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Abstract. In the present note we derive new explicit upper bounds on some fundamental integral
inequalities which can be used as tools in the study of a class of Volterra-Fredholm type integral
equations. Some applications are also given to illustriate the usefulness of one of our results.

1. Introduction

In the study of parabolic equations which describe diffusion or heat transfer phe-
nomena, the integral equations of the form

u(x,t) = h(x,t)+
t∫

0

∫
B

F (x,t,y,s,u(y,s))dyds, (1.1)

occur in a natural way, see [1, p.18], [5, Chapter VI] and also [2-4]. The equation
(1.1) appears to be Volterra type in t , and of Fredholm type with respect to x . We
can view it as a mixed Volterra-Fredholm type integral equation. For the existence and
uniqueness of solutions of equation (1.1), see [6]. It is relevant to mention the fact that
the explicit bounds provided by the integral inequalities available in the literature are
not directly applicable to study the qualitative behavior of solutions of equations of the
form (1.1), see [7,8,10]. It is desirable to find explicit bounds on certain fundamental
integral inequalities which will be equally important to achieve a diversity of desired
goals. The main aim of the present note is to establish new explicit bounds on certain
fundamental integral inequalities which can be used as powerful tools in handling the
equations of the form (1.1). Some applications are also given to convey the importance
of one of our results.

2. Statement of Results

Let R denote the set of real numbers, R+ = [0,∞) ,R1 = [1,∞) be the given subsets
of R and B be a bounded domain in Rn , the n -dimensional Euclidean space defined
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by B =
n
∏
i=1

[ai,bi] (ai < bi) . Let x = (x1, ...,xn) (xi ∈ R) is a variable point in B , dx =

dx1...dxn and ′ the derivative of a function with respect to t ∈ R+ . For any continuous

function z : B→R, we denote by
∫
B

z(x)dx the n -fold integral
bn∫
an

...
b1∫
a1

z(x1, ...,xn)dx1...dxn.

Let Δ= B×R+ and denote by C (S1,S2) the class of continuous functions from the set
S1 to the set S2.

Our main results are given in the following theorems.

THEOREM 1. Let u, p , q , f , g ∈C (Δ,R+) .
(a1) If

u(x, t) � p(x,t)+q(x,t)
t∫

0

∫
B

[ f (y,s)u(y,s)+g(y,s)]dyds, (2.1)

for (x, t) ∈ Δ, then

u(x, t) � p(x,t)+q(x,t)
t∫

0

∫
B

[ f (y,s) p(y,s)+g(y,s)]

× exp

⎛
⎝

t∫
s

∫
B

f (z,τ)q(z,τ)dzdτ

⎞
⎠dyds, (2.2)

for (x, t) ∈ Δ .
(a2) Let c � 0 and 0 < α < 1 be real constants. If

u(x, t) � c+
t∫

0

∫
B

[ f (y,s)u(y,s)+g(y,s)uα (y,s)]dyds, (2.3)

for (x, t) ∈ Δ, then

u(x,t) � exp

⎛
⎝

t∫
0

∫
B

f (z,τ)dzdτ

⎞
⎠

×
⎡
⎣c1−α +(1−α)

t∫
0

∫
B

g(y,s)exp

⎛
⎝−(1−α)

s∫
0

∫
B

f (z,τ)dzdτ

⎞
⎠dyds

⎤
⎦

1
1−α

, (2.4)

for (x, t) ∈ Δ .
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REMARK 1. If we take g = 0 in (2.1), then the bound obtained in (2.2) reduces to

u(x, t) � p(x,t)+q(x,t)
t∫

0

∫
B

f (y,s) p(y,s)

× exp

⎛
⎝

t∫
s

∫
B

f (z,τ)q(z,τ)dzdτ

⎞
⎠dyds, (2.5)

for (x, t) ∈ Δ . In this case, we observe that the obtained result is a new variant of
the inequality in Corollary 4.3.1 given in [7, p. 329]. We note that the bound on the
unknown function u(x,t) involved in (2.3) when α �= 1,1 < α < ∞ can be obtained
by closely looking at the proof of inequality given in [7, Theorem 1.7.4, p. 153]. By
taking (i)g = 0 and (ii) f = 0 in (2.3), it is easy to see that the bound obtained in (2.4)
reduces respectively to

u(x,t) � cexp

⎛
⎝

t∫
0

∫
B

f (z,τ)dzdτ

⎞
⎠ , (2.6)

and

u(x,t) �

⎡
⎣c1−α +(1−α)

t∫
0

∫
B

g(y,s)dyds

⎤
⎦

1
1−α

, (2.7)

for (x, t) ∈ Δ .

THEOREM 2. Let f ,g ∈C (Δ,R+) and k � 0,c � 1,β > 1 be real constants.
(b1) If u ∈C (Δ,R+) and

uβ (x, t) � kβ +β
t∫

0

∫
B

[
f (y,s)u(y,s)+g(y,s)uβ (y,s)

]
dyds, (2.8)

for (x, t) ∈ Δ, then

u(x,t) � exp

⎛
⎝

t∫
0

∫
B

g(z,τ)dzdτ

⎞
⎠

×
⎡
⎣kβ−1 +(β −1)

t∫
0

∫
B

f (y,s)exp

⎛
⎝−(β −1)

s∫
0

∫
B

g(z,τ)dzdτ

⎞
⎠dyds

⎤
⎦

1
β−1

, (2.9)

for (x, t) ∈ Δ .
(b2) If u ∈C (Δ,R1) and

u(x,t) � c+
t∫

0

∫
B

f (y,s)u(y,s) logu(y,s)dyds, (2.10)
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for (x, t) ∈ Δ, then

u(x,t) � c
exp

(
t∫
0

∫
B

f (y,s)dyds

)
, (2.11)

for (x, t) ∈ Δ .

REMARK 2. If we take g = 0 in (2.8), then the bound obtained in (2.9) reduces to

u(x,t) �

⎡
⎣kβ−1 +(β −1)

t∫
0

∫
B

f (y,s)dyds

⎤
⎦

1
β−1

, (2.12)

for (x, t) ∈ Δ . By taking g = 0 and β = 2 in part (b1) , we get a new variant of the
inequality given in Theorem 5.8.1 in [7, p. 527].

3. Proofs of Theorems 1 and 2

Since the proofs resemble one another, we give the details for (a1) and (b1) only;
the proofs of (a2) and (b2) can be completed by following the proofs of (a1) and (b1)
and closely looking at the ideas used in the proofs of Theorems 2.7.4 and 3.8.1 given in
[7]

(a1) Introducing the notation

e(s) =
∫
B

[ f (y,s)u(y,s)+g(y,s)]dy, (3.1)

in (2.1) we get

u(x,t) � p(x,t)+q(x,t)
t∫

0

e(s)ds, (3.2)

for (x, t) ∈ Δ. Define

m(t) =
t∫

0

e(s)ds, (3.3)

for t ∈ R+, then m(0) = 0 and from (3.2) we have

u(x,t) � p(x,t)+q(x,t)m(t) , (3.4)

for (x, t) ∈ Δ . From (3.3), (3.1) and (3.4) we observe that

m′(t) = e(t) =
∫
B

[ f (y,t)u(y,t)+g(y,t)]dy

�
∫
B

[ f (y,t){p(y,t)+q(y,t)m(t)}+g(y,t)]dy

= m(t)
∫
B

f (y,t)q(y,t)dy+
∫
B

[ f (y,t) p(y,t)+g(y,t)]dy. (3.5)
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The inequality (3.5) implies (see [7, Theorem 1.3.2])

m(t) �
t∫

0

∫
B

[ f (y,s) p(y,s)+g(y,s)]exp

⎛
⎝

t∫
s

∫
B

f (z,τ)q(z,τ)dzdτ

⎞
⎠dyds, (3.6)

for (x, t) ∈ Δ . Using (3.6) in (3.4) we get the required inequality in (2.2).

(b1) Introducing the notation

E (s) =
∫
B

[
f (y,s)u(y,s)+g(y,s)uβ (y,s)

]
dy, (3.7)

in (2.8) we get

uβ (x,t) � kβ +β
t∫

0

E (s)ds. (3.8)

Let k > 0 and define

z(t) = kβ +β
t∫

0

E (s)ds, (3.9)

then z(0) = kβ and from (3.8) we have

uβ (x,t) � z(t) , (3.10)

for (x, t) ∈ Δ. From (3.9), (3.7), (3.10) we observe that

z′ (t) = βE (t) = β
∫
B

[
f (y,t)u(y,t)+g(y,t)uβ (y,t)

]
dy

� β
∫
B

[
f (y,t)(z(t))

1
β +g(y,t) z(t)

]
dy

= β

⎡
⎣z(t)

∫
B

g(y,t)dy+(z(t))
1
β

∫
B

f (y, t)dy

⎤
⎦ . (3.11)

The inequality (3.11) implies (see [7, Theorem 3.5.5])

z(t) � exp

⎛
⎝β

t∫
0

∫
B

g(z,τ)dzdτ

⎞
⎠

⎧⎨
⎩kβ−1 +(β −1)

t∫
0

∫
B

f (y,s)

×exp

⎛
⎝−(β −1)

s∫
0

∫
B

g(z,τ)dzdτ

⎞
⎠dyds

⎫⎬
⎭

β
β−1

. (3.12)

Using (3.12) in (3.10) we get the required inequality in (2.9). If k � 0, we carry out the
above procedure with k + ε instead of k , where ε > 0 is an arbitrary small constant,
and subsequently pass to the limit as ε → 0 to obtain (2.9).
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4. Some applications

In this section, we apply the inequality established in Theorem 1, part (a1) to
obtain explicit estimates on the solutions of equations of the form (1.1), which occur in
a wide variety of applications (see [1-6]). For the existence and uniqueness of solutions
of equation of the form (1.1), see [6].

The following theorem deals with the estimate on the solution of equation (1.1).

THEOREM 3. Suppose that h ∈C (Δ,R) ,F ∈C
(
Δ2×R,R

)
and

|F (x,t,y,s,u)| � q(x,t) f (y,s) |u| , (4.1)

where q, f ∈C (Δ,R+) . If u(x,t) is any solution of equation (1.1) on Δ , then

|u(x, t)| � |h(x,t)|+q(x,t)
t∫

0

∫
B

f (y,s) |h(y,s)|

×exp

⎛
⎝

t∫
s

∫
B

f (z,τ)q(z,τ)dzdτ

⎞
⎠dyds, (4.2)

for (x, t) ∈ Δ.

Proof. Let u ∈C (Δ,R) be a solution of equation (1.1). Then from the hypotheses,
we have

|u(x,t)| � |h(x,t)|+q(x,t)
t∫

0

∫
B

f (y,s) |u(y,s)|dyds. (4.3)

Now a suitable application of the inequality in Theorem 1, part (a1) (when g = 0) to
(4.3) gives the desired estimate in (4.2).

We next consider the following two mixed Volterra-Fredholm type integral equa-
tions

v(x,t) = h1 (x,t)+
t∫

0

∫
B

L(x,t,y,s,v(y,s))dyds, (4.4)

w(x,t) = h2 (x,t)+
t∫

0

∫
B

M (x,t,y,s,w(y,s))dyds, (4.5)

where h1,h2 ∈C (Δ,R) and L,M ∈C
(
Δ2×R,R

)
.

The following theorem holds.
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THEOREM 4. Suppose that the function L in equation (4.4) satisfies the condition

|L(x,t,y,s,v)−L(x,t,y,s,w)| � q(x,t) f (y,s) |v−w| , (4.6)

where q, f ∈ C (Δ,R+) . Then for every solution w ∈ C (Δ,R) of equation (4.5) and
v ∈C (Δ,R) a solution of equation (4.4), we have the estimation

|v(x, t)−w(x, t)| � [h(x,t)+ r (x,t)]+q(x,t)
t∫

0

∫
B

f (y,s) [h(y,s)+ r (y,s)]

×exp

⎛
⎝

t∫
s

∫
B

f (z,τ)q(z,τ)dzdτ

⎞
⎠dyds, (4.7)

for (x, t) ∈ Δ , in which
h(x,t) = |h1 (x,t)−h2 (x,t)| , (4.8)

r (x, t) =
t∫

0

∫
B

|L(x,t,y,s,w(y,s))−M (x, t,y,s,w(y,s))|dyds, (4.9)

for (x, t) ∈ Δ.

Proof. Using the facts that v(x,t) and w(x,t) are respectively the solutions of
equations (4.4) and (4.5) and hypotheses, we have

|v(x, t)−w(x, t)| � |h1 (x,t)−h2 (x,t)|

+
t∫

0

∫
B

|L(x,t,y,s,v(y,s))−L(x,t,y,s,w(y,s))|dyds

+
t∫

0

∫
B

|L(x,t,y,s,w(y,s))−M (x,t,y,s,w(y,s))|dyds

� [h(x, t)+ r (x,t)]+q(x,t)
t∫

0

∫
B

f (y,s) |v(y,s)−w(y,s)|dyds. (4.10)

Now a suitable application of Theorem 1, part (a1) (when g = 0) to (4.10) yields (4.7).

REMARK 3. We note that, Theorem 1, part (a1) (when g = 0) can be used to
establish the basic results on the uniqueness and continuous dependence of solutions of
equation (1.1) by closely looking at the results recently given in [9]. Moreover, many
generalizations, extensions, variants and applications of the inequalities given above are
also possible. We leave it to the reader to fill in where needed. We hope that the results
given here will encourage further research and widen the scope of their applications.
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