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RESTRICTED CURVATURE IN THE MINKOWSKI PLANE
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(Communicated by S. Gomis)

Abstract. A geometric proof for the following problem is given: Let E be the unit circle in
a Minkowski plane. Let C be any continuously differentiable closed curve with length l(C)
(measured in Minkowski metric). Assume |κe(C, .)| � kκe(E, .) and κe(E, .) denote Euclidean
curvatures. Then C can be contained in a similar copy of the unit disk translated and magnified
by a factor of

l(C)
4

− 1
4k

(l(E)−4).

1. Introduction

Our main purpose in this article is to generalize the following theorem from the
Euclidean plane to Minkowski planes. Minkowski spaces are simply finite dimensional
normal linear spaces.

THEOREM 1. A closed curve in R2 of length L and curvature bounded by K can
be contained in a circle of radius L

4 − (π−2)
2K .

Johnson [17] used optimal control theory to prove Theorem 1. Chakerian, John-
son, and Vogt [6] gave a geometric proof of Theorem 1. Melzak [21] gave an interest-
ing treatment of plane motion with curvature limitations. Isaacs [16] discusses pursuer
evader games where the radius of curvature of the pursuer is bounded.

Preliminary definitions and concepts are discussed in Section 2. A generalization
of Theorem 1 is proved in Section 3.

2. Preliminaries

By a plane convex body we shall mean a compact, convex subset of the Euclidean
plane having a non-empty interior. We shall take a “unit circle” E for the Minkowski
plane to be a centrally symmetric convex body with its center at the origin in the Eu-
clidean plane. The Minkowski distance from x to y is defined by

‖x− y‖=
‖x− y‖e

r
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where ‖x− y‖e is the Euclidean length from x to y , and r is the Euclidean radius of E
in the direction of the vector y− x .

Minkowski distance defined by means of a convex body was developed by Min-
kowski [22]. The articles by Busemann [5] and Petty [24] contain basic concepts for
the study of Minkowski geometry, as does Chapter 6 of Benson’s book [1] and Chapter
4 of Valentine’s book [30]. These last two references also contain useful background
material from the theory of convex sets.

We use techniques from integral geometry. Santaló [27] is a good reference for
integral geometry in the Euclidean spaces. Given a curve C in the Euclidean plane, let
L denote the length of C . Crofton’s simplest formula (see Santaló [27]) is

∫ ∫
n dp dθ = 2L,

where the integral is taken over all lines intersecting the curve. Assume (p, θ ) is the
polar coordinate representation of the foot of the perpendicular from the origin to the
line, and n is the number of intersections of a line with coordinates (p, θ ) with C . The
differential element dG = dpdθ is the integral geometric density for lines.

Chakerian [9] treats integral geometry in the Minkowski plane. We sketch the
definitions he uses to develop Crofton’s simplest formula in the Minkowski plane. As-
sume E is “sufficiently” differentiable and has positive finite curvature everywhere.
Parameterize E by twice its sectional area φ and write the equation of E as

t = t(φ), 0 � φ � 2π ‖ t ‖ = ‖t −0‖ = 1.

E is called the indicatrix. Define the isoperimetrix T by the parametric representation

n(φ) =
dt(ϕ)
d(ϕ)

, 0 � φ � 2π .

Define λ (ϕ) by d n (ϕ)
d(ϕ) =−λ−1(φ)t(φ) . Then the density for lines in two-dimensional

Minkowski spaces is defined as follows. Let G = G(p, ϕ) be parallel to the direction
t(ϕ) .

The equation of G is
[t(ϕ) , x ] = p.

where [ x− y ] = x1y2− x2y1 . Then the density dG for lines is

dG = λ−1(φ) dpdφ .

It is then shown in Chakerian [9] that the simplest formula of Crofton holds:
∫

nd G = 2l

where n is the number of intersections of a line G with a curve C , integration is taken
over all lines intersecting C and l is the Minkowskian length of C .
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3. The Main Result

The following Theorem 2 is the generalization of Theorem 1 to the Minkowski
plane. The author has used the theory of optimal control to prove Theorem 2 in [13].

THEOREM 2. Let E be the unit circle in a Minkowski plane. Let C be any contin-
uously differentiable closed curve with length l(C) (measured in the Minkowski metric).
Assume |κe(C, .)|� kκe(E, .) where κe (C, .) and κe(E, .) denote Euclidean curvatures
of the respective curves. Then C can be contained in a similar copy of the unit disk
translated and magnified by a factor μ � l(C)

4 − 1
4k (l(E)−4)

In order to prove Theorem 2, we need the case with no restriction on curvature and
two lemmas. Theorem 3 gives a bound on the size of the unit ball containing a closed
curve of Minkowski length less than or equal to l

4 .

THEOREM 3. Any continuous closed curve C of Minkowski length l in an n-
dimensional Minkowski space can be enclosed by a similar copy of the unit ball mag-
nified by a factor less than or equal to l

4 .
The case of equality is discussed after the proof of Theorem 3. The Euclidean

version of Theorem 3 was first proved in a more general form by Segre [28] and inde-
pendently by Rustishauser and Samelson [26]. Nitsche [23] gives an elementary proof
in the Euclidean 3-space. The proof given here is the same as the proof given in Chak-
erian and Klamkin [8] where they prove Theorem 3 in Euclidean space, and they give
complete references related to Theorem 3. They also consider minimal covers other
than the ball.

Proof of Theorem 3. Let u �= v be two points on C dividing it into two arcs each
of Minkowskian length l

2 . Let p be the midpoint of the segment joining u and v . For
ω ∈C , we have

‖ω− p‖ � 1
2

[‖u−ω ‖+‖v−ω ‖] � l
4
. (1)

To see the first inequality consider the central reflection of ω through p to a point ω∗
with ‖ω∗ − p‖= ‖ω− p‖ . The first inequality is the a consequence of the triangle in-
equality applied to the triangle ω∗uω . The second inequality follows since the straight
line segments joining u and v to ω have lengths less than or equal to the length from
u to v along the curve. �

In Euclidean spaces, equality in (1) holds if and only if ω is collinear with u and
v in which case C is a “needle,” i.e., a line segment of length l

2 traversed twice. If
the unit ball of the Minkowski space does not contain a line segment, then the same
argument applies. However, if the unit ball contains the line segments then we do not
necessarily have the case of a needle. E .

Theorem 3 implies that a triangle inscribed in the unite circle of a Minkowski plane
and having the center as an interior point has perimeter greater than 4. This result is
due to Laugwitz [19]. We now proceed to prove two lemmas needed to prove Theorem
2. We also require a generalization of Blasche’s Rolling Theorem [3, pp. 114–119] due
to Koutroufiotis [18]. Theorem 4 is Koutroufiotis’ generation of Lemma 2 which will
follow.
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Assuming the boundary of the unit circle E is smooth, we use integral geometry
to prove the following Lemma 1. The proof given here is the same as the proof given
in Chakerian [7] extended to Minkowski planes.

LEMMA 1. Consider a Minkowski plane with smooth unit circle E . Let C be the
convex hull of a closed curve C. Then

l(C) � l(C).

Proof. Using Crofton’s formula for Minkowski planes (see Chakerian [9]), we can
compute l(C) by the measure of lines intersecting C . Any line G meeting C in two
points must C in at least two points. If not, C would be contained in the closed half
plane H and determined by G and hence in the proper convex subset of C determined
by H and the boundary of C . This yields a contradiction.

Schaer [29] gives a proof of Lemma 1 for the Euclidian plane. A continuously
differentiable curve X in Rn , parameterized by arc length s , is called a K -curve if
and only if ‖X ′(s2)−X ′(s1)‖ � K |s2 − s1| for all s1 and s2 . Hence K -curves are
generalization of C2 curves with curvature bounded by K . Dubins [10] showed that
among K -curves with prescribed initial and terminal points and prescribed initial and
terminal vectors there exists a K -curve of minimal length. Chakerian, Johnson, and
Vogt [6] prove that the convex hull of a closed K -curve in Rn is a closed K -curve. The
same proof is extended to the Minkowski plane with unit circle E in lemma 2. �

Parametrize a given curve C with a yielding C(s) , s is the Euclidean arc length
along C .

Let E(s) be the point on E such that the unit tangent to E makes the same angle
θ (s) with the horizontal as the tangent to C at C(s) . Hence E(s) is the relative normal
to C at C(s) . ∥∥∥∥ dE

ds

∥∥∥∥
e
=

dsE

ds
(2)

where dsE is the Euclidean arc length along E . But,

lim
S2→S

‖E(s2)−E(s)‖e

s2 − s
=

∥∥∥∥ dE
ds

∥∥∥∥
e
=

∥∥∥∥ dE
ds

∥∥∥∥
e

dsE

ds
=

dsE

ds
=

dsE
dθ
ds
dθ

=
κe (C,s)
κe (E,s)

= κm (C,s)

(3)
Thus we define a continuously differentiable curve to be a Minkowskian K -curve if
and only if

‖E(s1)−E(s2)‖ � K |s1− s2| (4)

For all s1 and s2 . As a consequence of (3) and (4) we see that a C2 curve C with
Minkowskian curvature bounded by K is Minkowskian K -curve.

Lemma 2 below shows that the convex hull of closed Minkowski K -curve is a
Minkowskian K -curve.
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LEMMA 2. Let C be a closed Minkowskian K -curve in a Minkowski plane unit
circle E . Let C be the convex hull of C , then C is a Minkowskian K -curve.

Proof. Every point on C is either a point C or else an interior point of a line
segment in C whose endpoints lie on C . At the endpoints of the line segment, C has its
tangent line parallel to the line segment. At points of C∩C there is a unique supporting
line of C . If the supporting lines formed a cone at such a point, C could not have a
derivative there.

Let τ be an arc length parameter for C and let s be an arc length parameter for
C . Let E(τ) and E(s) be the points on the unit circle corresponding to C(τ) and C(s)
respectively. Let ε be a positive number and s0 a particular value of s . We show that
for s sufficiently close to s0

|E(s1)−E(s0) |e � (K + ε) |s1− s0| .

Suppose not. There exists a sequence {sn} convergent to s0 such that ‖E(sn)−E(s0)‖e

> (K + ε) |sn − s0| for all n . If C(s0) is not on C , then for n large C(sn) is on the line
segment of C through C(s0) . Then E(sn) = E(s0) for a contradiction. Hence C(s0)
must belong to C∩C . We can also suppose that for each n , C(sn) belongs to C∩C .
Otherwise, the point C(sn) would be interior points of the line segments of C . Without
affecting E(sn) or increasing |sn − s0| , we can shift points along the segments until
they meet C .

The curve C has only a finite number of branches which go through C(s0) . By
passing to a subsequence, we can suppose that the points C(sn) all lie on the same
branch of C . Hence there is a sequence {τn} convergent to a parameter value of τ0
with C(τ0) = C(s0) and C(τn) = C(sn) for all n . By passing to a subsequence once
more, we can assume that for all n , E(sn) = uE(τn) where u = ±1 is fixed. But
{E(τn)} converges to E(τ0) . Hence {E(sn)} converges to a limit which, up to sign,
equals E(s0) . Since C is a closed convex curve, it cannot reverse direction abruptly.
So {E(sn)} converges to E(s0) and E(s0) = uE(τ0) . Then

(K + ε)|sn − s0| < ‖E(sn)−Es0‖e = ‖uE(τn)−E(τ0)‖e

= ‖E(τn)−E(τ0)‖e � K |τn − τ0|
But for any positive number α < 1 and for n sufficiently large,

∥∥C(τn)−C(τ0)/(τn−τ0)
∥∥

e
> 1−α

Hence

(K + ε) |sn− s0| < K |τn − τ0| < K‖C(τn)−C(τ0)‖e /1−α

= K
∥∥∥C(sn)−C(s0)

∥∥∥
e
/1−α � K |sn − s0|/1−α .

Hence K + ε < K
1−α . Letting α vary, we conclude K + ε � K which gives a contra-

diction. Thus for each s0 and for each s sufficiently close to s0 , ‖E(s)−E(s0)‖e �
(K + ε) |s− s0| .
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If s1 and s2 are any two values, by a compactness argument and partitioning the
interval [s1,s2] into small enough subintervals and repeated application of the triangle
inequality, it follows that C is Minkowskian K -curve. �

Blaschke’s Rolling Theorem states that if C is a C2 simple convex curve with
curvature κ satisfying κ � K then a circle of radius 1

κ rolls freely inside C in the
sense that, if it touches C from inside at any point, it lies entirely within the closed
convex set bounded by C .

The following Theorem 4 is a generalization of Blaschke’s Rolling Theorem which
will be used for the proof of Theorem 2.

THEOREM 4. (Koutroufiotis [18]) Let the plane convex set D1 have as boundary
a C2 curve C1 with curvature κ1 . Let C2 be a regular convex curve with curvature κ2 .
Assume that C1 and C2 are tangent to each other at p0 with the same unit normal and
that κ1(p1) < κ2(p2) if the unit tangents at p1 and p2 are equal. Then C2 , except for
p0 , lies in D1 .

Proof of Theorem 2. Let C be the convex hull of C . Lemma 2 implies
∣∣∣κe(C, .)

∣∣∣ �
κe(E, .) = κe( 1

κ E, .) . Let D be the region bounded by C . Using Theorem 4, we

conclude D = 1
κ E +D for some D . Hence l(D) = l(C)− 1

κ l(E) . By Theorem 3, D can

be covered by a copy of the unit circle magnified by a factor of 1
4 l (C)− 1

4κ l (E)+ 1
κ .

Using Lemma 1, l (C) � l (C) , and the fact that any region containing C also contains
C , we conclude that C can be covered by a copy of the unit circle E magnified by a
factor of 1

4 l (C)− 1
4κ l (E)+ 1

κ = l (C)
4 − 1

4κ (l (E)−4) . �
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