∑
i=1

αiRe

(
zg′νi

(z)
gνi(z)

)
+

(
1−

n

∑
i=1

αi

)
. (2.4)
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Now, by using the inequality (1.4) for each νi, where i ∈ {1,2, . . . ,n}, we obtain

Re

{
1+

zF ′′
ν1,...,νn,α1,...,αn

(z)
F ′
ν1,...,νn,α1,...,αn

(z)

}
=

n

∑
i=1

αiRe

(
zg′νi

(z)
gνi(z)

)
+

(
1−

n

∑
i=1

αi

)

>
n

∑
i=1

αi

(
1− νi +2

4ν2
i +10νi +5

)
+

(
1−

n

∑
i=1

αi

)

= 1−
n

∑
i=1

αi

(
νi +2

4ν2
i +10νi +5

)

> 1− 2+ν
4ν2 +10ν+5

n

∑
i=1

αi

for all z ∈ D and ν,ν1,ν2, . . . ,νn > (−5 +
√

5)/4. Here we used that the function
ϕ : ((−5+

√
5)/4,∞) → R, defined by

ϕ(x) =
x+2

4x2 +10x+5
,

is decreasing and consequently for all i ∈ {1,2, . . . ,n} we have

νi +2

4ν2
i +10νi +5

� ν +2
4ν2 +10ν+5

. (2.5)

Because 0 � 1− 2+ν
4ν2+10ν+5

n
∑
i=1

αi < 1,we get Fν1,...,νn,α1,...,αn(z) ∈ C (δ ) , where

δ =1− 2+ν
4ν2+10ν+5

n
∑
i=1

αi. This completes the proof. �

Choosing α1 = α2 = . . . = αn = α in Theorem 2.1, we have the following result.

COROLLARY 2.2. Let the numbers ν,ν1, . . . ,νn be as in Theorem 2.1 and let
α1,α2, . . . ,αn be positive real numbers. Moreover, suppose that the functions gνi ∈ A
defined by (2.1) and the following inequality

0 � 1− (2+ν)nα
4ν2 +10ν+5

< 1.

is valid. Then the function Fν1,...,νn,α1,...,αn(z) defined by (2.2) is in C (ζ ) , where

ζ =1− (2+ν)nα
4ν2 +10ν+5

.

Observe that g1/2(z) =
√

zsin
√

z and g−1/2(z) = zcos
√

z. Thus, taking n = 1 in
Theorem 2.1 or in Corollary 2.2, we immediately obtain the following result.

COROLLARY 2.3. Let ν > (−5+
√

5)/4 and α > 0 be a real number. Moreover,
suppose that these numbers satisfy the following inequality

0 � 1− (2+ν)α
4ν2 +10ν+5

< 1.
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Then the function Fν,α : D → C, defined by

Fν,α(z) =
z∫

0

(
gν(t)

t

)α
dt,

is in C (η) , where

η =1− (2+ν)α
4ν2 +10ν+5

.

In particular, if 0 < α � 22/5, then the function F1/2,α : D → C, defined by

F1/2,α(z) =
z∫

0

(
sin

√
t√

t

)α

dt,

is in C (ξ ) , where ξ =1− (5/22)α. Moreover, if 0 < α � 2/3, then the function
F−1/2,α : D → C, defined by

F−1/2,α(z) =
z∫

0

(
cos

√
t
)α

dt,

is in C (λ ) , where λ =1− (3/2)α.

3. Strongly convexity

In this section, we prove the following results, which involves strongly convexity
of the integral operator of the type (1.3) when n = 1.

THEOREM 3.1. Let ν > (−9+
√

33)/8 . Then the function Fν,α : D→C, defined
by

Fν,α(z) =
z∫

0

(
gν(t)

t

)α
dt,

is in C ρ(1) = C (ρ) , where ρ = 1−α ; 0 < α � 1.

Proof. It follows from (2.3), (1.4) and (2.5) that∣∣∣∣arg
(

1+
zF ′′

ν,α(z)
F ′
ν,α(z)

− (1−α)
)∣∣∣∣ =

∣∣∣∣argα
(

zg′ν(z)
gν(z)

)∣∣∣∣=
∣∣∣∣arg zg′ν(z)

gν(z)

∣∣∣∣
� arcsin

(
2+ν

4ν2 +10ν+5

)

� arcsin1 =
π
2

,

so that Fν,α(z)∈ C (ρ) , where ρ = 1−α ; 0 <α � 1, which proves Theorem 3.1. �
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COROLLARY 3.2. The function F1/2,α : D → C, defined by

F1/2,α(z) =
z∫

0

(
sin

√
t√

t

)α

dt,

is in C (ρ) , where ρ = 1−α ; 0 < α � 1 . In particular, when α = 1, the function
z∫
0

sin
√

t√
t

dt is convex in D .
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