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MEAN THEORETIC APPROACH TO A FURTHER

EXTENSION OF GRAND FURUTA INEQUALITY

MASATOSHI ITO AND EIZABURO KAMEI

Abstract. Very recently, Furuta has shown a further extension of grand Furuta inequality. In this
paper, we obtain a more precise and clear expression of Furuta’s extension by considering a mean
theoretic proof of grand Furuta inequality. Moreover, we get a variant of Furuta’s extension by
scrutinizing the former argument.
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