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BOUNDS FOR EIGENVALUES OF A GRAPH

RAVINDER KUMAR

(Communicated by G. Styan)

Abstract. New lower bounds for eigenvalues of a simple graph are derived. Upper and lower
bounds for eigenvalues of bipartite graphs are presented in terms of traces and degree of vertices.
Finally a non-trivial lower bound for the algebraic connectivity of a connected graph is given.

1. Introduction

Let G = (V,E) be a simple graph with vertex set V = {v1,v2, . . . ,vn} and edge
set E of cardinality e . We assume di is the degree of the vertex vi , 1 � i � n . For
v ∈ V , the set of its neighbours is denoted by Nv . Let |Nv| denote the cardinality of Nv

and ci j = |Nvi ∩Nvj | .
Let A be a real or complex matrix of order n with real eigenvalues λi , 1 � i � n.

When A is the adjacency matrix of a simple graph G , let λi(G) ≡ λi , 1 � i � n denote
the eigenvalues of graph G . We always assume that these are arranged in decreasing
order,

λ1 � λ2 � . . . � λn.

Recall that the spread of A is, sprA = λ1−λn . Also the Laplacian L ,

L = D−A (1)

is the difference of the diagonal matrix, D = diag(d1, . . . ,dn) and the adjacency matrix
A of graph G . It is easily seen that L is a positive semidefinite matrix with each row
sum equal to zero. Further zero is an eigenvalue of L with eigenvector (1,1, . . . ,1)t .
We will denote the algebraic connectivity of G -the second smallest eigenvalue of L by,
α(G) . It is well known that α(G) is greater than zero if and only if G is a connected
graph(e.g. see[3]).

Given a square matrix B of order n, Bt will denote its transpose, and trB the
trace of B . Let ri(B) denote the 2-norm of the ith row of the matrix B and rmin(B)
denote the minimum of the 2-norms of all rows of B . Further by ‖.‖ we will denote
the 2-norm and by �x� the greatest integer function.

In section 2 we give new lower bounds for the largest eigenvalue λ1(G) , in terms
of degree and/or the number of common neighbours of vertices, namely ci j ’s . In
section 3 we give more results when G is a bipartite graph, in terms of traces of A and
degree of vertices. In section 4, we present a non-trivial lower bound for α(G) .

Below we state four results, that will be used in our study in the subsequent sec-
tions. The first result follows from Mirsky [6]:
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THEOREM A. Let B be a real symmetric square matrix of order n. Then,

sprA = 2max{|x∗Ay| | x,y ∈Cn,‖x‖ = ‖y‖ = 1,x∗y = 0}.
Next two theorems are proved in Wolkowicz and Styan [9].

THEOREM B. Let B be an n× n complex or real matrix with real eigenvalues
and let

m = trB/n, s2 = trB2/n−m2. (2)

Then

m− s(n−1)1/2 � λn � m− s/(n−1)1/2,

m+ s/(n−1)1/2 � λ1 � m+ s(n−1)1/2.

THEOREM C. Let B , m and s2 be defined as in Theorem B. Then for 2 � k �
n−1 ,

m− s

(
k−1

n− k+1

)1/2

� λk � m+ s

(
n− k

k

)1/2

. (3)

The final theorem is from Hong and Pan [5]:

THEOREM D. Let B be a Hermitian positive semidefinite square matrix of order
n. Then

λn �
(

n−1
n

) n−1
2

|detB| rmin(B)
∏n

k=1 rk(B)

2. Simple Graphs

Now we obtain lower bounds for the spectral radius for a simple graph G .The
following result ([2]) is always at least as good as the known inequality

λ1(G) � max
i

√
di.

THEOREM 1. Let A be the adjacency matrix of order n � 2 of a simple graph G .
Then

λ1(G) � 1√
2

max
j<i

√
di +d j +

√
(di−d j)2 +4c2

i j. (4)

Proof. The largest eigenvalue of A is greater than or equal to the largest eigenvalue
of any principal submatrix of A . Any principal submatrix of order two of A2 is,(

at
iai at

iaj
at

jai at
jaj

)
,

where ai is the ith column vector of the matrix A . The square root of its largest
eigenvalue is

1√
2

√
di +d j +

√
(di −d j)2 +4c2

i j.

Now the inequality follows.



BOUNDS FOR EIGENVALUES OF A GRAPH 401

THEOREM 2. When A is the adjacency matrix of order n of a simple graph G ,
we have [

1
n

n

∑
i=1

(di +2∑
j>i

ci j)2
]1/4

� λ1(G). (5)

Proof. For a real symmetric B , using Rayleigh quotient, with u = (1, . . . ,1)t , we
have,

λ 2
1 � utB2u

n
=

(Bu)t (Bu)
n

=
n

∑
i=1

r2
i /n, (6)

where, ri is the ith row sum of B .
Also A2 = (ci j) , with, cii = di . The inequality (5) follows by applying (6) to

B = A2 .

The result below generalizes the inequality derived in Johnson et al. [7].

THEOREM 3. When A is the adjacency matrix of order n of a simple graph G ,
we have

sprA � 2
∑n

i=1 d1+α
i −∑n

i=1 did

n
√

∑n
i=1 d2α

i
n −d2

,

where, d = ∑i=n
i=1 dαi

n and α � 1 .

Proof. Let y = 1√
n (1,1, . . . ,1)t and vector u with ui = dαi

d − 1,1 � i � n, where

d = ∑n
i=1 dαi

n . Then with x = u
‖u‖ , in Theorem A, we get

sprA � 2√
n‖u‖

∣∣∣∣∑n
i=1 d1+α

i

d
−

n

∑
i=1

di

∣∣∣∣.
Furthermore

∑n
i=1 d1+α

i

d
−

n

∑
i=1

di

is positive for α = 1 and is an increasing function of α , for α � 1. The proof is now
clear.

3. Bipartite Graphs

3.1. More eigenvalue bounds

When A is an adjacency matrix of order n of a simple graph G , with n vertices,
trA2 = 2e and trA4 = 2(e +∑ j 
=i ci j + 4c4(G)) , where c4(G) is number of 4-cycles
in G (Harary [4]). Below we utilize the theorems of Wolkowicz and Styan [9] (see
Section 1) to get bounds in terms of traces of powers of A , when G a bipartite graph.
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For the adjacency matrix A of a bipartite graph G , with M = trA4, p = � n
2� , we

redefine

m = e/p and s2 =
M
2p

−m2. (7)

The following result now follows from Theorem B:

THEOREM 4. Let A be the adjacency matrix of order n of bipartite graph G .
Then with m and s as in (7),

max(0,
e
p
− s

√
p−1) � λ 2

p(G) � e
p
− s√

p−1
,

e
p

+
s√

p−1
� λ 2

1 (G) � e
p

+ s
√

p−1. (8)

Proof. When G is a bipartite graph eigenvalues of the symmetric matrix A are
symmetric about origin. Thus A2 has at most p distinct, positive eigenvalues. Now the
inequalities (8) follow when we apply Theorem B to the matrix A2 .

For the remaining eigenvalues of a bipartite graph we have the following bounds:

THEOREM 5. Let A be the adjacency matrix of a bipartite graph G . Then with
m and s as in (7) and for 2 � k � p−1 ,

max

(
0,

e
p
− s

√
k−1

p− k+1

)
� λ 2

k (G) � e
p

+ s

√
p− k

k
. (9)

Proof. The argument is the same as in above theorem except that we now use
Theorem C.

More generally define,

ml =
trA2l−1

2p
,Ml = trA2l

, and s2
l =

Ml

2p
−ml

2, (10)

where p = � n
2� and l is any positive integer, l � 1. We note that matrix A has at most

p distinct, positive eigenvalues.
Proceeding as above we deduce the following results:

THEOREM 6. Let A be the adjacency matrix of a bipartite graph G . Then with
ml and sl as in (10),

max(0,ml − sl

√
p−1) � λ 2l−1

p (G) � ml − sl√
p−1

,

ml +
sl√
p−1

� λ 2l−1

1 (G) � ml + sl

√
p−1. (11)
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THEOREM 7. Let A be the adjacency matrix of a bipartite graph G , then with
ml and sl as in (10),

max

(
0,ml − sl

√
k−1

p− k+1

)
� λ 2l−1

k (G) � ml + sl

√
p− k

k
, 2 � k � p−1. (12)

Further Theorem 3 yields the following result:

THEOREM 8. When A is the adjacency matrix of a bipartite graph G ,

λ1 � ∑n
i=1 d1+α

i −∑n
i=1 did

n
√

∑n
i=1 d2α

i
n −d2

, (13)

where, α � 1 and d = ∑i=n
i=1 dαi

n .

3.2. Examples

We now compare our bounds for the largest eigenvalue, for two trees. Both the
examples are taken from Cvetković et al. [1]. All numerical eigenvalues are given
approximately. We recall that a tree is a bipartite graph. The first graph (2.139, [1]) is:

� �
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�
���

�

�

�

��
��

�

�
���

The actual value of the largest eigenvalue is 2.307. The lower bounds for this
eigenvalue are:

inequality (4) (5) (8)
bound value 2.101 2.240 1.664

The upper bound of inequality (8) is 2.383.
The second graph (2.161, [1]) is:

� � � � � � � ��
��

�

�
���

The actual value of the largest eigenvalue is 2.119.The lower bounds for this eigen-
value are:

inequality (4) (5) (8)
bound value 2.101 2.030 1.631

The upper bound of inequality (8) is 2.289.
We conclude that lower bounds given by (4) and (5), as well as the upper bound of

inequality (8) are good for both the examples considered.
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4. Algebraic Connectivity

In this section we obtain a lower bound for the algebraic connectivity of a con-
nected graph G .

THEOREM 9. Let G be a simple connected graph and L be its Laplacian matrix.
Then

α(G) �
(

n−2
n−1

) n−2
2

τ(G) max
1�i�n−1

rmin(Li)

∏n−1
l=1 rl(Li)

> 0 (14)

where Li is a principal submatrix of L obtained after deleting ith row and column of
L and τ(G) is the number of spanning trees.

Proof. Employing Matrix Tree theorem (e.g. see West [8]) we get, that determi-
nants of all principal minors are positive and equal τ(G) . The first inequality in (14)
now follows from Theorem D. The second inequality follows noticing G is connected
if and only if rank of L is n−1.
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[1] D. M. CVETKOVIĆ, M. DOOB AND H. SACHS, Spectra of Graphs, Academic Press, 1979.
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