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SIMPLE PROOF AND REFINEMENT OF

HERMITE–HADAMARD INEQUALITY

ABDALLAH EL FARISSI

(Communicated by J. Pečarić)

Abstract. In this note we give a simple proof and a new generalization of the Hermite-Hadamard
inequality.

1. Introduction and main results

Throughout this note, we denote by I the closed interval [a,b] . A real-valued
function f is said to be convex on I if λ f (x)+(1−λ ) f (y) � f (λx+(1−λ )y) for all
x,y ∈ I and 0 � λ � 1. Conversely, if the opposite inequality holds, the function is
said to be concave on I . A function f that is continuous on I and twice differentiable
on (a,b) is convex on I if and only if f

′′
(x) � 0 for all x ∈ (a,b). ( f is concave if and

only if f
′′
(x) � 0 for all x ∈ (a,b)).

The classical Hermite-Hadamard inequality which was first published in [6] gives
us an estimate of the mean value of a convex function f : I → R ,

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (1.1)

An account on the history of this inequality can be found in [7] . Surveys on various
generalizations and developments can be found in [8] and [3] . The description of best
possible inequalities of Hadamard-Hermite type are due to Fink [5] . A generalization
to higher-order convex functions can be found in [1] , while [2] offers a generalization
for functions that are Beckenbach-convex with respect to the two dimensional linear
space of continuous functions.

Recently in [4] , the authors established this inequality for twice differentiable
functions. In the case where f is convex then there exists an estimation better than
(1.1) and for this, they posed the following question:

If f is a convex function on I, do there exist real numbers l, L such that

f

(
a+b

2

)
� l � 1

b−a

∫ b

a
f (x)dx � L � f (a)+ f (b)

2
?

The aim of this paper is to give an affirmative answer to this question. Firstly we give a
simple proof of inequality (1.1) .
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THEOREM A. Assume that f : I →R is a convex function on I. Then the inequal-
ity (1.1) holds.

See [9, pp. 50–51], for details. This result can be easily improved by applying
(1.1) on each of the subintervals [a, (a+b)

2 ] and [ (a+b)
2 ,b] ; summing up side by side we

get

f

(
a+b

2

)
� l � 1

b−a

∫ b

a
f (x)dx � L � f (a)+ f (b)

2
, (1.2)

where

l =
1
2

(
f

(
3b+a

4

)
+ f

(
b+3a

2

))

and

L =
1
2

(
f

(
b+a

2

)
+

f (a)+ f (b)
2

)
.

Secondly, we prove the following result:

THEOREM 1.1. Assume that f : I → R is a convex function on I. Then for all
λ ∈ [0.1] , we have

f

(
a+b

2

)
� l (λ ) � 1

b−a

∫ b

a
f (x)dx � L(λ ) � f (a)+ f (b)

2
, (1.3)

where

l (λ ) := λ f

(
λb+(2−λ )a

2

)
+(1−λ ) f

(
(1+λ )b+(1−λ )a

2

)

and

L(λ ) :=
1
2

( f (λb+(1−λ )a)+λ f (a)+ (1−λ ) f (b)) .

COROLLARY 1.1. Assume that f : I →R is a convex function on I. Then we have
the following inequality

f

(
a+b

2

)
� sup

λ∈[0.1]
l (λ ) � 1

b−a

∫ b

a
f (x)dx � inf

λ∈[0.1]
L(λ ) � f (a)+ f (b)

2
, (1.4)

where l (λ ) ,L(λ ) are defined in Theorem 1.1.

REMARK 1.1. Applying Theorem 1.1 for λ = 1
2 we get inequality (1.2) .
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2. Lemma

In order to prove Theorem A, we shall need the following Lemma:

LEMMA 2.1. Let f be an integrable function on I. Then we have

1
b−a

∫ b

a
f (x)dx =

∫ 1

0
f (λb+(1−λ )a)dλ (2.1)

=
∫ 1

0
f (λa+(1−λ )b)dλ . (2.2)

Proof. We use the change of variables x = λb+(1−λ )a to prove (2.1) and we
use x = λa+(1−λ )b to prove (2.2) . �

3. Proof of the theorems

Firstly we give a simple proof of inequality (1.1) .

Proof of Theorem A. Because f is a convex function we have for all λ ∈ [0,1]

f

(
a+b

2

)
= f

(
λb+(1−λ )a+λa+(1−λ )b

2

)

� f (λb+(1−λ )a)+ f (λa+(1−λ )b)
2

� f (a)+ f (b)
2

,

then we can write

f

(
a+b

2

)
� f (λb+(1−λ )a)+ f (λa+(1−λ )b)

2
� f (a)+ f (b)

2
. (3.1)

Integrating (3.1) over [0,1] and using Lemma 2.1 we get (1.1) . �

Proof of Theorem 1.1. Let f be a convex function on I . Applying (1.1) on the
subinterval [a,λb+(1−λ )a], with λ �= 0, we get

f

(
λb+(2−λ )a

2

)
� 1

λ (b−a)

∫ λb+(1−λ )a

a
f (x)dx � f (a)+ f (λb+(1−λ )a)

2
.

(3.2)
Applying (1.1) again on [λb+(1−λ )a,b], with λ �= 1 we get

f

(
(1+λ )b+(1−λ )a

2

)
� 1

(1−λ )(b−a)

∫ b

λb+(1−λ )a
f (x)dx

� f (b)+ f (λb+(1−λ )a)
2

. (3.3)

Multiplying (3.2) by λ , (3.3) by (1−λ ) , and adding the resulting inequalities, we
get:

l (λ ) � 1
b−a

∫ b

a
f (x)dx � L(λ ) . (3.4)
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where l(λ ) and L(λ ) are defined as in Theorem 1.1.
Using the fact that f is a convex function, we obtain

f

(
a+b

2

)
= f

(
λ

(λb+(2−λ )a)
2

+(1−λ )
(1+λ )b+(1−λ )a

2

)

� λ f

(
λb+(1−λ )a+a

2

)
+(1−λ ) f

(
λb+(1−λ )a+b

2

)

� 1
2

( f (λb+(1−λ )a)+λ f (a)+ (1−λ ) f (b)) � f (a)+ f (b)
2

. (3.5)

Then by (3.4) ,(3.5) we get (1.3) . �

EXAMPLES.
(1) Let b > a � 0. For λ =

√
a√

a+
√

b
we get

l

( √
a√

a+
√

b

)
=

√
a√

a+
√

b
f

⎛
⎝
√

a
(√

a+
√

b
)

2

⎞
⎠+

√
b√

a+
√

b
f

⎛
⎝
√

b
(√

a+
√

b
)

2

⎞
⎠

and

L

( √
a√

a+
√

b

)
=

1
2

(
f
(√

ab
)

+
√

a f (a)+
√

b f (b)√
a+

√
b

)
.

(2) Let b > a � 0 and λ = a
a+b . We obtain

l

(
a

a+b

)
=

a
a+b

f

((
3ba+a2

)
2(a+b)

)
+

b
a+b

f

((
b2 +3ab

)
2(a+b)

)

and

L

(
a

a+b

)
=

1
2

(
f

(
2ba
a+b

)
+

a f (a)+b f (b)
a+b

)
(3) Let λ = cos2 θ , θ ∈ R, then we have

l
(
cos2 θ

)
= f

(
bcos2 θ+

(
1+sin2 θ

)
a

2

)
cos2 θ+ f

((
1+cos2 θ

)
b+asin2 θ

2

)
sin2 θ

and

L
(
cos2 θ

)
=

1
2

(
f
(
bcos2 θ +asin2 θ

)
+ f (a)cos2 θ + f (b)sin2 θ

)
.

REMARK 3.1. The right-hand side of the inequality (1.4), for L
(

1
2

)
, has been

proved by P. S. Bullen in 1978, [10, p. 140]. For L
( √

a√
a+

√
b

)
, the right-hand side of

the inequality (1.4) has been proved by J. Śandor in 1988 (see [11]) and for L
(

a
a+b

)
,

the right-hand side of the inequality (1.4) has been proved by S. S. Dragomir and C. E.
M. Pearce in 2000, [3, p. 10–11].

Acknowledgement. The author would like to thank the referee for his/her helpful
remarks and suggestions to improve the paper.



SIMPLE PROOF AND REFINEMENT OF HERMITE-HADAMARD INEQUALITY 369

RE F ER EN C ES
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