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ADAPTED QUADRATIC APPROXIMATION FOR SINGULAR INTEGRALS

MOSTEFA NADIR

(Communicated by G. Allasia)

Abstract. The goal of this work is to present an adapted modification to the parabolic approxi-
mation of the density function for singular integrals of Cauchy type. This approximation serves
to eliminate the singularity of the integral and gives the help to obtain the numerical solution of
singular integral equations with Cauchy type kernel on an oriented smooth contour.

1. Introduction

Many problems of mathematical physics, engineering and contact problems in the
theory of elasticity lead to singular integral equations with Cauchy type kernel

a(t0)ϕ(t0)+
b(t0)
π i

∫
Γ

ϕ(t)
t − t0

dt +
∫
Γ
k(t,t0)ϕ(t)dt = f (t0), (1)

where Γ designates an oriented smooth contour, the points t and t0 are on Γ. This
equation plays an important role in modern numerical computations in the applied sci-
ences, in particular in the applied mathematics.

Our schemes describe the quadrature method for the approximation of singular
integral operator with Cauchy kernel

F(t0) =
1
π i

∫
Γ

ϕ(t)
t− t0

dt, t,t0 ∈ Γ, (2)

by a sequence of numerical integration operators.
Noting that, for the existence of the principal value of this integral for a given

density ϕ(t), we will need more than mere continuity. In other words, the density ϕ(t)
has to satisfy the Hölder condition H(μ)[2].

The function ϕ(t) will be said to satisfy a Hölder condition on Γ, if for any two
points t1 and t2 of Γ

| ϕ(t2)−ϕ(t1) |� A | t2− t1 |μ 0 < μ � 1,

where A is a positive constant, called the Hölder constant and μ the Hölder index.
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2. The Quadrature

We denote by t the parametric complex function t(s) of the curve Γ defined by

t(s) = x(s)+ iy(s), a � s � b,

where x(s) and y(s) are continuous functions on the finite interval of definition [a,b]
and have continuous first derivatives x′(s) and y′(s) never simultaneously null. Let N
be an arbitrary natural number, generally we take it large enough and divide the interval
[a,b] into N equal subintervals I1, I2, ..., IN by the points

sσ = a+σ
l
N

, l = b−a , σ = 0,1,2, ....,N.

Further, we fix a natural number M > 1, and divide each of segments [sσ ,sσ+1]
by the equidistant points

sσk = sσ + k
h

2M
, h =

l
N

, k = 0,1, ...,2M.

In other words, we have for each subinterval [sσ ,sσ+1] the following subdivision

[sσ ,sσ+1] = {sσ = sσ0 < sσ1 < ..... < sσ2M = sσ+1}.
We introduce the notation

tσ = t(sσ ), tσk = t(sσk); σ = 0,1,2, ...,N; k = 0,1, ....,2M.

Assuming that, for the indices σ ,ν = 0,1,2, ....,N−1, the points t and t0 belong

respectively to the arcs
�

tσ tσ+1 and
�

tν tν+1 where
�

tα tα+1 designates the smallest arc
with ends tα and tα+1 [3], [5], [6] and [7].

For an arbitrary number σ = 0,1,2, ...,N−1, we define the piecewice quadratic
Lagrange interpolation polynomial S2(ϕ ;t,σ) dependent on ϕ ,t and σ which rep-
resents the quadratic approximation of the function density ϕ(t) on the subinterval
[tσ ,tσ+1] of the curve Γ. As we know, the interval [tσ ,tσ+1] is divided into subinter-
vals [tσk, tσ(k+2)] of length (tσ(k+2) − tσk), k = 2i, i = 0,1, ...,M− 1. We interpolate
the function density ϕ(t) with respect to the values ϕ(tσk),ϕ(tσ(k+1)) and ϕ(tσ(k+2))
at the points tσk, tσ(k+1) and tσ(k+2) respectively with a quadratic polynomial, given by
the following formula.

For tσk � t � tσ(k+2),

S2(ϕ ; t,σ) =
(t − tσ(k+1))(t − tσ(k+2))

(tσ(k+1)− tσk)(tσ(k+2)− tσk)
ϕ(tσk)

− (t− tσk)(t− tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2)− tσ(k+1))

ϕ(tσ(k+1))

+
(t− tσk)(t− tσ(k+1))

(tσ(k+2)− tσk)(tσ(k+2)− tσ(k+1))
ϕ(tσ(k+2)).

(3)



ADAPTED QUADRATIC APPROXIMATION FOR SINGULAR INTEGRALS 425

This piecewice quadratic interpolating polynomial exists and is unique.
We define for arbitrary numbers σ and ν, such that 0 � σ ,ν � N−1, the follow-

ing function βσν(ϕ ; t,t0), dependent on ϕ ,t and t0

βσν(ϕ ;t,t0) = U(ϕ ;t,σ)−V(ϕ ; t0,σ ,ν). (4)

The function U(ϕ ;t,σ) represents a modified quadratic interpolation of the func-
tion density ϕ(t) on the subinterval [tσ ,tσ+1] of the curve Γ.

Indeed, for tσk � t � tσ(k+2) we put

U(ϕ ; t,σ) =
(t − tσ(k+1))(t − tσ(k+2))

(tσ(k+1)− tσk)(tσ(k+2)− tσk)
ϕ(tσk)

t − t0
tσk − t0

− (t− tσk)(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2) − tσ(k+1))

ϕ(tσ(k+1))
t− t0

tσ(k+1)− t0

+
(t− tσk)(t − tσ(k+1))

(tσ(k+2)− tσk)(tσ(k+2) − tσ(k+1))
ϕ(tσ(k+2))

t− t0
tσ(k+2)− t0

,

and the function V (ϕ ;t0,σ ,ν) is given by

V (ϕ ; t0,σ ,ν) =
S2(ϕ ;t0,ν)(t − t0)(t− tσ(k+1))(t− tσ(k+2))

(tσk − t0)(tσ(k+2) − tσk)(tσ(k+1)− tσk)

− S2(ϕ ;t0,ν)(t − t0)(t− tσk))(t − tσ(k+2))
(tσ(k+1)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+1)− tσk)

+
S2(ϕ ;t0,ν)(t − t0)(t− tσk))(t − tσ(k+1))

(tσ(k+2)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+2)− tσk)

Denoting by ψσν(ϕ ;t,t0), 0 � σ ,ν � N−1 the cubic approximation of the den-
sity ϕ(t) at the point t ∈ [tσ ,tσ+1], for all t0 ∈ [tν ,tν+1] we write

ψσν(ϕ ;t,t0) = ϕ(t0)+βσν(ϕ ; t,t0). (5)

We replace the density ϕ(t) by expansion (5) in the singular integral (2)

F(t0) =
1
π i

∫
Γ

ϕ(t)
t− t0

dt,

and obtain the following approximation

S(ϕ , t0) =
1
π i

∫
Γ

ψσν(ϕ ;t,t0)
t− t0

dt = ϕ(t0)+
1
π i

∫
Γ

βσν(ϕ ; t,t0)
t− t0

dt. (6)
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3. Main results

THEOREM. Let Γ be an oriented smooth contour and let ϕ be a density function
defined on Γ and satisfying the Hölder condition H(μ) then, the following estimation

| F(t0)−S(ϕ ;t0) |� max

(
C ln(2MN)
(2MN)μ

,
C
Nμ

)
N, M > 1

holds, where the constant C depends only on the contour Γ.

Proof. Taking the points t ∈ [tσ ,tσ+1] and t0 ∈ [tν , tν+1], we can write for tσk �
t � tσ(k+2) and tνk � t0 � tν(k+2)

ϕ(t)−ψσν(ϕ ; t, t0) = ϕ(t)−ϕ(t0)

−
{

(t − tσ(k+1))(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2)− tσk)

ϕ(tσk)
t − t0

tσk − t0

− (t− tσk)(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2)− tσ(k+1))

ϕ(tσ(k+1))
t− t0

tσ(k+1)− t0

+
(t− tσk)(t − tσ(k+1))

(tσ(k+2)− tσk)(tσ(k+2)− tσ(k+1))
ϕ(tσ(k+2))

t− t0
tσ(k+2)− t0

− S2(ϕ ;t0,ν)(t − t0)(t− tσ(k+1))(t− tσ(k+2))
(tσk − t0)(tσ(k+2)− tσk)(tσ(k+1)− tσk)

+
S2(ϕ ;t0,ν)(t − t0)(t− tσk))(t − tσ(k+2))

(tσ(k+1)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+1)− tσk)

− S2(ϕ ;t0,ν)(t − t0)(t− tσk))(t − tσ(k+1))
(tσ(k+2)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+2)− tσk)

}
.

(7)

Taking into account the expression (7) we get

1
π i

∫
Γ

ϕ(t)−ψσν(ϕ ;t,t0)
t− t0

dt =
1
π i

N−1

∑
σ=0

∫
tσ tσ+1

ϕ(t)−ψσν(ϕ ; t, t0)
t− t0

dt, (8)

hence

F(t0)−S(ϕ ; t0) =
1
π i

N−1

∑
σ=0

M−1

∑
k=0

∫
tσ2ktσ(2k+2)

ϕ(t)−ϕ(t0)
t − t0

−
{

(t − tσ(k+1))(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2)− tσk)

ϕ(tσk)
t − t0

tσk − t0

− (t− tσk)(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2)− tσ(k+1))

ϕ(tσ(k+1))
t− t0

tσ(k+1)− t0
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+
(t− tσk)(t − tσ(k+1))

(tσ(k+2)− tσk)(tσ(k+2)− tσ(k+1))
ϕ(tσ(k+2))

t− t0
tσ(k+2)− t0

− S2(ϕ ;t0,ν)(t − t0)(t− tσ(k+1))(t− tσ(k+2))
(tσk − t0)(tσ(k+2)− tσk)(tσ(k+1)− tσk)

+
S2(ϕ ;t0,ν)(t − t0)(t − tσk))(t − tσ(k+2))

(tσ(k+1)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+1) − tσk)

− S2(ϕ ;t0,ν)(t − t0)(t− tσk))(t − tσ(k+1))
(tσ(k+2)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+2)− tσk)

}
1

t− t0
dt.

We note that the equalities tσk − t0 = 0, tσ(k+1) − t0 = 0 and tσ(k+2) − t0 = 0
are possible only when σ = ν − 1,ν + 1 and ν. For the two first cases the integral
(8) exists when tσk tends to t0 or tσ(k+2) tends to t0, in the other case, if σ = ν
we can easily see that, the function βσσ (ϕ ;t,t0) contains (tσk − t0), (tσ(k+1) − t0) and
(tσ(k+2)− t0) as factor so, for the points t, t0 ∈ [tσ ,tσ+1], such that tσk � t, t0 � tσ(k+2),
we write

βσσ (ϕ ;t,t0) = U(ϕ ;t,σ)−V(ϕ ; t0,σ ,σ),

hence

βσσ (ϕ ; t, t0) =
(t − tσ(k+1))(t − tσ(k+2))(t − t0)

(tσ(k+1)− tσk)(tσ(k+2)− tσk)(tσk − t0)
(ϕ(tσk)−S2(ϕ ; t0,σ))

− (t−tσk)(t−tσ(k+2))(t−t0)
(tσ(k+1)−tσk)(tσ(k+2)−tσ(k+1))(tσ(k+1)−t0)

(ϕ(tσ(k+1))−S2(ϕ ;t0,σ))

+
(t−tσk)(t−tσ(k+1))(t−t0)

(tσ(k+2)−tσk)(tσ(k+2)−tσ(k+1))(tσ(k+2)−t0)
(ϕ(tσ(k+2))−S2(ϕ ;t0,σ)).

(9)

Taking into account expressions (7),(9), we obtain

1
π i

∫
Γ

ϕ(t)−ψσν(ϕ ;t,t0)
t− t0

dt =
1
π i

N−1

∑
σ=0

M−1

∑
k=0

∫
tσ2ktσ(2k+2)

ϕ(t)−ϕ(t0)
t − t0

−
{

(t − tσ(k+1))(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2)− tσk)

ϕ(tσk)
t − t0

tσk − t0

− (t−tσk)(t−tσ(k+2))
(tσ(k+1)−tσk)(tσ(k+2)−tσ(k+1))

ϕ(tσ(k+1))
t−t0

tσ(k+1)−t0

+
(t−tσk)(t−tσ(k+1))

(tσ(k+2)−tσk)(tσ(k+2)−tσ(k+1))
ϕ(tσ(k+2))

t−t0
tσ(k+2)−t0

− S2(ϕ ;t0,ν)(t − t0)(t− tσ(k+1))(t− tσ(k+2))
(tσk − t0)(tσ(k+2) − tσk)(tσ(k+1)− tσk)
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+
S2(ϕ ;t0,ν)(t − t0)(t− tσk))(t − tσ(k+2))

(tσ(k+1)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+1)− tσk)

− S2(ϕ ;t0,ν)(t−t0)(t−tσk))(t−tσ(k+1))
(tσ(k+2)−t0)(tσ(k+2)−tσ(k+1))(tσ(k+2)−tσk)

}
1

t−t0
dt.

Passing now to the estimation of the expression (8), for t0 ∈ �
tν tν+1 and σ �=

ν−1, ν +1 and ν we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
π i

N−1

∑
σ=0

M−1

∑
k=0

∫
tσ2ktσ(2k+2)

ϕ(t)−ϕ(t0)
t− t0

−
{

(t− tσ(k+1))(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2) − tσk)

ϕ(tσk)
t− t0

tσk − t0

− (t− tσk)(t − tσ(k+2))
(tσ(k+1)− tσk)(tσ(k+2) − tσ(k+1))

ϕ(tσ(k+1))
t− t0

tσ(k+1)− t0

+
(t− tσk)(t − tσ(k+1))

(tσ(k+2)− tσk)(tσ(k+2) − tσ(k+1))
ϕ(tσ(k+2))

t− t0
tσ(k+2)− t0

−S2(ϕ ; t0,ν)(t − t0)(t− tσ(k+1))(t− tσ(k+2))
(tσk − t0)(tσ(k+2) − tσk)(tσ(k+1)− tσk)

+
S2(ϕ ; t0,ν)(t − t0)(t− tσk))(t − tσ(k+2))

(tσ(k+1)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+1)− tσk)

− S2(ϕ ; t0,ν)(t − t0)(t− tσk))(t − tσ(k+1))
(tσ(k+2)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+2)− tσk)

}
1

t− t0
dt.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= O

(
ln(2MN)
(2MN)μ

)
.

Naturally, the estimation given above is obtained by using the density ϕ , as an
element of the Hölder space H(μ)[2], and the following natural estimation∣∣∣∣ (t− t0)(t − tσ(k+1))(t− tσ(k+2))

(tσk − t0)(tσ(k+2)− tσk)(tσ(k+1)− tσk)

∣∣∣∣ = O(1),∣∣∣∣ (t− t0)(t − tσk))(t− tσ(k+2))
(tσ(k+1)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+1)− tσk)

∣∣∣∣ = O(1),∣∣∣∣ (t− t0)(t − tσk))(t− tσ(k+1))
(tσ(k+2)− t0)(tσ(k+2)− tσ(k+1))(tσ(k+2)− tσk)

∣∣∣∣ = O(1).

Besides, it is easy to obtain

max
t0∈tν tν+1

∣∣∣∣∣∣∣O
(

1
(2M)μNμ

)N−1

∑
σ=0
σ �=ν

M−1

∑
k=0

∫
tσ(2k)tσ(2k+2)

dt
t − t0

∣∣∣∣∣∣∣ = O

(
ln(2M)N
(2M)μNμ

)
.
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Further, for the cases where σ = ν − 1, ν + 1 and ν, using the relation (9) and
the smoothness of Γ with the condition of the function ϕ in the space H(μ), we get∣∣∣∣∫

tν tν+1

ϕ(t)−ϕ(t0)
t− t0

dt

∣∣∣∣ � A
∫ sν+1

sν
| s− s0 |μ−1 ds = O(N−μ) �

4. Numerical experiments

Using our approximation, we apply the algorithm to singular integrals and we
present results concerning the accuracy of the calculations. In each table I represents
the exact principal value of the singular integral and Ĩ corresponds to the approximate
calculation produced by our approximation (6).

EXAMPLE 1. Consider the singular integral,

I = F(t0) =
1
π i

∫
Γ

ϕ(t)
t− t0

dt,

where Γ designates the circle centred at the point 0 with a unit radius, t and t0 are any
points on Γ and the density function ϕ is given by the following expression

ϕ(t) =
1
t2

N M ‖ I− Ĩ ‖1 ‖ I− Ĩ ‖2 ‖ I− Ĩ ‖∞
10 2 7.8253150E-03 5.2587800E-03 4.9651256E-03

11 2 6.1442256E-03 3.8414600E-03 3.5070777E-03

12 2 3.7623644E-03 2.3593807E-03 2.1644831E-03

EXAMPLE 2. We take the singular integral,

I = F(t0) =
1
π i

∫
Γ

ϕ(t)
t− t0

dt,

where the curve Γ designates the unit circle t and t0 are any points on Γ and the
density function ϕ is

ϕ(t) = sin t2 + cost

N M ‖ I− Ĩ ‖1 ‖ I− Ĩ ‖2 ‖ I− Ĩ ‖∞
10 2 2.1330118E-03 1.3611738E-03 1.2570620E-03

11 2 9.4902515E-04 5.7528692E-04 4.8601627E-04

12 2 4.9412251E-04 3.2134863E-04 2.9397011E-04
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5. Conclusion

The proposed approximation can be used to remove singularity in Cauchy princi-
pal value integrals of the form (2) . It was tested for the numerical calculus of many
singular integrals of Cauchy type, where it gave good results.
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