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Abstract. The purpose of this paper is to evaluate the limit I (a) of the sequence(
1√
a

+
1√

a+1
+ · · ·+ 1√

a+n−1
−2(

√
a+n−1−√

a)
)

n∈N

,

where a ∈ (0,+∞) . We give some lower and upper estimates for

1√
a

+
1√

a+1
+ · · ·+ 1√

a+n−1
−2(

√
a+n−1−√

a)−I (a), n ∈ N.

1. Introduction

In the problem proposed by A. G. Ioachimescu [8] in 1895, it is asked to be shown
that the sequence (Sn)n∈N , defined by Sn = 1+ 1√

2
+ · · ·+ 1√

n −2
√

n , for each n ∈ N ,
is convergent and its limit lies between −2 and −1.

There have been given many generalizations and other results regarding Ioachi-
mescu’s problem in the literature (see, for example, [1], [2], [3], [4, Theorem 1, parts a)
and b)], [5, problem 3, p. 534], [6, problem 3.1, p. 431], [7, problem P2, parts (i) and
(ii)], [9, pp. 27–33], [10], [11], [12]).
As it is mentioned in [4, p. 199], M. Bătineţu-Giurgiu proposed in 1992 the following
problem. Let a,r ∈ (0,+∞) and (an)n∈N be the sequence defined by an = a+(n−1)r ,

for each n ∈ N . Show that the sequence

(
r

n
∑

k=1

1√
ak
−2

√
an

)
n∈N

is convergent.

We consider the sequence (In)n∈N defined by In = 1+ 1√
2
+ · · ·+ 1√

n −2(
√

n−1) ,
for each n∈N . Also, we denote the limit of (In)n∈N by I and we call it Ioachimescu’s
constant.

In Section 2 we present a generalization of Ioachimescu’s constant as the limit

of the sequence
(

1√
a + 1√

a+1
+ · · ·+ 1√

a+n−1
−2(

√
a+n−1−√

a)
)

n∈N

, where a ∈
(0,+∞) , and we denote this limit by I (a) . In Section 3 we give estimates for In −
I , n ∈ N , and in Section 4 we give some estimates for 1√

a + 1√
a+1

+ · · ·+ 1√
a+n−1

−
2(
√

a+n−1−√
a)−I (a) , n ∈ N\ {1} .

Mathematics subject classification (2010): 11Y60, 40A05.
Keywords and phrases: Sequence, convergence, Ioachimescu’s constant, approximation, estimate.

c© � � , Zagreb
Paper JMI-04-38

413



414 ALINA SÎNTĂMĂRIAN

2. The number I (a)

THEOREM 2.1. ([10], Theorem 2) Let a ∈ (0,+∞) . We consider the sequences
(xn(a))n∈N and (yn(a))n∈N defined by

xn(a) =
1√
a

+
1√

a+1
+ · · ·+ 1√

a+n−1
−2(

√
a+n−√

a)

and

yn(a) =
1√
a

+
1√

a+1
+ · · ·+ 1√

a+n−1
−2(

√
a+n−1−√

a),

for each n ∈ N .
Then:

(i) the sequences (xn(a))n∈N and (yn(a))n∈N are convergent to the same number,
which we denote by I (a) , and satisfy the inequalities xn(a)< xn+1(a)< I (a)<
yn+1(a) < yn(a) , for each n ∈ N ;

(ii) 0 <
1√
a
−2(

√
a+1−√

a) < I (a) <
1√
a

;

(iii) lim
n→∞

√
n(I (a)− xn(a)) =

1
2

and lim
n→∞

√
n(yn(a)−I (a)) =

1
2

.

REMARK 2.1. The sequence (yn(a))n∈N from Theorem 2.1, for a = 1, becomes
the sequence (In)n∈N , so I (1) = I .

REMARK 2.2. Taking into account the inequalities from part (i) of Theorem 2.1,
using the computer program MAPLE, we obtain, for example:

1.2241 . . . = x1000
( 1

4

)
< I

( 1
4

)
< y1000

( 1
4

)
= 1.2557 . . .;

1.0208 . . . = x1000
( 1

3

)
< I

( 1
3

)
< y1000

( 1
3

)
= 1.0524 . . .;

0.7935 . . . = x1000
(

1
2

)
< I

(
1
2

)
< y1000

(
1
2

)
= 0.8251 . . .;

0.5238 . . . = x1000(1) < I (1) < y1000(1) = 0.5554 . . .;
0.3522 . . . = x1000(2) < I (2) < y1000(2) = 0.3838 . . .;
0.2808 . . . = x1000(3) < I (3) < y1000(3) = 0.3124 . . .;
0.2394 . . . = x1000(4) < I (4) < y1000(4) = 0.2709 . . ..

THEOREM 2.2. ([10], Theorem 3) Let a ∈ (0,+∞) . We consider the sequences
(xn(a))n∈N and (yn(a))n∈N from the enunciation of Theorem 2.1, of which limit we
denoted by I (a) .

Then:

(i)
1

2
√

a+n
< I (a)− xn(a) <

1√
a+n+

√
a+n−1

, for each n ∈ N ;

(ii)
1√

a+n+
√

a+n−1
< yn(a)−I (a) <

1

2
√

a+n−1
, for each n ∈ N .
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3. Lower and upper estimates for In−I

THEOREM 3.1. Let p ∈ N . We consider the sequence (In)n∈N , presented in Sec-
tion 1, of which limit we denoted by I .

Then
1

2
√

n+αp
< In−I <

1
2
√

n+β
,

for each n ∈ N , n � p, with αp =
√

4p+3−√
p+1−√

p and β = 0 .

Proof. We consider the sequence (un(r))n∈N defined by

un(r) = In− 1
2
√

n+ r
,

for each n ∈ N , where r > −2. We have

un+1(r)−un(r) =
1√

n+1
−2(

√
n+1−√

n)− 1

2
√

n+1+ r
+

1
2
√

n+ r

=
1√

n+1
− 2√

n+1+
√

n
+

2(
√

n+1−√
n)

(2
√

n+1+ r)(2
√

n+ r)

=
1√

n+1+
√

n

[ −1√
n+1(

√
n+1+

√
n)

+
2

(2
√

n+1+r)(2
√

n+r)

]

=
2(n+1)−2

√
n(n+1)−2r(

√
n+1+

√
n)− r2

√
n+1(

√
n+1+

√
n)2(2

√
n+1+ r)(2

√
n+ r)

,

for each n ∈ N . Set λn :=
√

n(n+1) and μn :=
√

n+1+
√

n , for any n ∈ N . Clearly,
λ 2

n = n(n+ 1) and μ2
n = 2n+ 1+ 2λn , for each n ∈ N . It is not difficult to see that

n = μ2
n−2λn−1

2 and μ2
n −4λn = 1

μ2
n
, for each n ∈ N . So,

un+1(r)−un(r) =
μ2

n −4λn−2rμn− r2 +1√
n+1(

√
n+1+

√
n)2(2

√
n+1+ r)(2

√
n+ r)

=
−2rμ3

n +(1− r2)μ2
n +1

μ2
n

√
n+1(

√
n+1+

√
n)2(2

√
n+1+ r)(2

√
n+ r)

,

for any n ∈ N .
We consider the function f : (−2,+∞)× [

√
2+1,+∞)→ R , defined by

f (r,μ) = −2rμ3 +(1− r2)μ2 +1,

for each (r,μ) ∈ (−2,+∞)× [
√

2+1,+∞) .
One of the two solutions of the equation −μ2

pt
2 − 2μ3

pt + μ2
p + 1 = 0 is αp =

√
4p+3−√

p+1−√
p . We have

∂ f
∂μ

(r,μ) = −2μ(3rμ+ r2 −1) , for each (r,μ) ∈

(−2,+∞)× [
√

2 + 1,+∞) . It is not difficult to verify that
∂ f
∂μ

(αp,μ) < 0, for any
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μ ∈ [μp,+∞) , which means that 0 = f (αp,μp) > f (αp,μ) , for each μ ∈ (μp,+∞) .
So, un+1(αp)−un(αp)< 0, for each n∈N , n� p+1, i.e. the sequence (un(αp))n�p+1

is strictly decreasing. Also, because f (αp,μp) = 0, it is clear that up+1(αp) = up(αp) .
We have lim

n→∞
un(αp) = I . Now we can write that

I < un(αp) = In− 1
2
√

n+αp
,

for each n ∈ N , n � p .
We have that f (0,μ) = μ2 + 1 > 0, for each μ ∈ [

√
2+ 1,+∞) . So, un+1(0)−

un(0) > 0, for each n ∈ N , i.e. the sequence (un(0))n∈N is strictly increasing. We have
lim
n→∞

un(0) = I . Now we can write that

In− 1
2
√

n
= un(0) < I ,

for each n ∈ N . �

REMARK 3.1. The sequence (αp)p∈N defined by αp =
√

4p+3−√
p+1−√

p ,
for each p ∈ N , is strictly decreasing.

THEOREM 3.2. We consider the sequence (In)n∈N , presented in Section 1, of
which limit we denoted by I .

Then
1

2
√

n+α
� In−I <

1
2
√

n+β
,

for each n ∈ N , with α =
2I −1
1−I

and β = 0 .

Moreover, the constants α and β are the best possible with this property.

Proof. We follow the proof of Theorem 3.1, with p = 2, regarding the lower
estimate. One of the two solutions of the equation −μ2

2 t2 − 2μ3
2 t + μ2

2 + 1 = 0 is

α2 =
√

11−√
3−√

2. It is not difficult to verify that
∂ f
∂μ

(α2,μ) < 0, for any μ ∈
[
√

2+1,+∞) , which means that

f (α2,μ1) > 0 = f (α2,μ2) > f (α2,μ),

for each μ ∈ (μ2,+∞) . Therefore

I < un(α2) = In− 1
2
√

n+α2
,

for each n ∈ N\{1} . Clearly, because f (α2,μ1) > 0, we have that u2(α2)−u1(α2) >
0. It is easy to see that u1(α2) = I1 − 1

2+α2
< I , hence the lower estimate does not

hold for n = 1, with α2 .
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We have α1 > α > α2 . With α =
2I −1
1−I

we have the equality

1
2+α

= I1−I .

Taking into account that
∂ f
∂ r

(r,μ) = −2μ2(μ + r) < 0, for any (r,μ) ∈ (−2,+∞)×
[
√

2+1,+∞) , we are able to write that 0 � f (α2,μ) > f (α,μ) , for each μ ∈ [μ2,+∞) .
So, un+1(α)−un(α) < 0, for each n∈ N\{1} , i.e. the sequence (un(α))n�2 is strictly
decreasing. We have lim

n→∞
un(α) = I . Now we are able to write that

I < un(α) = In− 1
2
√

n+α
,

for each n ∈ N\ {1} . �

4. Some estimates for yn(a)−I (a)

THEOREM 4.1. Let a ∈ (0,+∞) . We consider the sequence (yn(a))n∈N from the
enunciation of Theorem 2.1, of which limit we denoted by I (a) .

Then
1

2
√

a+n− 4
5

< yn(a)−I (a) <
1

2
√

a+n− 5
6

,

for each n ∈ N\ {1} .

Proof. We consider the sequences (un(a))n∈N and (vn(a))n∈N defined by

un(a) = yn(a)− 1

2
√

a+n− 4
5

and

vn(a) = yn(a)− 1

2
√

a+n− 5
6

,

for each n ∈ N .
We have

un+1(a)−un(a) =
1√

a+n
−2(

√
a+n−√

a+n−1)− 1

2
√

a+n+ 1
5

+
1

2
√

a+n− 4
5

,

for each n ∈ N . Set x := a+n . We have

E(x) :=
1√
x
−2(

√
x−√

x−1)− 1

2
√

x+ 1
5

+
1

2
√

x− 4
5

=
1√
x
− 2√

x+
√

x−1
+

√
x+ 1

5 −
√

x− 4
5

2
√(

x+ 1
5

)(
x− 4

5

)
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=
−1√

x(
√

x+
√

x−1)2
+

1

2
√(

x+ 1
5

)(
x− 4

5

)(√
x+ 1

5 +
√

x− 4
5

)

=

√
x(2x−1+2

√
x(x−1))−2

√(
x+ 1

5

)(
x− 4

5

)(√
x+ 1

5 +
√

x− 4
5

)

2
√

x(
√

x+
√

x−1)2
√(

x+ 1
5

)(
x− 4

5

)(√
x+ 1

5 +
√

x− 4
5

)

=
x(2x−1+2

√
x(x−1))2 −4

(
x+ 1

5

)(
x− 4

5

)(√
x+ 1

5 +
√

x− 4
5

)2

2
√

x(
√

x+
√

x−1)2
√(

x+ 1
5

)(
x− 4

5

)(√
x+ 1

5 +
√

x− 4
5

)

× 1
√

x(2x−1+2
√

x(x−1))+2
√(

x+ 1
5

)(
x− 4

5

)(√
x+ 1

5 +
√

x− 4
5

) .

Also, we have that

F(x) := x(2x−1+2
√

x(x−1))2 −4

(
x+

1
5

)(
x− 4

5

)(√
x+

1
5

+

√
x− 4

5

)2

= −4
5
x2 +

1
5
x− 48

125

−4

[
2

(
x2− 3

5
x− 4

25

)√(
x+

1
5

)(
x− 4

5

)
− x(2x−1)

√
x(x−1)

]

= −4
5
x2 +

1
5
x− 48

125

−4 · 4
(
x2 − 3

5x− 4
25

)2 (
x+ 1

5

)(
x− 4

5

)− x3(2x−1)2(x−1)

2
(
x2 − 3

5x− 4
25

)√(
x+ 1

5

)(
x− 4

5

)
+ x(2x−1)

√
x(x−1)

= −4
5
x2 +

1
5
x− 48

125

−4 ·
4
5x5− 13

5 x4 + 61
25x3− 48

125x2 − 576
3125x− 256

15625

2
(
x2 − 3

5x− 4
25

)√(
x+ 1

5

)(
x− 4

5

)
+ x(2x−1)

√
x(x−1)

= −
[
(x−1)

(
4
5
x+

3
5

)
+

123
125

]

−4 · (x−2)2
( 4

5x3 + 3
5x2 + 41

25x+ 472
125

)
+ 26124

3125 x− 236256
15625

2
(
x2 − 3

5x− 4
25

)√(
x+ 1

5

)(
x− 4

5

)
+ x(2x−1)

√
x(x−1)

.

It follows that F(x) < 0 and therefore E(x) < 0, for any x ∈ (2,+∞) . This means
that un+1(a)−un(a) < 0, for each n ∈ N\{1} , i.e. the sequence (un(a))n�2 is strictly
decreasing. Using this, as well as the fact that lim

n→∞
un(a) = I (a) , we are able to write
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that

I (a) < un(a) = yn(a)− 1

2
√

a+n− 4
5

,

for each n ∈ N\ {1} .
We have

vn+1(a)− vn(a) =
1√

a+n
−2(

√
a+n−√

a+n−1)− 1

2
√

a+n+ 1
6

+
1

2
√

a+n− 5
6

,

for each n ∈ N . Set x := a+n . We have

G(x) :=
1√
x
−2(

√
x−√

x−1)− 1

2
√

x+ 1
6

+
1

2
√

x− 5
6

=
1√
x
− 2√

x+
√

x−1
+

√
x+ 1

6 −
√

x− 5
6

2
√(

x+ 1
6

)(
x− 5

6

)
=

−1√
x(
√

x+
√

x−1)2
+

1

2
√(

x+ 1
6

)(
x− 5

6

)(√
x+ 1

6 +
√

x− 5
6

)

=

√
x(2x−1+2

√
x(x−1))−2

√(
x+ 1

6

)(
x− 5

6

)(√
x+ 1

6 +
√

x− 5
6

)

2
√

x(
√

x+
√

x−1)2
√(

x+ 1
6

)(
x− 5

6

)(√
x+ 1

6 +
√

x− 5
6

)

=
x(2x−1+2

√
x(x−1))2−4

(
x+ 1

6

)(
x− 5

6

)(√
x+ 1

6 +
√

x− 5
6

)2

2
√

x(
√

x+
√

x−1)2
√(

x+ 1
6

)(
x− 5

6

)(√
x+ 1

6 +
√

x− 5
6

)

× 1
√

x(2x−1+2
√

x(x−1))+2
√(

x+ 1
6

)(
x− 5

6

)(√
x+ 1

6 +
√

x− 5
6

) .

Also, we have that

H(x) := x(2x−1+2
√

x(x−1))2−4

(
x+

1
6

)(
x− 5

6

)(√
x+

1
6

+

√
x− 5

6

)2

=
1
3
x− 10

27
+4

[
x(2x−1)

√
x(x−1)−2

(
x2 − 2

3
x− 5

36

)√(
x+

1
6

)(
x− 5

6

)]

=
1
3
x− 10

27
+4 · x3(2x−1)2(x−1)−4

(
x2− 2

3x− 5
36

)2 (
x+ 1

6

)(
x− 5

6

)
x(2x−1)

√
x(x−1)+2

(
x2− 2

3x− 5
36

)√(
x+ 1

6

)(
x− 5

6

)
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=
1
3
x− 10

27
+4 ·

4
3x4− 55

27x3 + 55
108x2 + 25

162x+ 125
11664

x(2x−1)
√

x(x−1)+2
(
x2− 2

3x− 5
36

)√(
x+ 1

6

)(
x− 5

6

)
=

1
3
x− 10

27
+4 · (x−2)

(
4
3x3 + 17

27x2 + 191
108x+ 299

81

)
+ 86237

11664

x(2x−1)
√

x(x−1)+2
(
x2− 2

3x− 5
36

)√(
x+ 1

6

)(
x− 5

6

) .
It follows that H(x) > 0 and therefore G(x) > 0, for any x ∈ (2,+∞) . This means
that vn+1(a)− vn(a) > 0, for each n ∈ N\ {1} , i.e. the sequence (vn(a))n�2 is strictly
increasing. Using this, as well as the fact that lim

n→∞
vn(a) = I (a) , we are able to write

that

yn(a)− 1

2
√

a+n− 5
6

= vn(a) < I (a),

for each n ∈ N\ {1} . �

REMARK 4.1. We have

1√
a+n+

√
a+n−1

<
1

2
√

a+n− 4
5

and
1

2
√

a+n− 5
6

<
1

2
√

a+n−1
,

for each n ∈ N\ {1} . So, the lower estimate and the upper estimate from Theorem 4.1
are finer than those from part (ii) of Theorem 2.2, for n ∈ N\ {1} .

REMARK 4.2. From Theorem 4.1 it follows that

vn(a) = yn(a)− 1

2
√

a+n− 5
6

< I (a) < yn(a)− 1

2
√

a+n− 4
5

= un(a),

for each n ∈ N \ {1} . Taking into account these inequalities, using the computer pro-
gram MAPLE, we obtain, for example:

1.2399636 . . . = v1000
( 1

4

)
< I

( 1
4

)
< u1000

( 1
4

)
= 1.2399638 . . .;

1.0366172 . . . = v1000
(

1
3

)
< I

(
1
3

)
< u1000

(
1
3

)
= 1.0366175 . . .;

0.8093148 . . . = v1000
( 1

2

)
< I

( 1
2

)
< u1000

( 1
2

)
= 0.8093151 . . .;

0.5396455 . . . = v1000(1) < I (1) < u1000(1) = 0.5396459 . . .;
0.3680726 . . . = v1000(2) < I (2) < u1000(2) = 0.3680730 . . .;
0.2966403 . . . = v1000(3) < I (3) < u1000(3) = 0.2966407 . . .;
0.2551885 . . . = v1000(4) < I (4) < u1000(4) = 0.2551888 . . ..

COROLLARY 4.1. We consider the sequence (In)n∈N , presented in Section 1, of
which limit we denoted by I .
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Then
1

2
√

n+ 1
5

< In−I <
1

2
√

n+ 1
6

,

for each n ∈ N .

Proof. We take a = 1 in Theorem 4.1 and it is not difficult to see from the proof
of this theorem that the estimates hold for n = 1 too in this case. �

Having in view the results obtained so far, it would be an interesting problem to
be found the best possible constants α and β , with the property that
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for each n ∈ N .
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