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Abstract. The purpose of this paper is to evaluate the limit .# (a) of the sequence

1 1 1
<ﬁ+ va+1 e va+n—1 —2(m—ﬁ)>

where a € (0,+e0). We give some lower and upper estimates for

neN

1 1 1
ﬁ—i— a+1+‘..+m—2(\/a+n— —Va)— 4 (a), neN.

1. Introduction

In the problem proposed by A. G. Ioachimescu [8] in 1895, it is asked to be shown
that the sequence (Sy),en, defined by S, = 1+ \/LE +t ﬁ —24/n, foreach n € N,
is convergent and its limit lies between —2 and —1.

There have been given many generalizations and other results regarding Ioachi-
mescu’s problem in the literature (see, for example, [1], [2], [3], [4, Theorem 1, parts a)
and b)], [5, problem 3, p. 534], [6, problem 3.1, p. 431], [7, problem P2, parts (i) and
@i)], [9, pp. 27-33], [10], [11], [12]).

As it is mentioned in [4, p. 199], M. Bétinetu-Giurgiu proposed in 1992 the following
problem. Let a,r € (0,+o0) and (a,),en be the sequence defined by a, =a+ (n—1)r,

¢ L i
for each n € N. Show that the sequence (rkg1 N 2\/a_n>nEN is convergent.

We consider the sequence (I,),cn defined by I, = 1+ % +ot ﬁ —2(y/n—1),
for each n € N. Also, we denote the limit of (I,),en by -# and we call it Ioachimescu’s
constant.

In Section 2 we present a generalization of Ioachimescu’s constant as the limit

1 1 1
of the sequence (75 tana Tt e 2(Va+n—1- ﬁ))neN, where a €
(0,+o0), and we denote this limit by .#(a). In Section 3 we give estimates for I, —

. . . . 1 1 1
4, n €N, and in Section 4 we give some estimates for 7 + +-+ e

a+1
2Va+n—1—+/a)— F(a), ne N\ {1}.
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2. The number .7 (a)

THEOREM 2.1. ([10], Theorem 2) Let a € (0,+c0). We consider the sequences
(xn(@))nen and (yn(a))nen defined by

1 1

1
xn(a)=%+ —a+1+---+7m—2(\/a+n—\/5)
and
1 1 1
yn(a):%‘i‘ —a+1+---+7m—2(\/a+n— —\/L_l),

foreach n € N.
Then:

(i) the sequences (x,(a))nen and (yn(a))npen are convergent to the same number,
which we denote by .9 (a), and satisfy the inequalities x,(a) < x,+1(a) < Z(a) <
Ynt1(a) < yn(a), for each n € N;

.. 1
(i) O<7—2(\/a—|— —va) < F(a) < \/E
(i) Jim /(7 (@) ~x1(a)) = 5 and lim Va(n(a) ~ (@) = 3.

REMARK 2.1. The sequence (y,(a))uen from Theorem 2.1, for a = 1, becomes
the sequence (I,),en, s0 (1) = .7.

REMARK 2.2. Taking into account the inequalities from part (i) of Theorem 2.1,
using the computer program MAPLE, we obtain, for example:

1.2241...=x1000 () <7 (3) <yio00 (3) =1.2557...;

1.0208. .. = x1000 (§) < f( ) <y1000( ) =1.0524..

0.7935... =x1000 (3) < # (3) <1000 (3) =0.8251..

0.5238...:)61000(1)<j(l)<y1()()()( ) 05554...,
0.3522... leoo()(Z) < f(Z) <y1000(2) 0.3838...;
0.2808... :x1000(3) < ](3) <y1000(3) 0.3124...;
0.2394...= x1000(4) < ](4) < y1000(4) 0.2709....

THEOREM 2.2. ([10], Theorem 3) Let a € (0,+c0). We consider the sequences
(xn(@))nen and (yn(a))nen from the enunciation of Theorem 2.1, of which limit we
denoted by #(a).

Then:
1 1
3 < F(a) —xy(a) < , hneN;
(@ 2va+n (@) = xa(a) Va+n+vVa+n—1 for each n

! < yn(a) = S (a) < ——
Vatn+va+n—1 o 2va+n—1

, for each n € N.

(i)
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3. Lower and upper estimates for /, — .7

THEOREM 3.1. Let p € N. We consider the sequence (I,)nen, presented in Sec-
tion 1, of which limit we denoted by .7 .
Then

1 1
— <L - I < —,
2yn+o, " 2yn+p
foreach n€ N, n> p, with o, = \/Ap+3—+/p+1—/p and B =0.
Proof. We consider the sequence (u,(r)),en defined by

Gy p—
n(r) =hh— s—F——,
! 2/n+r
for each n € N, where r > —2. We have
1 1
—uy(r) = ——= +1 +
1 (r) = hn(r) W N e N E = Eu i
R 2 2Wntl-vi)
vn+1l Vn+l+n  2vVn+1+r)(2yn+r)
1 -1 2

B Vn+1+y/n \/n+1(\/n+l+\/ﬁ)+(2\/m+r)(2\/ﬁ+,)
C2(n+ 1) = 2y/n(n+ 1) = 2r(Vnt 1+ /) — 2
T VR IV RV T RV

foreach n € N. Set A, :=/n(n+1) and w, :=+/n+ 1++/n, forany n € N. Clearly,
A2 =n(n+1) and u? =2n+ 1+24,, for each n € N. It is not difficult to see that

- W and u2 —4A, = #,foreach n € N. So,
pr =40 =2y — 1 + 1
Uny1(r) —un(r) = 2
Vi 1(Vn+ T+ n)2(2vn+1+7)(2y/n+r)
B —2rp + (1 =)y +1
WA/ L(Vat L+ a2 (2v/n+ 1+r)(2y/n+r)
forany n € N.

We consider the function f: (—2,+o0) x [v24 1, +e) — R, defined by
flrnp) ==2r> + (1 —r)u*+1,

for each (r,u) € (—2,40) x [V2+ 1, 40).
One of the two solutions of the equation —‘u;tz — Z,uf,t + ug +1=01is ap, =

VAp+3—+/p+1—,/p. We have g—i(nu) = —2uBru+r*—1), foreach (ru) €

d
(—=2,+0) x [V/2 4 1,+00). It is not difficult to verify that ﬁ((xmu) < 0, for any
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U € [Up,+e0), which means that 0 = f(o,, 1p) > f(0y, 1), for each u € (U, +o).
So, tp1(0) —un(0y,) <0,foreachn €N, n> p+1,i.e. the sequence (1, (p))nzp+1
is strictly decreasing. Also, because f(c,,1,) = 0, itis clear that up,1(0,) = up(arp).
We have nlgrolo up(0p) = . Now we can write that

1

I =L, ——
<Mn(OCp) n 2\/%"‘0(17’

foreachne N, n>p.

We have that £(0,u) = u?>+1> 0, for each u € [v/2+ 1,+). So, u,11(0) —
u,(0) > 0, for each n € N, i.e. the sequence (u,(0)),cn is strictly increasing. We have
nlgrolo u,(0) = .# . Now we can write that

1

[, — —
nz\/ﬁ

=u,(0) < .7,
foreach n e N. I

REMARK 3.1. The sequence () ecn definedby o, =+/4p+3—+/p+1—,/p,
for each p € N, is strictly decreasing.

THEOREM 3.2. We consider the sequence (I,)nen, presented in Section 1, of
which limit we denoted by .7 .

Then | |
— <L - I < —,
2yn+a " 2\/n+B
2.9 —1

foreach n e N, with a = T—7 and B =0.

Moreover; the constants 0. and B are the best possible with this property.

Proof. We follow the proof of Theorem 3.1, with p = 2, regarding the lower
estimate. One of the two solutions of the equation —u3r> —2u3t+u3 +1 =0 is

0
o = V11 —+/3—+/2. 1t is not difficult to verify that %(az,u) <0, for any u €

[V/2+ 1, 4oc0), which means that
flon, ) > 0= f(on, 1) > f(oa, 1),

foreach u € (U, +o0). Therefore

1

7 e
<un(a2) n 2\/7_14—0(2,

for each n € N\ {1}. Clearly, because f(cn,u;) > 0, we have that uy(0n) — u; (o) >
0. It is easy to see that u; (o) =1; — ﬁ < #, hence the lower estimate does not
hold for n =1, with o5.
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2
We have a; > o > 0. With o = 1 we have the equality

1
— =L -4,
24+ !

0d
Taking into account that a—f(n,u) = 2u(u+r) <0, for any (r,u) € (—2,+0) x
r

[V/2+1,+90), we are able to write that 0 > f(cp, ) > f(o, u), foreach u € [up, 4oo).
So, upt1(0) —un(0r) <0, foreach n € N\ {1}, i.e. the sequence (u,(0t)),>2 is strictly
decreasing. We have lim u, (o) = .# . Now we are able to write that

n—oo

1

Sl =h e e

foreach ne N\ {1}. O

4. Some estimates for y,(a) — .7 (a)

THEOREM 4.1. Let a € (0,+e0). We consider the sequence (y,(a))nen from the
enunciation of Theorem 2.1, of which limit we denoted by ¥ (a).

Then
1 1

——— < yy(a) - I (a) < ————,
2,/a+n—‘5—‘ 2\/a+n—%

foreach n e N\ {1}.
Proof. We consider the sequences (u,(a))nen and (vy(a))nen defined by
1

un(a) =yn(a) — ———=
2wa+n—%
and {
va(@) = yn(a) — ——=,
2wa+n—%
foreach n € N.
We have
(@)~ (@) = e~ 2@ T~ VT =T~ — ey
upyi(a) —up(a) = — at+n—va+n—1)— )
atn 2 a—l—n—i—% 2 a—l—n—g—‘
foreach n € N. Set x := a+n. We have
1 1

1
E(x) ::W—Z(\/E—\/x—l) A

1 4
1 2 VXts—\/X—3

VAT S e e )
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—1 1
_|_
VIV o ey =) (Ve b i)

Vi 12 A= 2/l 5 G- 8) (e b o)
2VA(EH VT2 (t §) (- 3) Wﬁgw _g)
e 1 2R T 4 ) (- §) (Vo by )

2VAVEH VI T2 (ot 1) (e 3) <\/x+%+\/ _g)
1

Vi - 12 ) 42 D G ) (ko)

Also, we have that

= st 2 () oo 2) (Yo Ery )

2

X

_ 4148
5575 125
—4 lZ(xz——x—i> \/<x+l)< ——) —x(2x—1) x(x—l)]
5525 5
4, 1 48
AR A UT:

oy 4(x*—3x— 5)2 (x+1) (x—2)—Fx—1)*(x—1)
1 4
5 5

2(2—2x—£)\/(x+1) (x—3) +x(2x— 1) /x(x— 1)

4, 1 48
= ——xX +-x— —
5 5 125

45 134 61 3_ 48 2 576 256

4. Y X+ 558 — 155X~ 315X T 15605

2(2— Jr- ) /(6 ) (x— 3) 4 2(2v - DVAG )

= — [(x— 1) (gx—l—%) +%ﬂ

A\2(4.3 3.2, 4l 472\ | 26124 236256
(x—2) (sx +5% +25’“’125)+ 3125~ 15625

22~ b= ) /() G ) +x2e- DYET )

It follows that F(x) < 0 and therefore E(x) < 0, for any x € (2,4o). This means
that u,41(a) —un(a) <0, for each n € N\ {1}, i.e. the sequence (u,(a))n>2 is strictly
decreasing. Using this, as well as the fact that lim u,(a) = . (a), we are able to write

—4.
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that
1

n )
2wa+n—§

f(a) < Mn(a) = yn(a) -

foreach n € N\ {1}.
We have
1 1 1

Vpr1(a) —v(a) = —=—-2(Va+n—va+tn—1)— + ,
vatn 2 a—l—n—i—% 2 a—|—n—%

foreach n € N. Set x := a+n. We have

2(Va—vx—1 +
\/_ 8 )2x+6 24/x—

5
1 2 VEts =3

T e
-1 1

T D o) (o by )
V=126 0) -2l ) =) (Ve d )

ARV ) (- ) (¢x+%+¢ —%)
W12 G DR 4 e ) - 8) (o d o d)

2R EVED (e ) (- ) (e b+ x_g)

X

Glx) =

V- L AT 42y o ) G- 1) (Vb b))

Also, we have that

S O [ ()
R )

L 104, 2@V 4<x2—%x—5—6>2<x+é><x—%>
2
-3

110
—Sx——44lx
A

327 - D)V — D42 (x

A
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4.4 _55.3 55 .2 125
_L_ 1o, 30— 0+ T+ 155+ e
PO e VAR D202 B )y ) (6 8)
L. 1o (x=2) (3 + 737 + og + 57) + TGt

:gx_ﬁ+4 2)6—1\/ﬁ—|—2(x2 x—%)q/(x—f—g)(x—i)'

It follows that H(x) > 0 and therefore G(x) > 0, for any x € (2,+e0). This means
that v, (a) —vy(a) > 0, for each n € N\ {1}, i.e. the sequence (v,(a)),>> is strictly
increasing. Using this, as well as the fact that lim v,(a) = % (a), we are able to write

that
1

(@) = ———=
2Ma+n—%

foreach ne N\ {1}. O

=w(a) < F(a),

REMARK 4.1. We have
1 1
<
Vatn+vatn—1 5 a—l—n—%

and
1 1

< )
5 2va+n-—1
24/a+n—z3 4

for each n € N\ {1}. So, the lower estimate and the upper estimate from Theorem 4.1
are finer than those from part (ii) of Theorem 2.2, for n € N\ {1}.

REMARK 4.2. From Theorem 4.1 it follows that
1 1

vp(a) = yu(a) — ———— < H(a n(a) — ——— = uy(a),
()Y()2m<()<>’() (a)

/ 4
2 Cl"‘n—g

for each n € N\ {1}. Taking into account these inequalities, using the computer pro-
gram MAPLE, we obtain, for example

1.2399636.... = vigoo ( 1) S () <urooo (3) =1.2399638.. ;
1.0366172.. _vmoo( ) < F(3) <uiooo (3) =1.0366175..;
0.8093148... = vig00 (3) < -7 (3) < w1000 (3) =0.8093151...;
0.5396455... = vl()()()(l) < f(l) < ul()()()(l) 0.5396459.. .;
0.3680726... = vig00(2) < £ (2) < u1000(2) = 0.3680730.. .;
0.2966403... = v1000(3) < f(3) < u1000(3) 0.2966407 .. .;
0.2551885...= V1000(4) < f(4) < u1000(4) 0.2551888....

COROLLARY 4.1. We consider the sequence (I,),en, presented in Section 1, of
which limit we denoted by ¥ .
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Then | |
_— <, - I <,

2y/n+1 2y/n+1
for each n e N.

Proof. We take a =1 in Theorem 4.1 and it is not difficult to see from the proof
of this theorem that the estimates hold for n = 1 too in this case. [J

Having in view the results obtained so far, it would be an interesting problem to
be found the best possible constants o and 3, with the property that

1 1
— <, - I —,
2vn+o " 2\/n+p
foreach n € N.
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