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SOME BETTER BOUNDS ON THE VARIANCE WITH APPLICATIONS

R. SHARMA, M. GUPTA AND G. KAPOOR

(Communicated by A. Čižmešija)

Abstract. We derive bounds on the variance of a finite universe. Some related inequalities for
the roots of the polynomial equations and bounds for the largest and smallest eigenvalues of a
square matrix with real spectrum are obtained.

1. Introduction

Let x1,x2, ...,xn denote n real numbers with arithmetic mean

A =
1
n

n

∑
i=1

xi, (1.1)

variance

S2 =
1
n

n

∑
i=1

(xi −A)2 (1.2)

and range
r = M−m, (1.3)

where m � xi � M, i = 1,2, ...,n.
The well-known Popoviciu inequality says that [1]

S2 � r2

4
. (1.4)

The complementary Von Szokefalvi Nagy inequality asserts that [2]

S2 � r2

2n
. (1.5)

Several authors have worked on such inequalities, their further refinements and exten-
sions along with a variety of alternative proofs. In particular, Bhatia and Davis [3] have
proved that

S2 � (M−A)(A−m) . (1.6)
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Let H be the harmonic mean of n positive real numbers xi (i = 1,2, ...,n) , defined by

H =

(
1
n

n

∑
i=1

1
xi

)−1

. (1.7)

Then, Sharma [4] shows that

S2 � M (A−H)(M−A)
M−H

, H < M (1.8)

and

S2 � m(A−H)(A−m)
H−m

, H > m. (1.9)

One of the interests in (1.8) and (1.9) is that they provide refinements of the inequality
(1.6) which itself is a refinement of the Popoviciu inequality (1.4). We prove (Theo-
rem 2.1 and Corollary 2.1, below) that the inequalities (1.8) and (1.9) yield some further
refinements of the Popoviciu inequality, and also give an upper bound (Corollary 2.2,
below) for the variance in terms of M and H . We obtain one more refinement of the
Popoviciu inequality (Theorem 2.2, below) which involves third central moment,

m3 =
1
n

n

∑
i=1

(xi −A)3 . (1.10)

This also gives an upper bound (Corollary 2.3, below) for the measure of skewness,
defined by

γ1 =
1
n

n

∑
i=1

(
xi −A

S

)3

. (1.11)

An upper bound for the Karl Pearson coefficient of dispersion
(
V = S

A

)
is also given

(Corollary 2.3, below), see also [5]. We remark that these inequalities also hold good
for both discrete and continuous probability distributions.

As an application we consider nth degree polynomial equation with all its roots
positive and obtain (Theorem 3.1, below) bounds for the largest and smallest roots
which also gives a lower bound for the span of roots. In addition, the bounds for the
largest and smallest eigenvalues of a Hermitian matrix C are obtained (Theorem 3.2,
below) in terms of the traces of C,C2 and C3. Our results compare favorably with
those obtained by Wolkowicz and Styan [6].

2. Main Results

THEOREM 2.1. For 0 < m < H < M and under the above notations

S2 +
1
4

(
A− S2

A−H

)2

� r2

4
, A �= H. (2.1)
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The inequality (2.1) gives a refinement of the Popoviciu inequality (1.4).

Proof. From the inequality (1.8), we have

(A−H)M2 − (A2−AH +S2)M +HS2 � 0. (2.2)

Therefore, either

M �
A2 −AH +S2−

√
(A2 −AH +S2)2−4HS2 (A−H)

2(A−H)
, (2.3)

or

M �
A2 −AH +S2 +

√
(A2 −AH +S2)2−4HS2 (A−H)

2(A−H)
. (2.4)

But, if (2.3) holds then

M−A �
S2−A(A−H)−

√
(S2−A(A−H))2 +4S2 (A−H)

2(A−H)
. (2.5)

This is not possible as right hand side expression in (2.5) is negative while left hand side
expression is positive. Thus, M satisfies (2.4). On using similar arguments it follows
from the inequality (1.9) that

m �
A2−AH +S2−

√
(A2−AH +S2)2−4HS2 (A−H)

2(A−H)
. (2.6)

From the inequalities (2.4) and (2.6) we find that

M−m �

√
(A2−AH +S2)2−4HS2 (A−H)

A−H
. (2.7)

On combining (1.3) and (2.7); the inequality (2.1) follows immediately. �

COROLLARY 2.1. For 0 < m � xi � M,(i = 1,2, . . . ,n) ,

S2 � r2

4
−
(

A−H−
√

r2

4
−H (A−H)

)2

. (2.8)

The inequality (2.8) gives one more refinement of the Popoviciu inequality (1.4).

Proof. From the inequality (2.1) we find that the variance S2 satisfies the follow-
ing quadratic inequality:

S4−2(A−H)(2H−A)S2 +(A−H)2
(
A2 − r2)� 0. (2.9)

The inequality (2.8) now follows at once from (2.9). �
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COROLLARY 2.2. For 0 < xi � M,(i = 1,2, . . . ,n) ,

S2 � M (M−H)
4

. (2.10)

Proof. It is easily seen from the inequality (1.8) that the point (A,S) in AS -plane
lies on or inside the elliptical region,

(M−H)S2 +M

(
A− M +H

2

)2

� M (M−H)2

4
. (2.11)

The inequality (2.10) is a particular case of (2.11). �

THEOREM 2.2. For S > 0,

S2 +
( m3

2S2

)2
� r2

4
. (2.12)

The inequality (2.12) provides a refinement of the Popoviciu inequality (1.4).

Proof. For xi � M, i = 1,2, ...,n, we have

(xi −α)2 (M− xi) � 0, (2.13)

where α is any real number. On adding these inequalities we get on simplification

M � A+
m3 +2(A−α)S2

S2 +(A−α)2
. (2.14)

Let

f (α) =
m3 +2(A−α)S2

S2 +(A−α)2
. (2.15)

The derivative

f ′ (α) = 2S2 (α−α1)(α−α2)(
S2 +(A−α)2

)2 (2.16)

vanishes at α = α1 and α = α2, where

α1 =
2AS2 +m3−

√
m2

3 +4S6

2S2 (2.17)

and

α2 =
2AS2 +m3 +

√
m2

3 +4S6

2S2 . (2.18)
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The sign of f ′ (α) changes from positive to negative while α passes through the value
α1 and therefore α = α1 is the point of maximum of the function f (α) . We have

f (α1) =

√
m2

3 +4S6

2S2 +
m3

(
m3−

√
m2

3+4S6
)

2S4

=
m3 +

√
m2

3 +4S6

2S2 . (2.19)

The inequality (2.14) is valid for all real values of α and therefore also holds good
when α = α1. It then follows from (2.14), (2.15) and (2.19) that

M � A+
m3 +

√
m2

3 +4S6

2S2 . (2.20)

On using similar arguments we see that the inequality (xi−β )2 (m− xi) � 0, where
i = 1,2, ...,n and β is any real number, gives us the following inequality:

m � A+
m3−

√
m2

3 +4S6

2S2 . (2.21)

On subtracting (2.21) from (2.20) we get that

M−m �

√
m2

3 +4S6

S2 . (2.22)

The inequality (2.12) now follows immediately on simplifying (2.22). �

COROLLARY 2.3. For m � xi � M, (i = 1,2, . . . ,n)

γ1 �
√( r

S

)2−4. (2.23)

Also, for 0 < xi � M, (i = 1,2, . . . ,n)

V �
√

M−H
4H

. (2.24)

Proof. Combining (1.10), (1.11) and (2.12) the inequality (2.23) follows easily.
The inequality (2.24) follows from (1.8) on dividing both sides by A2 and then maxi-
mizing the right hand side expression. �

3. Applications

We show that some immediate consequences of the above inequalities have inter-
esting applications in the field of theory of polynomial equations and matrix analysis.
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THEOREM 3.1. Let the roots of the nth degree monic polynomial equation

xn +a1x
n−1 +a2x

n−2 + ...+an−1x
n−1 +an = 0 (3.1)

be all real and positive. Let x1 and xn respectively denote the smallest and largest root
of (3.1). Then

xn � α +
√
α2 +β

2γ
, (3.2)

x1 � α−
√
α2 +β

2γ
(3.3)

and

xn− x1 �
√
α2 +β
γ

, (3.4)

where

α =
a2

1−2a2

n
− a1an

an−1
, (3.5)

β =
4an
(
a1an−1−n2an

)(
2na2− (n−1)a2

1

)
(nan−1)

2 (3.6)

and
γ = n

an

an−1
− a1

n
. (3.7)

The inequality (3.4) gives a lower bound for the span of roots of the polynomial equation
(3.1).

Proof. Let A,H and S2 respectively denote the arithmetic mean, harmonic mean
and variance of the n positive real roots x1 � xi � xn (i = 1,2, ...,n) of the polynomial
equation (3.1). On using the relations between the roots and coefficients of a polynomial
equation we find that

A = −a1

n
, (3.8)

S2 =
(n−1)a2

1−2na2

n2 (3.9)

and
H = −n

an

an−1
. (3.10)

It follows from the inequalities (1.8) and (1.9) that

xn �
A(A−H)+S2 +

√
(A(A−H)+S2)2−4HS2 (A−H)

2(A−H)
(3.11)

and

x1 �
A(A−H)+S2−

√
(A(A−H)+S2)2 −4HS2 (A−H)

2(A−H)
. (3.12)
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On substituting values of A,S2 and H respectively from (3.8) , (3.9) and (3.10) in (3.11)
and (3.12) we respectively get the inequalities (3.2) and (3.3). The remaining assertions
of the theorem are now immediate. �

THEOREM 3.2. Let C be a complex n× n matrix with real eigenvalues λi such
that λ1 � λi � λn, i = 1,2, ...,n.Then

λn � trC
n

+
b+

√
b2 +4a3

2a
, (3.13)

λ1 � trC
n

+
b−√

b2 +4a3

2a
, (3.14)

Spread (C) = λn−λ1 �
√

b2 +4a3

a
, (3.15)

and, for λ1 > 0,

λn

λ1
� 1+

2
√

b2 +4a3

b+2 trC
n a−√

b2 +4a3
, (3.16)

where

a =
trC2

n
−
(

trC
n

)2

(3.17)

and

b =
1
n3

(
n2trC3 −3ntrC2trC+2(trC)3

)
. (3.18)

Proof. Let A,S2 and m3 be respectively the arithmetic mean, variance and third
central moment of the eigenvalues λi (i = 1,2, ...,n) of a complex n× n matrix C .
Then

A =
trC
n

, (3.19)

S2 =
trC2

n
−
(

trC
n

)2

(3.20)

and

m3 =
1
n3

(
n2trC3−3ntrC2trC+2(trC)3

)
. (3.21)

On substituting values of A, S2 and m3 respectively from (3.19), (3.20) and (3.21) in
(2.20) and (2.21) we respectively get the inequalities (3.13) and (3.14). The remaining
assertions of the theorem are now immediate. �

It is easy to compute traces of C and C2 . The calculation is costly when we have
to determine the value of trace of C3 . We compare the present bounds involving traces
of C, C2 and C3 with those obtained by Wolkowicz and Styan [6] which involve only
traces of C and C2 .
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EXAMPLES. Let

C1 =

⎡
⎢⎢⎣

4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎤
⎥⎥⎦ .

We have trC1 = 22, trC2
1 = 154 and trC3

1 = 1201. From the inequalities (3.13)
and (3.14) we respectively have λ4 � 8.239 and λ1 � 2.48, whereas Wolkowicz and
Styan [6] have shown that λ4 � 7.158 and λ1 � 3.842.

Let

C2 =

⎡
⎢⎢⎢⎢⎣

4 1 1 2 2
1 5 1 1 1
1 1 6 1 1
2 1 1 7 1
2 1 1 1 8

⎤
⎥⎥⎥⎥⎦ .

We have trC2 = 30, trC2
2 = 222 and trC3

2 = 1929. From the inequalities (3.13)
and (3.14) we respectively have λ5 � 10.209 and λ1 � 4.005, whereas Wolkowicz and
Styan [6] have shown that λ5 � 7.449 and λ1 � 4.551.

Let

C3 =

⎡
⎣2 1 0

0 5 1
0 2 9

⎤
⎦ .

We use the inequality (3.13) to find the lower bound on the spectral radius of the
matrix C3 . We have trC3 = 16, trC2

3 = 114 and trC3
3 = 946. The Gerschgorin theory

assures that the eigenvalues of C3 are positive real numbers. From the inequality (3.13)
we have λ3 � 9.0372. The largest eigenvalue of C3 is around 9.4495, and on using the
Gerschgorin theorem we have λ3 � 7.
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