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AN AREA INEQUALITY FOR ELLIPSES

INSCRIBED IN QUADRILATERALS

ALAN HORWITZ

(Communicated by S. S. Gomis)

Abstract. If E is any ellipse inscribed in a convex quadrilateral, D– , then we prove that
Area (E)
Area(D– )

�
π
4

, and equality holds if and only if D– is a parallelogram and E is tangent to the sides of D–

at the midpoints. We also prove that the foci of the unique ellipse of maximal area inscribed in
a parallelogram, D– , lie on the orthogonal least squares line for the vertices of D– . This does not
hold in general for convex quadrilaterals.

1. Introduction

It is well known (see [1], [4], or [5]) that there is a unique ellipse inscribed in a
given triangle, T , tangent to the sides of T at their respective midpoints. This is often
called the midpoint or Steiner inellipse, and it can be characterized as the inscribed
ellipse having maximum area. In addition, one has the following inequality. If E
denotes any ellipse inscribed in T , then

Area(E)
Area(T )

� π
3
√

3
, (1)

with equality if and only if E is the midpoint ellipse. In [5] the authors also discuss
a connection between the Steiner ellipse and the orthogonal least squares line for the
vertices of T .

DEFINITION 1. The line, £ , is called a line of best fit for n given points z1, ...,zn

in C , if £ minimizes
n
∑
j=1

d2 (z j, l) among all lines l in the plane. Here d (z j, l) denotes

the distance(Euclidean) from z j to l .

In [5] the authors prove the following results.
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THEOREM 2. Suppose z j are points in C,g =
1
n

n
∑
j=1

z j is the centroid, and Z =

n
∑
j=1

(z j −g)2 =
n
∑
j=1

z2
j −ng2 .

(a) If Z = 0 , then every line through g is a line of best fit for the points z1, ...,zn .
(b) If Z �= 0 , then the line, £ , thru g that is parallel to the vector from (0,0) to√

Z is the unique line of best fit for z1, ...,zn .

THEOREM 3. If z1,z2, and z3 are the vertices of a nonequilateral triangle, T ,

and £ minimizes
3
∑

k=1
d2 (zk, l) among all lines l in the plane, then the major axis of the

Steiner ellipse lies on £ .

A proof of Theorem 3 goes all the way back to Coolidge in 1913 (see [5]).
The purpose of this paper is to attempt to generalize (1) and Theorem 3 to ellipses

inscribed in convex quadrilaterals. Many of the results in this paper use results from
two earlier papers of the author about ellipses inscribed in quadrilaterals. In particular,
in [2] we proved the following results.

THEOREM 4. Let D– be a convex quadrilateral in the xy plane and let M1 and
M2 be the midpoints of the diagonals of D– . Let Z be the open line segment connecting
M1 and M2 . If (h,k) ∈ Z then there is a unique ellipse with center (h,k) inscribed in
D– .

THEOREM 5. Let D– be a convex quadrilateral in the xy plane. Then there is a
unique ellipse of maximal area inscribed in D– .

The following general result about ellipses is essentially what appears in [6], ex-
cept that the cases with A = B were added by the author.

LEMMA 1. Let E be an ellipse with equation Ax2 +By2 +2Cxy+Dx+Ey+F =
0 , and let φ denote the counterclockwise angle of rotation from the line thru the center
parallel to the x axis to the major axis of E . Then

φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if C = 0 and A < B

π
2

if C = 0 and A > B

1
2

cot−1

(
A−B
2C

)
if C �= 0 and A < B

π
2

+
1
2

cot−1

(
A−B
2C

)
if C �= 0 and A > B

π
4

if C < 0 and A = B

3π
4

if C > 0 and A = B
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In [3] we also derived the following results about ellipses inscribed in parallelo-
grams.

LEMMA 2. Let Z be the rectangle with vertices (0,0) , (l,0) , (0,k) , and (l,k),
where l,k > 0 .

(A) The general equation of an ellipse, Ψ , inscribed in Z is given by

k2x2 + l2y2 −2l (k−2v)xy−2lkvx−2l2vy+ l2v2 = 0,0 < v < k.

(B) The corresponding points of tangency of Ψ are(
lv
k

,0

)
,(0,v),

(
l
k

(k− v) ,k
)

,and (l,k− v).

(C) If a and b denote the lengths of the semi–major and semi–minor axes, respec-
tively, of Ψ , then

a2 =
2l2 (k− v)v

k2 + l2−√(k2 + l2)2−16l2 (k− v)v
and

b2 =
2l2 (k− v)v

k2 + l2 +
√

(k2 + l2)2−16l2 (k− v)v
.

PROPOSITION 6. Let D– be the parallelogram with vertices O = (0,0) , P = (l,0) ,
Q = (d,k) , and R = (d+ l,k) , where l,k > 0,d � 0 . The general equation of an ellipse,
Ψ , inscribed in D– is given by

k3x2 +
(
k(d + l)2−4dlv

)
y2 −2k (k(d + l)−2lv)xy

−2k2lvx+2klv(d− l)y+ kl2v2 = 0,0 < v < k.

Of course, any two triangles are affine equivalent, while the same is not true of
quadrilaterals–thus it is not surprising that not all of the results about ellipses inscribed
in triangles extend nicely to quadrilaterals. For example, there is not necessarily an
ellipse inscribed in a given quadrilateral, D– , which is tangent to the sides of D– at their
respective midpoints. There is such an ellipse, which we call the midpoint ellipse,
when D– is a parallelogram (see Proposition 8). We are able to prove an inequality (see
Theorem 7), similar to (1), which holds for all convex quadrilaterals. If E is any ellipse

inscribed in a quadrilateral, D– , then
Area(E)
Area(D– )

� π
4

, and equality holds if and only if D–

is a parallelogram and E is the midpoint ellipse.
Not suprisingly, Theorem 3 also does not extend in general to ellipses inscribed in

convex quadrilaterals. However, such a characterization does hold again when D– is a
parallelogram. We prove in Theorem 10 that the foci of the unique ellipse of maximal
area inscribed in a parallelogram, D– , lie on the orthogonal least squares line for the
vertices of D– . It is also well known that if p(z) is a cubic polynomial with roots at
the vertices of a triangle, then the roots of p′(z) are the foci of the Steiner inellipse. A
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proof of this fact goes all the way back to Siebeck in 1864 (see [5]) and is known in
the literature as Marden’s Theorem. Now it is easy to show that the orthogonal least
squares line, £ , from Theorem 2 is identical to the line through the roots of p′(z) . Thus
Marden’s Theorem implies Theorem 3 and hence is a stronger statement than Theorem
3. There is an obvious way to try to generalize such a result to convex quadrilaterals,
D– . If p(z) is a quartic polynomial with roots at the vertices of D– , must the foci of
the unique ellipse of maximal area inscribed in D– equal the roots of p′′(z)? We give
an example in section 3 that shows that such a stronger statement does not hold for
parallelograms, or even for rectangles.

2. An Area Inequality

THEOREM 7. Let E be any ellipse inscribed in a convex quadrilateral, D– . Then
Area(E)
Area(D– )

� π
4

, and equality holds if and only if D– is a parallelogram and E is tangent

to the sides of D– at the midpoints.

Before proving Theorem 7, we need the following lemma.

LEMMA 3. Suppose that s and t are positive real numbers with s+ t > 1 and

s �= 1 �= t . Let ha =
st + t−2s−1+

√
(t−1)2 + s2(t2− t +1)− s(t2−3t +2)

6(t−1)
. Then

ha ∈ I = the open interval with endpoints
1
2

and
1
2
s.

Proof.

ha− 1
2

=
st −2(s+ t−1)+

√
(t−1)2 + s2(t2− t +1)− s(t2−3t +2)

6(t−1)
, (2)

and

ha− 1
2
s =

√
(t−1)2 + s2(t2 − t +1)− s(t2−3t +2)− (2st− (s+ t−1))

6(t −1)
. (3)

There are four cases to consider: s,t > 1, s < 1 < t , t < 1 < s , and s,t < 1. We prove
the first two cases, the proof of the other two being similar.

Case 1: s, t > 1, which implies that I =
(

1
2
,
1
2
s

)

By (2), ha− 1
2

> 0 ⇐⇒
√

(t−1)2 + s2(t2− t +1)− s(t2−3t +2) > 2(s+ t−1)− st,

which always holds since

(t−1)2 + s2(t2− t +1)− s(t2−3t +2)− (2(s+ t−1)− st)2

= 3(t−1)(s−1)(s+ t−1) > 0.
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By (3), ha− 1
2
s < 0 ⇐⇒

√
(t−1)2 + s2(t2− t +1)− s(t2−3t +2) < 2st− (s+ t−1) ,

which always holds since

(2st− (s+ t−1))2− ((t−1)2 + s2(t2 − t +1)− s(t2−3t +2)
)

= 3st (t−1)(s−1) > 0.

Case 2: s < 1 < t , which implies that I =
(

1
2
s,

1
2

)

By (2), ha− 1
2

< 0 ⇐⇒
√

(t−1)2 + s2(t2− t +1)− s(t2−3t +2) < 2(s+ t−1)− st,

which always holds since

(2(s+ t−1)− st)2− ((t −1)2 + s2(t2− t +1)− s(t2−3t +2)
)

= 3(t−1)(1− s)(s+ t−1) > 0.

By (3), ha− 1
2
s > 0 ⇐⇒

√
(t−1)2 + s2(t2− t +1)− s(t2−3t +2) > 2st− (s+ t−1) ,

which always holds since(
(t−1)2 + s2(t2 − t +1)− s(t2−3t +2)

)− (2st− (s+ t−1))2

= 3st (t−1)(1− s) > 0.

Proof (of Theorem 7). We shall prove Theorem 7 when D– is not a trapezoid, though
it certainly holds in that case as well. Since ratios of areas of ellipses and four–sided
convex polygons are preserved under one–one affine transformations, we may assume,
without loss of generality, that the vertices of D– are (0,0),(1,0),(0,1) , and (s,t) for
some positive real numbers s and t . Furthermore, since D– is convex and is not a
trapezoid, it follows easily that

s+ t > 1 and s �= 1 �= t. (4)

It also follows easily that Area(D– ) =
1
2
(s+ t) . Let E denote any ellipse inscribed in

D– and AE = Area(E) . The midpoints of the diagonals of D– are M1 =
(

1
2
,
1
2

)
and

M2 =
(

1
2
s,

1
2
t

)
. Let I denote the open interval with endpoints

1
2

and
1
2
s . By Theorem
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4 the locus of centers of ellipses inscribed in D– is precisely the set {(h,L(h),h ∈ I} ,
where

L(x) =
1
2

s− t +2x(t−1)
s−1

(5)

is the line thru M1 and M2 . In proving Theorem 5 ([2], Theorem 3.3), we also showed
that

A2
E =

π2

4(s−1)2
A(h),A(h) = (2h−1)(s−2h)(s+2h(t−1)) , h ∈ I. (6)

Setting A′(h) = 0 yields

h = ha =
st + t−2s−1±√(t−1)2 + s2(t2− t +1)− s(t2−3t +2)

6(t−1)
.

By Lemma 3, the positive square root always yields ha ∈ I . Thus

ha =
st + t−2s−1+

√
(t−1)2 + s2(t2− t +1)− s(t2−3t +2)

6(t−1)

is the unique point in I such that A(h) � A(ha) ,h ∈ I . Let

b(s,t) = (st− (s+ t−1))2 + st(s+ t−1).

A simple computation using (6) shows that

A(ha) =
1

27(t−1)2
(
2ts− s− t +1−

√
b(s, t)

)

×
(
ts−2t−2s+2+

√
b(s,t)

)(
s+ ts+ t−1+

√
b(s,t)

)
.

Thus by (6) and the fact that Area(D– ) =
1
2
(s+ t) , we have

A2
E

(Area(D– ))2 =
π2

27

(
2ts− s− t +1−

√
b(s,t)

)
(7)

×
(
ts−2t−2s+2+

√
b(s,t)

)(
s+ ts+ t−1+

√
b(s,t)

)
(s−1)2 (t−1)2 (s+ t)2

.

Clearly
A2

E

(Area(D– ))2 is symmetric in s and t . Thus we may assume, without loss of

generality, that
s � t. (8)

It is convenient to make the change of variable

u = s+ t−1,v = st. (9)
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Solving (9) for s and t yields

s = u+1− 1
2

(
u+1±

√
(u+1)2−4v

)
, t =

1
2

(
u+1±

√
(u+1)2−4v

)
.

By (8),

s =
1
2

(
u+1−

√
(u+1)2−4v

)
, t =

1
2

(
u+1+

√
(u+1)2−4v

)
. (10)

Substituting for s and t using (10) gives b(s,t) = c(u,v) , where c(u,v) = u2−uv+v2 .
Then

A2
E

(Area(D– ))2 =
π2

27
(2v−u−√c(u,v))(v−2u+

√
c(u,v))(v+u+

√
c(u,v))

(v−u)2 (u+1)2
,

which simplifies to
A2

E

(Area(D– ))2 =
π2

27
d(u,v), (11)

where

d(u,v) =
(v−2u)(2v−u)(u+ v)+2(c(u,v))3/2

(u+1)2 (v−u)2
. (12)

We consider two cases: s > 1 and 0 < s < 1

Case 1: s > 1

Let w =
u
v

. Then by (12) and some simplification, we have

d(u,v) =
v

(u+1)2 z(w), (13)

where

z(w) =
(1−2w)(2−w)(1+w)+2

(
w2 −w+1

)3/2

(1−w)2
.

Note that by (4), u > 0, and (u+1)2−4v = (s+ t)2−4st = (s− t)2 � 0, which implies

v
(u+1)2 � 1

4
. (14)

Also, 1 < s ⇐⇒ 2 < u + 1−
√

(u+1)2−4v ⇐⇒
√

(u+1)2−4v < u− 1 ⇐⇒
(u+1)2−4v < (u−1)2 ⇐⇒ u < v , which implies that 0 < w < 1.

z′(w) =
2w3−6w2 +9w−1+

(
2w2−5w−1

)√
w2−w+1

(w−1)3
= 0

⇒ (
2w3−6w2 +9w−1

)2− (2w2 −5w−1
)2 (

w2−w+1
)
= 0 ⇒ 27w(w−1)3 = 0,
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which has no solution in (0,1) . z(0) = 4 and lim
w→1

z(w) =
27
4

. Thus

z(w) <
27
4

, 0 < w < 1, (15)

which implies, by (14), that
v

(u+1)2 z(w) � 1
4

27
4

=
27
16

.
Area(E)
Area(D– )

<
π
4

then follows

immediately by (11) and (13).

Case 2: 0 < s < 1

Now s < 1 implies that v < u and v > 0 since s,t > 0. Now we let w =
v
u

, which

again implies that 0 < w < 1. Then by (11) and some simplification, we have

d(u,v) =
u

(u+1)2 z(w). (16)

Since (u−1)2 � 0 ⇒ (u+1)2−4u � 0, we have

u
(u+1)2 � 1

4
. (17)

By (15) and (17),
u

(u+1)2 z(w) � 27
16

, and
Area(E)
Area(D– )

<
π
4

then follows immediately

by (11) and (16). We have proven that
Area(E)
Area(D– )

<
π
4

when D– is not a trapezoid.

Using a limiting argument, one can then show immediately that
Area(E)
Area(D– )

� π
4

when

D– is a trapezoid. However, that still does not give the strict inequality when D– is not
a parallelogram. We shall omit the details here, but the author will provide them upon
request. To finish the proof of Theorem 7, we need to consider the case when D– is a
parallelogram. That case will follow from Proposition 8 and Theorem 9 below.

First we prove that, just like any triangle in the plane, there is an ellipse tangent to
a parallelogram at the midpoints of its sides.

PROPOSITION 8. The ellipse of maximal area inscribed in a parallelogram, Ğ, is
tangent to Ğ at the midpoints of the four sides.

Proof. Proposition 8 was proven in ([3], Theorem 3) when Ğ is a rectangle. The
reader can prove it directly themselves using Lemma 2. Ratios of areas of ellipses,
points of tangency, and midpoints of line segments are preserved under one–one affine
transformations. Since any given parallelogram is affinely equivalent to a rectangle,
that proves Proposition 8 for parallelograms in general.

THEOREM 9. Let E be any ellipse inscribed in a parallelogram, Ğ. Then
Area(E)
Area(Ğ)

� π
4

, with equality if and only if E is the midpoint ellipse.
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Proof. As noted earlier, ratios of areas of ellipses and four–sided convex polygons,
are preserved under one–one affine transformations. In addition, points of tangency and
midpoints of line segments are also preserved under one–one affine transformations.
Thus we may assume that Ğ is a rectangle(or even a square, though we don’t need
that much simplification here), Z , with vertices (0,0),(l,0),(0,k),and (l,k), where
l,k > 0. Let E be any ellipse inscribed in Z , and let a and b denote the lengths of the
semi–major and semi–minor axes, respectively, of E . By Lemma 2(C),

a2b2 =
2l2 (k− v)v

k2 + l2−√(k2 + l2)2−16l2 (k− v)v

× 2l2 (k− v)v
k2 + l2 +

√
(k2 + l2)2 −16l2 (k− v)v

=
4l4 (k− v)2 v2

(k2 + l2)2− ((k2 + l2)2 −16l2 (k− v)v)

=
4l4 (k− v)2 v2

16l2 (k− v)v
=

1
4
l2 (k− v)v.

Hence Area(E)= πa2b2 =
π
2

l
√

v(k− v) . Since the function v(k− v) attains its unique

maximum on (0,v) when v =
k
2

, the unique ellipse of maximal area, EA , satisfies

Area(EA)=
π
2

l

√
k
2

(
k− k

2

)
=
π
4

lk , and thus
Area(EA)
Area(Z)

=
π
4

. Furthermore,
Area(E)
Area(Z)

<
π
4

when E �= EA . By Lemma 2(B), letting v =
k
2

gives the points of tangency(
l
2
,0

)
,

(
0,

k
2

)
,

(
l
2
,k

)
,and

(
l,

k
2

)
, which are the midpoints of Z . That completes

the proof of Theorem 9 as well as the equality part of Theorem 7.

3. Orthogonal least squares

If l is a line in the plane, we let d (zk, l) denote the Euclidean distance from zk to
l .

THEOREM 10. Let Ğ be the parallelogram with vertices z1,z2,z3,z4

(A) If Ğ is not a square, then there is a unique line, £ , which minimizes
4
∑

k=1
d2 (zk, l)

among all lines, l . Furthermore, the foci of the midpoint ellipse for Ğ lie on £ .
(B) If Ğ is a square, then the midpoint ellipse is a circle, and every line through

the center of Ğ is a line of best fit for the vertices of Ğ.

REMARK 1. (1) For part (A), an equivalent statement is that the foci of the mid-
point ellipse for Ğ lie on the line through the second derivative of the polynomial with
roots at the vertices of D– .
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(2) Note that £ is not the standard regression line in general.

Proof. The line through the foci of an ellipse is not preserved in general under
nonsingular affine transformations of the plane, but it is preserved under translations
and rotations. Thus we can assume that the vertices of Ğ are O = (0,0),P = (l,0),Q =
(d,k), and R = (l + d,k) , where l,k > 0,d � 0. Using complex notation for the ver-
tices, z1 = 0, z2 = l , z3 = d + ki , and z4 = l + d + ki , the centroid, g , of Ğ is given

by g =
1
4

4
∑

k=1
zk =

1
2

(l +d + ki) , and Z =
4
∑
j=1

(z j −g)2 =
4
∑
j=1

(
z j − 1

2
(l +d + ki)

)2

,

which simplifies to

Z = d2 + l2− k2 +2idk. (18)

It is well known, and easy to show, that the center of any ellipse inscribed in Ğ equals

the point of intersection of the diagonals of Ğ, which is

(
1
2

(d + l) ,
1
2
k

)
. Also, as

noted in the proof of Theorem 9, v =
k
2

yields the unique ellipse of maximal area, EA ,

inscribed in Ğ. Let the major axis line of EA refer to the line through the foci of EA .
Thus the major axis line of EA passes through g . We take care of some special cases
first.

• d = 0: Then Ğ is a rectangle. If l = k , then Ğ is a square and letting v =
k
2

shows that EA is a circle. Also, Z = 0. Thus every line through the center of Ğ is a
line of best fit for the vertices of Ğ. We may assume now that l �= k , which implies

that Z �= 0. Since g =
1
2

(l + ki) , the major axis line of EA passes through g , and

Z = l2 − k2 . If l > k , then
√

Z =
√

l2 − k2 is real, and thus the line, £ , thru g parallel
to the vector from (0,0) to

√
Z has slope 0. By Lemma 2(A), the major axis line of

any ellipse inscribed in Ğ is parallel to the x axis. Since the major axis line passes
through g , it must be identical to £ . If l < k , then

√
Z =

√
l2 − k2 is imaginary, and

thus £ is vertical. By Lemma 2(A) again, the major axis line of any ellipse inscribed in
Ğ is parallel to the y axis. Again, the major axis line must be identical to £ .

• Assume now that d �= 0, which implies that Z �= 0 since dk �= 0.

Letting v =
k
2

in Proposition 6 gives the coefficients for the equation of EA . In

particular,

A = k3, B = k
(
d2 + l2

)
, C = −k2d. (19)

Note that C < 0 for all d,k, and l , and A < B ⇐⇒ k3 < k
(
d2 + l2

) ⇐⇒ d2+ l2−k2 >
0 since k > 0. Let φ denote the counterclockwise angle of rotation from the line thru
the center parallel to the x axis to the major axis of EA . We use the formula

Im
√

Z

Re
√

Z
=

|Z|−ReZ
ImZ

, ImZ �= 0. (20)
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If k2 − d2 − l2 = 0, then by (18) and (20), Z = 2idk ⇒ Im
√

Z

Re
√

Z
=

2dk
2dk

= 1. By (19),

A = B and C < 0, which implies, by Lemma 1, that φ =
π
4

. Thus the major axis line

has slope equal to tanφ = tan
π
4

= 1, which is the same slope as that of £ . Since both

the major axis line and £ pass through g , they must be identical. Assume now that
k2−d2− l2 �= 0, which implies that A �= B .

|Z|2 =
(
d2 + l2− k2

)2 + (2dk)2 =
(
(k+ l)2 +d2

)(
(k− l)2 +d2

)
, which implies

that

|Z| =
√

((k+ l)2 +d2)((k− l)2 +d2).

Hence

|Z|−ReZ
ImZ

=

√
((k+ l)2 +d2) ((k− l)2 +d2)− (d2 + l2− k2

)
2dk

. (21)

By Lemma 1, cot2φ =
A−B
2C

or cot(2φ −π) =
A−B
2C

, which implies that tan2φ =
2C

A−B
or tan(2φ −π) =

2C
A−B

. Since tan(x−π) = tanx , in either case,

2 tanφ
1− tan2 φ

=
2C

A−B
,

which implies that

tanφ
1− tan2 φ

=
C

A−B
=

−k2d
k3− k (d2 + l2)

=
dk

d2 + l2− k2

by (19). The equation
tanφ

1− tan2 φ
= r has solution

tanφ =
1
2r

(
−1±

√
1+4r2

)
. (22)

Letting r =
dk

d2 + l2− k2 yields 1+4r2 =

(
d2 +(k− l)2

)(
d2 +(k+ l)2

)
(k2 −d2− l2)2 . By (22),

tanφ =
k2 −d2− l2

2dk

(
1±

√
((k− l)2 +d2) ((k+ l)2 +d2)

k2 −d2− l2

)
.

There are two cases to consider.

Case 1: k2 −d2− l2 > 0

Let S = {(d,k, l : d > 0,k > 0, l > 0} , which is a connected set. k2 − d2 − l2 =
0 ⇒ φ =

π
4
⇒ tanφ > 0. Also, tanφ = 0 ⇐⇒ r = 0. But r �= 0 since dk �= 0. Thus

tanφ > 0 on S . Also,
4k2d2 > 0
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implies that (
(k− l)2 +d2)((k+ l)2 +d2)− (k2 −d2− l2

)2
> 0,

which implies that √
((k− l)2 +d2)((k+ l)2 +d2) > k2−d2− l2.

Hence

tanφ =
k2−d2− l2

2dk

(
1+

√
((k− l)2 +d2)((k+ l)2 +d2)

k2 −d2− l2

)
(23)

since
k2 −d2− l2

2dk

(
1−

√
((k− l)2 +d2) ((k+ l)2 +d2)

k2 −d2− l2

)
< 0.

Case 2: k2 −d2− l2 < 0

Then
k2 −d2− l2

2dk

(
1−

√
((k− l)2 +d2) ((k+ l)2 +d2)

k2 −d2− l2

)
< 0, so again (23) holds.

By (21),

|Z|−ReZ
ImZ

=
k2 −d2− l2

2dk
×
(

1+

√
((k− l)2 +d2)((k+ l)2 +d2)

k2−d2− l2

)
.

Thus the major axis line and £ each have slope given by the right hand side of (23).
Since both the major axis line and £ pass through g , they must be identical. That
completes the proof of (A). (B) follows immediately from the fact that the ellipse of
maximal area inscribed in a square is a circle.

We show in the following example that a version of Marden’s Theorem does not
hold for ellipses inscribed in parallelograms.

EXAMPLE 11. Let D– be the rectangle with vertices z1 = 0, z2 = 1, z3 = 1+2i ,

z4 = 2i . Letting l = 1, k = 2, and v =
k
2

= 1 in Lemma 2 yields the equation 4x2 +

y2 − 4x− 2y+ 1 = 0 for the maximal area ellipse, EA , inscribed in D– . Rewriting the

equation as 4

(
x− 1

2

)2

+ (y−1)2 = 1 shows that the foci of EA are

(
1
2
,1+

√
3

2

)

and

(
1
2
,1−

√
3

2

)
. If

Q(z) = z(z−1)(z− (1+2i))(z−2i)),

then the roots of Q′′(z) are
1
2

+
1
2
i and

1
2

+
3
2
i , which would give the points

(
1
2
,
1
2

)

and

(
1
2
,
3
2

)
. Hence the roots of Q′′(z) do not give the foci of the maximal area ellipse.
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REMARK 2. Some heuristic reasoning shows that a version of Marden’s Theorem
does not hold for ellipses inscribed in convex quadrilaterals. For if it did, then when
the quadrilateral is tangential(contains an inscribed circle), Q′′ would have to have a
double root. But a square is tangential, while Q′′ has distinct roots.

REMARK 3. For an ellipse, E , circumscribed about a convex quadrilateral, D–
(that is, passing through the vertices of D– ), one can prove a result similar to Theorem

7:
AE

Area(D– )
� π

2
. We shall have more to say about this in a future paper, but we sketch

the idea of the proof here. We thank Grant Keady of the University of Western Australia
for the general approach. There is an affine map, A , which maps E onto a circle, C .

Let ˜D– denote A(D– ) , so that ˜D– is a cyclic quadrilateral. Since
AE

Area(D– )
=

AC

Area(˜D– )
,

it suffices to prove that
AC

Area(˜D– )
� π

2
. That in turn follows from the following results.

(1) A square is the quadrilateral of maximal area which can be inscribed in a given
circle.

and
(2) Let R be the rectangle of maximal area which can be inscribed in a given

semi–circle of radius r . Then the area of R equals r2 .
We also note that this same approach might lead to a shorter proof of Theorem 7.

Use again an affine map, A , which maps E onto a circle, C . This time ˜D– = A(D– )
is a tangential quadrilateral, so that one can make use of known results about the areas
of circles inscribed in tangential quadrilaterals. We leave it to the reader to fill in the
details.
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