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Abstract. We establish the following new Stirling-type approximation formulas for the factorial
function

n! ≈
√

2πnne−n

√
n+

1
6

+
1

72n
− 31

6480n2 − 139
155520n3 +

9871
6531840n4

and

n! ≈
√

2πnne−n 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2 .

Our estimations give much more accurate values for the factorial function than some previously
published strong formulas. We also derive new sequences converging to Euler-Mascheroni con-
stant γ very quickly.

1. Introduction

The classical Stirling’s approximation formula

n! ≈ nne−n
√

2πn

is used to approximate large factorials and has many applications in science and math-
ematics. For example it has applications in statistics, statistical physics and number
theory. In consequence, it has been deeply studied by many mathematicians because of
its practical importance. A slightly better result than Stirling’s formula was offered by
Burnside [5] as

n! ≈
√

2π
(

n+1/2
e

)n+ 1
2

.

Bauer [4] defined the sequence (δn) by the relation

n! = nne−n
√

2π(n+ δn)

and numerical computations led him to infer that

lim
n→∞

δn = 0.166666... = 1/6. (1.1)
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Consequently, he conjectured the approximation formula

n! ≈
√

2πnne−n
√

n+1/6. (1.2)

The author [2] proved (1.1) and established the following inequalities, for n ∈ N

nne−n

√
2π

(
n+

1
6

)
< n! � nne−n

√
2π

(
n+

e2

2π
−1

)
.

The author [2] also shows numerically that the formula (1.2) has great superiority over
the Stirling and Burnside’s formulas. For other improvement of Stirling formula, please
refer to [3, 6, 9, 11]. In this work we continue investigations of approximation of the
factorial function. Our first aim is to provide the largest number α∗ and the smallest
number β ∗ such that the following inequalities hold:

α∗nne−n 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2 � n!

<β ∗nne−n 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2 .

The second aim of this paper is to improve (1.2). In order to fulfill it we introduce a
new approximations family of the form

n! ≈
√

2πnne−n

√
n+

1
6

+
a
n

+
b
n2 +

c
n3 +

d
n4 := un(a,b,c,d), (1.3)

depending on four parameters a, b, c, andd . We note that un(0,0,0,0) is the formula
(1.2). Throughout, α, β , γ, and ν denote the following real numbers.

α =
1
72

, β = − 31
6480

, δ = − 139
155520

, and ν =
9871

6531840
. (1.4)

We prove in our Theorem 2.4 that the best approximation of the form (1.3) is
n! ≈ un(α,β ,δ ,ν) , where un is as given in (1.3). The gamma function

Γ(z) =
∫ ∞

0
uz−1e−udu (z > 0)

and the factorials are related with Γ(n + 1) = n! . The logarithmic derivative of the
gamma function is called the digamma (or psi) function and denoted by ψ . The
digamma function and the nth harmonic number Hn = ∑n

k=1
1
k are related with ψ(n+

1) = Hn−γ , where γ = limn→∞(Hn− logn) = 0.57721566... is Euler-Mascheroni con-
stant.

In order to prove our main results we need the following elementary but very useful
lemma, which was proved in [7]. The algebraic and numerical computations have been
carried out with the computer software Mathematica 5.
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LEMMA 1.1. If (ωn)n�1 is convergent to zero and there exists the limit

lim
n→∞

nk(ωn−ωn+1) = c ∈ R,

with k > 1 , then there exists the limit

lim
n→∞

nk−1ωn =
c

k−1
.

It is clear from this lemma that the speed of convergence of the sequence (ωn) is
as higher as the value of k is greater.

2. Main results

We are in a position to prove our main results.

THEOREM 2.1. Let n be a natural number. Then, we have

α∗nne−n 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2 � n!

< β ∗nne−n 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2 , (2.1)

where α∗ =
√

2π = 2.5066282... , and β ∗ = e
(

9720
13421

) 1
4 = 2.5155926... are the best

possible constants.

Proof. We define, for x � 1,

G(x) = log(Γ(x+1))− x logx+ x− 1
2

log(2π)

− 1
4

log

(
x2 +

x
3

+
1
18

− 2
405x

− 31
9720x2

)
. (2.2)

Differentiation yields

G′(x) = ψ(x+1)− logx− 31+24x+1620x3+9720x4

−62x−96x2+1080x3 +6480x4 +19440x5 (2.3)

and

G′′(x+1)−G′′(x) =
P(x)
Q(x)

, (2.4)
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where

P(x) =
173098434601

69735688020000
+

158605714067x
3874204890000

+
148365177961x2

860934420000

− 1172334638183x3

697356880200
− 1703781670013x4

58113073350
− 16583056275098x5

80712601875

− 6188823795061x6

7174453500
− 7130716114694x7

2989355625
− 60012295714x8

13286025

− 43928339036x9

7381125
− 4470988726x10

820125
− 111699032x11

32805

− 226826144x12

164025
− 17997056x13

54675
− 8464x14

243
, (2.5)

and

Q(x) = 4x4(x+1)2
(
− 31

9720
− 2x

405
+

x2

18
+

x3

3
+ x4

)2

×
(
− 31

9720
− 2(x+1)

405
+

(x+1)2

18
+

(x+1)3

3
+(x+1)4

)2

,

where we have used the functional relation ψ ′(x + 1)−ψ ′(x) = −1/x2 . Using the
asymptotic formula [1, p.259]

ψ(x) ∼ logx− 1
2x

− 1
12x2 + ....,

we get
lim
x→∞

(ψ(x)− logx) = 0. (2.6)

Thus, using Stirling’s formula and (2.6), respectively. we obtain the limit relations

lim
x→∞

G(x) = lim
x→∞

G′(x) = 0. (2.7)

From (2.5), it follows that all the coefficients of P(x+1) are negative for all x � 1, so
P(x) < 0 for every x∈ [1,∞) . Therefore it results from (2.4) that G′′(x+1)−G′′(x) < 0
for all x ∈ [1,∞) . By mathematical induction, we find for every n ∈ N

G′′(x) > G′′(x+1) > G′′(x+2) > ... > G′′(x+n) > lim
n→∞

G′′(x+n) = 0,

that is, G′ is strictly increasing on [1,∞) . Taking into account (2.7), we conclude that
G is strictly decreasing on [1,∞) . Consequently, we have for any n ∈ N

0 = lim
n→∞

G(n) < G(n) � G(1),

which is equivalent with (2.1).
Since G′ is strictly increasing on [1,∞) , we conclude the following from (2.3) and

the relation 1− γ− 11395
26842 = G′(1) � G′(n) < lim

n→∞
G′(n) = 0 :
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COROLLARY 2.2. For all natural number n, we have

a∗ + logn+
31+24n+1620n3+9720n4

−62n−96n2+1080n3 +6480n4 +10440n5 � Hn

b∗ + logn+
31+24n+1620n3+9720n4

−62n−96n2+1080n3 +6480n4 +10440n5 ,

where the constants a∗ = 15447
26842 = 0.57549... , and b∗ = γ = 0.57721566... are the best

possible.

THEOREM 2.3. For n ∈ N , we define

ωn = G(n) = logn!− 1
2

log2π−n logn+n

− 1
4

log

(
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2

)
.

Then we have

lim
n→∞

n5ωn =
1058
25515

. (2.8)

Proof. Applications of l’Hospital rule yield

lim
n→∞

n6(ωn −ωn+1) = lim
x→∞

x6(G(x)−G(x+1))

= lim
x→∞

G(x)−G(x+1)
1/x6

= lim
x→∞

G′(x)−G′(x+1)
−6/x7

= − 1
42

lim
x→∞

[x8(G′′(x+1)−G′′(x))] =
1058
5103

,

where G is as given in (2.2). So by Lemma 1.1 we get

lim
n→∞

n5ωn =
1058

5 ·5103
=

1058
25515

.

This completes the proof.

THEOREM 2.4. For n ∈ N , let us define θn by

θn(a,b,c,d) = log(Γ(n+1))− 1
2

log2π−n logn+n

− 1
2

log

(
n+

1
6

+
a
n

+
b
n2 +

c
n3 +

d
n4

)
, (2.9)

where a,b,c and d are real parameters. Then,
(i) If a 	= 1/72 , then the speed of convergence of the sequence θn is n−2 .
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(ii) If a = 1/72 and b 	=−31/6480 , then the speed of convergence of the sequence
(θn) is n−3 .

(iii) If a = 1/72 and b = −31/6480 , c 	= − 139
155520 then the speed of convergence

of the sequence (θn) is n−4 .
(iv) If a = 1/72 , b = −31/6480 , c = − 139

155520 , and d 	= 9871
6531840 then the speed of

convergence of the sequence (θn) is n−5 .
(v) If a = 1/72 , b = −31/6480 , c = − 139

155520 , and d = 9871
6531840 then the speed of

convergence of the sequence (θn) is n−6 .

Proof. We define for x � 1

F(x) = log(Γ(x+1))− x logx+ x− 1
2

log(2π)

− 1
2

log

(
x+

1
6

+
a
x

+
b
x2 +

c
x3 +

d
x4

)
. (2.10)

Differentiation gives

F ′(x) = ψ(x+1)− logx+
12d +9cx+6bx2+3ax3−3x5

6dx+6cx2 +6bx3 +6ax4 + x5 +6x6 (2.11)

and

F ′′(x) = ψ ′(x+1)+
p(x)
q(x)

, (2.12)

where

p(x) = −72d2x+(−144cd−36d2)x2 +(−54c2−180bd−72cd)x3

+(−180bc−36c2−252ad−72bd)x4

+(−36b2−144ac−72bc−60d−72ad)x5

+(−72ab−36b2−36c−72ac−516d)x6

+(−18a2−18b−72ab−336c−72d)x7

+(−6a−36a2−192b−72c)x8 +(−84a−72b)x9

+(−1−72a)x10 +6x11−36x12, (2.13)

and
q(x) = 36.x3(d + cx+bx2 +ax3 + x4/6+ x5)2. (2.14)

Hence, we obtain

F ′′(x+1)−F′′(x) =
f1(x)
f2(x)

, (2.15)

where

f1(x) = μ1(a)x23 + μ2(a,b)x22 + μ3(a,b,c)x21 + μ4(a,b,c,d)x20

+ μ5(a,b,c,d)x19 + ..., (2.16)
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and

μ1(a) = −216+15552a,

μ2(a,b) = −2568+198288a+38880b,

μ3(a,b,c) = −13943+1173744a+23328a2+479520b+77760c,

μ4(a,b,c,d) = −45661+4277706a+270216a2+2754756b

+81648ab+923400c+136080d,

μ5(a,b,c,d) = −100265+10730322a+1442232a2+10368a3 +9783060b

+911088ab+46656b2+5131944c+155520ac+1551312d, (2.17)

and

f2(x) = (x+1)2q(x)q(x+1),

with q is as given in (2.14). Now let a 	= 1/72. Using Stirling’s formula and (2.6) we
find lim

x→∞
F(x) = lim

x→∞
F ′(x) = 0. Applying l’Hospital rule and (2.15) we get

lim
n→∞

n3(θn −θn+1) = lim
x→∞

x3(F(x)−F(x+1))

= lim
x→∞

F(x)−F(x+1)
1/x3

= lim
x→∞

F ′(x)−F ′(x+1)
−3/x4

= − 1
12

lim
x→∞

[x5(F ′′(x+1)−F′′(x))]

= − μ1(α)
12.1296

= −1−72a
12

	= 0.

Let a = 1/72 and b 	= −31/6480. Then, μ1(a) = 0, so, by the same way we get

lim
n→∞

n4(θn −θn+1) = lim
x→∞

x4(F(x)−F(x+1))

= lim
x→∞

F(x)−F(x+1)
1/x4

= lim
x→∞

F ′(x)−F ′(x+1)
−4/x5

= − 1
20

lim
x→∞

[x6(F ′′(x+1)−F′′(x))]

= − 1
20

μ2(α,β )
20.1296

= −31+6480b
4320

	= 0.
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Let a = 1/72, b = −31/6480, and c 	= −139/155520, μ1(a) = μ2(a,b) = 0, thus we
find that

lim
n→∞

n5(θn −θn+1) = lim
x→∞

x5(F(x)−F(x+1))

= lim
x→∞

F(x)−F(x+1)
1/x5

= lim
x→∞

F ′(x)−F ′(x+1)
−5/x6

= − 1
20

lim
x→∞

[x7(F ′′(x+1)−F′′(x))]

= − 1
30

μ3(α,β ,δ )
1296

= −139+155520c
77760

	= 0,

for a = 1
72 , b = − 31

6480 , c = − 139
155520 , and d 	= − 9871

6531840 we find that

lim
n→∞

n6(θn −θn+1) = lim
x→∞

x6(F(x)−F(x+1))

= lim
x→∞

F(x)−F(x+1)
1/x6

= lim
x→∞

F ′(x)−F ′(x+1)
−6/x7

= − 1
20

lim
x→∞

[x8(F ′′(x+1)−F′′(x))]

= − 1
42

μ4(α,β ,δ ,ν)
1296

= −9871+6531840d
2612736

	= 0.

And, finally for a = 1/72, b = −31/6480, c = −139/155520, and d = − 9871
6531840 we

obtain

lim
n→∞

n7(θn −θn+1) = lim
x→∞

x7(F(x)−F(x+1))

= lim
x→∞

F(x)−F(x+1)
1/x7

= lim
x→∞

F ′(x)−F ′(x+1)
−7/x8

= − 1
56

lim
x→∞

[x9(F ′′(x+1)−F′′(x))]

= − 1
56

μ5(α,β ,δ ,ν)
1296

= − 217798933
263363788800

. (2.18)

Here α, β , δ , ν , and μi are as given in (1.4) and (2.17), respectively. Now the asser-
tions of (i)-(v) follow from Lemma1.1.
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3. Concluding remarks

REMARK 3.1. As mentioned in the first section of this paper, the formula (1.2) is
better than Stirling and Burnside formulas. Other known formulas much more stronger
than (1.2) are:

n! ≈√
πnne−n

(
8n3 +4n2 +n+

1
30

) 1
6

= αn (S. Ramanujan [10]),

n ≈
√

2πe−n−a(n+a)n+b(n+ c)
1
2−b = βn (C. Mortici [8]),

where a = 1.570854265... , b = 1.383200696... , and c = 0.968841875... , and

n! ≈
√

2πnne−n
√

n+1/2exp(− 1
6(n+3/8)

) = γn, (N. Batir [2])

The following table shows that our new approximation formulas

n! ≈
√

2πnne−n

√
n+

1
6

+
1

72n
− 31

6480n2 −
139

155520n3 +
9871

6531840n4 := an

and

n! ≈
√

2πnne−n 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2 := bn.

are stronger than all previous formulas for n � 2. Also, it can be shown numerically
that all approximations n! ≈ un(α,0,0,0) , n! ≈ un(α,β ,0,0) , and n! ≈ un(α,β ,δ ,0)
are better than all of them. Here un , and α,β ,δ ,andν are as in (1.3) and (1.4), respec-
tively.

n |αn −n!| |βn−n!| |γn −n!| |an−n!| |bn−n!|
1 0.000283346 0.0004 0.0000731 0.00016 0.000402
2 0.0000661 0.000111 0.000034 0.00000298 0.000034
5 0.000147066 0.0003 0.00015 0.00000017 0.000024
10 0.311613 0.9493 0.4417 0.000283224 0.02346
25 3.6384×1016 2.0959×1017 6.380×1016 7.2219×1012 1.03×1015

50 4.5524×1054 4.6899×1055 8.652×1054 2.3968×1050 6.311×1052

REMARK 3.2. First, we recall that ψ(n+1)=Hn−γ , where Hn =
n
∑

k=1

1
k is the nth

harmonic number and γ = 0.57721566... is Euler-Mascheroni constant. From (2.18)
we conclude that the sequence (σn) defined by

σn = Hn− logn

− −19742+8757n+31248n2−45360n3+3265920n5

n(9871−5838n−31248n2+90720n3 +1088640n4+6531840n5)
, (n ∈ N)
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converges to γ as n−7 since we have from (2.18)

lim
n→∞

n8(σn−σn+1) = lim
x→∞

x8(F ′(x)−F ′(x+1)) =
7.217798933

263363788800
,

which implies by Lemma1.1

lim
n→∞

n7(σn − γ) =
217798933

263363788800
.

Numerically, we have |σ1−γ|= 0.00102102... , |σ2−γ|= 5.54131×10−6, |σ5−γ|=
4.14287×10−10, |σ10− γ|= 4.10054×10−11, and |σ15− γ| = 1.33227×10−15.

REMARK 3.3. The coefficients 1
3 , 1

18 , − 2
405 , and − 31

9720 in the function from (2.1)

h(n) = 4

√
n2 +

n
3

+
1
18

− 2
405n

− 31
9720n2

have been obtained by the same method used in the proof of Theorem 2.4. So they are
the best scalers.

Added in proofs. The author is informed that the part of the result of this paper is
obtained in a paper by C. Mortici: Sharp inequalities related to Gosper’s formula, C.
R. Acad. Sci. Paris, Ser. I., 348 (2010), 137–140.
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