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SIMPLE PROOF AND REFINEMENT OF
HERMITE-HADAMARD INEQUALITY

ABDALLAH EL FARISSI

(Communicated by J. Pecari¢)

Abstract. In this note we give a simple proof and a new generalization of the Hermite-Hadamard
inequality.

1. Introduction and main results

Throughout this note, we denote by I the closed interval [a,b]. A real-valued
function f is said to be convex on I if A f(x)+ (1—A)f(y) = f(Ax+ (1 —A4)y) forall
x,y € I and 0 <A < 1. Conversely, if the opposite inequality holds, the function is
said to be concave on /. A function f that is continuous on / and twice differentiable
on (a,b) is convex on I if and only if " (x) >0 for all x € (a,b). (f is concave if and
only if £ (x) <0 forall x € (a,b)).

The classical Hermite-Hadamard inequality which was first published in [6] gives
us an estimate of the mean value of a convex function f: 1 — R,

() <t [ rmane OO

An account on the history of this inequality can be found in [7]. Surveys on various
generalizations and developments can be found in [8] and [3]. The description of best
possible inequalities of Hadamard-Hermite type are due to Fink [5]. A generalization
to higher-order convex functions can be found in [1], while [2] offers a generalization
for functions that are Beckenbach-convex with respect to the two dimensional linear
space of continuous functions.

Recently in [4], the authors established this inequality for twice differentiable
functions. In the case where f is convex then there exists an estimation better than
(1.1) and for this, they posed the following question:

If f is a convex function on /, do there exist real numbers /, L such that

f(aH’) <r< /hf(x)dsts M?

N

2 b—a

The aim of this paper is to give an affirmative answer to this question. Firstly we give a
simple proof of inequality (1.1).
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THEOREM A. Assume that f:1 — R is a convex function on I. Then the inequal-
ity (1.1) holds.

See [9, pp. 50-51], for details. This result can be easily improved by applying

(1.1) on each of the subintervals [a, @] and [@,b] ; summing up side by side we

get

b 1 b b
f(“; ><z<b_a/a F()dx<L< M (12)
where
1 3b+a b+3a
=5 (r(5) 0 (55))
and

L () Y.

Secondly, we prove the following result:

THEOREM 1.1. Assume that f: 1 — R is a convex function on I. Then for all
A €[0.1], we have

f<aJ2rb)<lm<bia/abf(”dxﬂ(lKM, (1.3)
where
I(A):=Af (M) +(1_;L>f<(1+7t>b;(1—x>a)
and

LA)=z(fAb+0-A)a)+Af(a)+(1—A)f()).

N =

COROLLARY 1.1. Assume that f : 1 — R is a convex function on 1. Then we have
the following inequality

f(““’)g sup 1(A) < — /bf(x)dxginf L) < LTI g

2 ref0.1] b—a €[0.1] 2

where [ (A),L(A) are defined in Theorem 1.1.

REMARK 1.1. Applying Theorem 1.1 for A = J we get inequality (1.2).
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2. Lemma

In order to prove Theorem A, we shall need the following Lemma:

LEMMA 2.1. Let f be an integrable function on I. Then we have

1
b—a

b 1
/af(x)dx:/of()tb—k(l—/l)a)d/l @.1)
:/Olf()ta—k(l—/l)b)d/l. 2.2)

Proof. We use the change of variables x =Ab+ (1 —A)a to prove (2.1) and we
use x =Aa+ (1 —A)b toprove (2.2). O
3. Proof of the theorems

Firstly we give a simple proof of inequality (1.1).

Proof of Theorem A. Because f is a convex function we have for all A € [0,1]

f<a_+b) :f<7tb+(l—)t)a+)ta+(1—/l)b)

2 2
< fAb+(1—-A)a)+ f(Aa+(1—A)b) < fla)+f(b)
~X 2 ~ 2 b

then we can write

f<a+b> < fAb+(1—-A)a)+ f(Aa+(1—-A)b) < f(a)—l—f(b).
2 2 2

(3.1)

Integrating (3.1) over [0,1] and using Lemma 2.1 we get (1.1). O

Proof of Theorem 1.1. Let f be a convex function on 7. Applying (1.1) on the
subinterval [a,Ab+ (1 —A)a], with A # 0, we get

—MNa Ab+(1-A)a a —A)a
f(/lb+(2 A) >< 1 /ubﬂ f(x)dng(>+f(/lb+(1 A)a)

2 S A(b—a) 2
3.2)
Applying (1.1) againon [Ab+ (1 —A)a,b], with A # 1 we get
(I+A)b+(1—A)a 1 b
() < i o 0
L0000 R)) 53

Multiplying (3.2) by 4, (3.3) by (1 —A), and adding the resulting inequalities, we
get:
1
1(A) <

“b—ua

/abf(x)dng(x). (3.4)
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where I(A) and L(A) are defined as in Theorem 1.1.
Using the fact that f is a convex function, we obtain

f<ﬂ> :f<gw+(l_k) (1+A)b+(1—x)a>

2 2 2
g)Lf<)tb+(1;x)a+a>Jr(l_Mf</lb+(1;l)aﬂa)
<SUAb+A-Ra)+Af@)+ (- A f o) < LT )
Thenby (3.4),(3.5) we get (1.3). O
EXAMPLES.
(1)Letb>a>0.F0r/l:\/a‘f\/};weget
ova o _va  (va(VarvB) e (VB(Va+Vh)
<\/E+\/E>_\/E+\/Ef 2 T Var v 2
and v
_Va N\ _ L[y Vaf @)+ Vbf(b)
L<ﬁ+¢5>_2<f<ﬁ> va++/b )

(2) Let b>a >0 and A = ;7. We obtain
3ba+a* b* 4 3ab
() g (3ba+d?) L b P (b*+3ab)
a+b a+b 2(a+D0) a+b 2(a+D)

{(25)-3(0(2)-2%)

(3) Let A =cos?6, 0 € R, then we have

2 1 : 2 1 2 .2
l(cosze) :f<bc0s 6+ (1+sin 6)a> 00526+f<( +cos? 0) b+asin 9)sin26

and

2 2

and
L(cos*0) = 1(f(bcos 0 +asin’0) + f (a)cos® 0 + f (b)sin*0) .

REMARK 3.1. The right-hand side of the inequality (1.4), for L(}), has been

proved by P. S. Bullen in 1978, [10, p. 140]. For L < f\/_ f) the right-hand side of

the inequality (1.4) has been proved by J. Sandor in 1988 (see [11]) and for L (54;).
the right-hand side of the inequality (1.4) has been proved by S. S. Dragomir and C. E.
M. Pearce in 2000, [3, p. 10-11].
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