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ON HADAMARD’S INEQUALITIES FOR THE CONVEX MAPPINGS

DEFINED IN TOPOLOGICAL GROUPS AND A CONNECTED RESULT

ALI MORASSAEI

(Communicated by I. Raşa)

Abstract. In this paper, we study the Hadamard’s inequality for midconvex and quasi-midconvex
functions in topological groups. A mapping naturally connected with this inequality and a related
result is also pointed out.

1. Introduction

Let f : I −→R be a convex mapping defined on the interval I of real numbers and
a,b ∈ I with a < b . The following double inequality:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
(1)

is known in the literature as Hadamard’s inequality for convex mapping. Note that
some of the classical inequalities for means can be derived from (1) for appropriate
particular selections of the mapping f .

In the paper [4] (see also [5] and [6]) is considered the following mapping naturally
connected with Hadamard’s results:

H : [0,1] −→ R, H(t) =
1

b−a

∫ b

a
f

(
tx+(1− t)

a+b
2

)
dx.

The following properties of H hold:

(i) H is convex and monotonic nondecreasing.

(ii) One has the bounds

sup
t∈[0,1]

H(t) = H(1) =
1

b−a

∫ b

a
f (x)dx

and

inf
t∈[0,1]

H(t) = H(0) = f

(
a+b

2

)
.
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Another mapping also closely connected with Hadamard’s inequality is the following
one [5] (see also [6]):

F : [0,1] −→ R, F(t) =
1

(b−a)2

∫ b

a

∫ b

a
f (tx+(1− t)y)dxdy.

The properties of this mapping are the following ones:

(i) F is convex and monotonic nonincreasing on [0, 1
2 ] and nondecreasing on [ 1

2 ,1];

(ii) F is symmetric relative to the element 1
2 . That is,

F(t) = F(1− t) for all t ∈ [0,1];

(iii) One has the bounds

sup
t∈[0,1]

F(t) = F(0) = F(1) =
1

b−a

∫ b

a
f (x)dx

and

inf
t∈[0,1]

F(t) = F

(
1
2

)
=

1
(b−a)2

∫ b

a

∫ b

a
f

(
x+ y

2

)
dxdy � f

(
a+b

2

)

(iv) The following inequality holds:

F(t) � max{H(t),H(1− t)} for all t ∈ [0,1].

Generalization of (1) for quasi convex functions defined on the real line is also
well-known. It was established in [2] that for a quasi convex function f defined on
[a,b] we have

f

(
a+b

2

)
� 2

b−a

∫ b

a
f (x)dx.

In this paper we shall study generalizations of the left side of (1) inequality for some
convex functions defined on an open subset of a topological group G .

2. A Secondary Result

Generalization of the left side of (1) for convex functions defined on a convex
subset of R

n is well-known. For example, if X ⊂R
n is a convex bounded symmetrical

set (the latter means that x ∈ X =⇒−x ∈ X ), then (c.f. [8])

f (0) � 1
μ(X)

∫
X

f (x)dx (2)
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for each lower semicontinuous convex function f : X −→R , where μ(X) is the volume
of the set X . To show (2), consider the transformation of the R

n in itself given by:

h : R
n → R

n, h = (h1,h2, · · · ,hn),

and
hi(x1,x2, · · · ,xn) = −xi, i = 1,2, · · · ,n.

Then h(X) = X and since

D(h1,h2, · · · ,hn)
D(x1,x2, · · · ,xn)

=

∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

...
0 0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n.

we have the change of variable:∫
X

f (x1,x2, · · · ,xn)dx1dx2 · · ·dxn

=
∫

X
f (h1(x1,x2, · · · ,xn), · · · ,hn(x1,x2, · · · ,xn))

∣∣∣∣D(h1,h2, · · · ,hn)
D(x1,x2, · · · ,xn)

∣∣∣∣dx1dx2 · · ·dxn

=
∫

X
f (−x1,−x2, · · · ,−xn)dx1dx2 · · ·dxn.

Now, by the convexity of f on X we also have:

f (0,0, · · · ,0) = f

(
x1− x1

2
,
x2− x2

2
, · · · , xn− xn

2

)

= f

(
(x1,x2, · · · ,xn)+ (−x1,−x2, · · · ,−xn)

2

)

� 1
2

[ f (x1,x2, · · · ,xn)+ f (−x1,−x2, · · · ,−xn)]

which gives, by integration of f on X , that:∫
X

f (0,0, · · · ,0)dx1dx2 · · ·dxn

� 1
2

[∫
X

f (x1,x2, · · · ,xn)dx1dx2 · · ·dxn +
∫
X

f (−x1,−x2, · · · ,−xn)dx1dx2 · · ·dxn

]

=
∫

X
f (x1,x2, · · · ,xn).

Consequently, we get

f (0,0, · · · ,0)μ(X) �
∫

X
f (x1,x2, · · · ,xn)dx1dx2 · · ·dxn

and thus

f (0,0, · · · ,0) � 1
μ(X)

∫
X

f (x1,x2, · · · ,xn)dx1dx2 · · ·dxn.
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3. Hadamard’s Inequality

In this section we prove the Hadamard’s inequality for midconvex and quasi-
midconvex functions in topological groups.

Let G be a topological group, Ω a nonempty open subset of G and f a real-valued
function on Ω . We say that f is globally (right) midconvex if

2 f (a) � f (az)+ f (az−1) (3)

for all a,z ∈ G such that a,az,az−1 ∈Ω . Also, we say that f is locally (right) midcon-
vex in a ∈Ω if there exists an open symmetric set V = V−1 from e such that

2 f (a) � f (az)+ f (az−1) (4)

for all z ∈ G such that az,az−1 ∈Ω [1]. Also, f is called quasi-(right)midconvex, if

f (az) � max{ f (a), f (az2)} (5)

for every a,z ∈ G so that a,az,az2 ∈Ω [7]. Note that a is midpoint of az−1 and az ,
and az is midpoint of a and az2 .

DEFINITION 1. Let Ω be an open subset of topological group G , and a ∈G . Ω
is said to be symmetric relative to a, if a−1Ω is symmetric and e ∈ a−1Ω .

DEFINITION 2. Let G be a topological group and Ω⊂G an open set. A function
ω : Ω−→ R is called symmetric relative to a ∈ G , if

∀z ∈ G; az,az−1 ∈Ω ω(az) = ω(az−1).

The following theorems hold:

THEOREM 1. Let G be a locally compact group and Ω⊂ G an open symmetric
set relative to a ∈ G with 0 < μ(Ω) < ∞ . If f : Ω −→ R is measurable and locally
midconvex in a and also, f ∈ L1(Ω) , and ω : Ω −→ R is nonnegative and symmetric
to a and ω ∈ L1(Ω) such that fω ∈ L1(Ω) , then

f (a)
∫
Ω
ω(az)dμ(z) �

∫
Ω

f (az)ω(az)dμ(z),

where μ is the Haar measure.

Proof. Since f is locally midconvex in a , so

2 f (a) � f (az)+ f (az−1)

for any z ∈Ω , by (4). Since ω is nonnegative and symmetric relative to a , thus

2 f (a)ω(az) � f (az)ω(az)+ f (az−1)+ω(az)
= f (az)ω(az)+ f (az−1)+ω(az−1).
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Integrating this inequality on Ω , we get∫
Ω

2 f (a)ω(az)dμ(z) �
∫
Ω

f (az)ω(az)dμ(z)+
∫
Ω

f (az−1)ω(az−1)dμ(z)

=
∫

a−1Ω
f (z)ω(z)dμ(z)+

∫
a−1Ω

f (z−1)ω(z−1)dμ(z)

=
∫

G
f (z)ω(z)χa−1Ω(z)dμ(z)+

∫
G

f (z−1)ω(z−1)χa−1Ω(z)dμ(z)

=
∫

G
f (z)ω(z)χa−1Ω(z)dμ(z)+

∫
G

f (z−1)ω(z−1)χa−1Ω(z−1)dμ(z)

= 2
∫

G
f (z)ω(z)χa−1Ω(z)dμ(z).

= 2
∫

a−1Ω
f (z)ω(z)dμ(z).

Consequently, we have

f (a)
∫
Ω
ω(az)dμ(z) �

∫
Ω

f (az)ω(az)dμ(z). �

REMARK 1. If in the above theorem, a = e and ω ≡ 1 on Ω , we have

f (e) � 1
μ(Ω)

∫
Ω

f (z)dμ(z).

This result is similar to the result of section 2.

THEOREM 2. Let G be a locally compact group and Ω⊂ G an open symmetric
set relative to a ∈ G with 0 < μ(Ω) < ∞ and e ∈ Ω . If f is measurable and quasi-
midconvex real-valued function on Ω such that f ∈ L2(Ω) and also, ω :Ω−→ R is a
nonnegative and symetric to a and ω ∈ L2(Ω) , then

f (a)
∫
Ω
ω(az)dμ(z) �

∫
Ω

f (az)ω(az)dμ(z)+ I(a) (6)

where

I(a) =
1
2

∫
Ω
| f (az)− f (az−1)|ω(az)dμ(z).

Furthermore, I(a) satisfies the inequalities:

0 � I(a)� min

{ ∫
Ω | f (az)|ω(az)dμ(z),

1√
2

(∫
Ω f 2(az)dμ(z)−∫

Ω f (az) f (az−1)dμ(z)
) 1

2
(∫

Ωω2(az)dμ(z)
) 1

2

}
.

(7)

Proof. Since Ω is a symmetric set relative to a , thus for z in G , by (5), we have

f (a) � max{ f (az), f (az−1)}
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where max{ f (az), f (az−1)} = f (az)+ f (az−1)+| f (az)− f (az−1)|
2 and since ω is nonnegative

and symmetric relative to a , therefore∫
Ω

f (a)ω(az)dμ(z) � 1
2

∫
Ω

f (az)ω(az)dμ(z)+
1
2

∫
Ω

f (az−1)ω(az−1)dμ(z)

+
1
2

∫
Ω
| f (az)− f (az−1)|ω(az)dμ(z).

So,

f (a)
∫
Ω
ω(az)dμ(z) �

∫
Ω

f (az)ω(az)dμ(z)+ I(a)

and the inequality (6) is proved.
We now observe that, by the Cauchy-Schwartz inequality,

0 � I(a) =
1
2

∫
Ω
| f (az)− f (az−1)|ω(az)dμ(z)

� 1
2

(∫
Ω
( f (az)− f (az−1))2dμ(z)

) 1
2
(∫

Ω
ω2(az)dμ(z)

) 1
2

=
1
2

(∫
Ω

[
f 2(az)−2 f (az) f (az−1)+ f 2(az−1)

]
dμ(z)

) 1
2
(∫

Ω
ω2(az)dμ(z)

) 1
2

=
1
2

(
2

∫
Ω
[ f 2(az)− f (az) f (az−1)]dμ(z)

) 1
2
(∫

Ω
ω2(az)dμ(z)

) 1
2

=
√

2
2

(∫
Ω

f 2(az)dμ(z)−
∫
Ω

f (az) f (az−1)dμ(z)
) 1

2
(∫

Ω
ω2(az)dμ(z)

) 1
2

.

On the other hand,

I(a) � 1
2

(∫
Ω
| f (az)|ω(az)dμ(z)+

∫
Ω
| f (az−1)|ω(az)dμ(z)

)

=
∫
Ω
| f (az)|ω(az)dμ(z)

and the inequality (7) is proved. �

DEFINITION 3. The function f :Ω−→ R is said to be a P-function in Ω , if

f (a) � f (az)+ f (az−1),

for all a ∈Ω and z ∈ G such that az,az−1 ∈Ω .

THEOREM 3. Let G be a locally compact group and Ω⊂ G an open symmetric
set relative to a ∈ G with 0 < μ(Ω) < ∞. If f is measurable and a P-function real-
valued on Ω such that f ∈ L1(Ω) and also, ω :Ω−→R is nonnegative and symmetric
to a and ω ∈ L1(Ω) such that fω ∈ L1(Ω) , then

f (a)
∫
Ω
ω(az)dμ(z) � 2

∫
Ω

f (az)ω(az)dμ(z).
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Proof. Since f is P-function, we have

f (a)ω(az) � f (az)ω(az)+ f (az−1)ω(az).

Integrating this inequality on Ω , we get

∫
Ω

f (a)ω(az)dμ(z) �
∫
Ω

f (az)ω(az)dμ(z)+
∫
Ω

f (az−1)ω(az)dμ(z)

=
∫
Ω

f (az)ω(az)dμ(z)+
∫
Ω

f (az−1)ω(az−1)dμ(z)

= 2
∫
Ω

f (az)ω(az)dμ(z)

Thus, f (a)
∫
Ωω(az)dμ(z) � 2

∫
Ω f (az)ω(az)dμ(z) . �

Now, for a globally midconvex function f : G −→ R that e ∈ Ω , we can define
the mapping H :Ω−→ R ,

H(x) =
1

μ(Ω)

∫
Ω

f (xz)dμ(z).

The properties of this mapping are embodied in the following theorem:

THEOREM 4. Suppose that f : G −→ R is globally midconvex and Ω is an open
symmetric subset of G such that e ∈Ω and 0 < μ(Ω) < ∞ . Then

(i) The mapping H is globally midconvex on G, if G is abelian.

(ii) f (e) � H(e).

Proof. (i) Assume that a,x,z ∈ G such that ax,ax−1 ∈Ω , so

H(ax)+H(ax−1) =
1

μ(Ω)

∫
Ω

f (axz)dμ(z)+
1

μ(Ω)

∫
Ω

f (ax−1z)dμ(z)

=
1

μ(Ω)

∫
Ω

[
f (azx)+ f (azx−1)

]
dμ(z)

� 2
μ(Ω)

∫
Ω

f (az)dμ(z)

= 2H(a)

that is, H is globally midconvex.

(ii) Since f is midconvex, by Theorem 1, f (e) � 1
μ(Ω)

∫
Ω f (z)dμ(z) = H(e) . �
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4. Applications

In this section, we study special cases of theorems 1, 2 and 3.
Set G = R . Since R is an abelian additive group, thus, for all a,z ∈ R , a− z

and a+ z are points for which a is the midpoint. Now, if a− z = x and a + z = y ,
then a = x+y

2 . Consequently, definitions of globally midconvex and quasi-midconvex
functions are to be written as follows:

f

(
x+ y

2

)
� f (x)+ f (y)

2
, ( f globally midconvex)

f

(
x+ y

2

)
� max{ f (x), f (y)}. ( f quasi midconvex)

APPLICATION 1. If in the Theorem 1 let G = R and Ω = [−a,a] , we have

f (0)
∫ a

−a
ω(x)dx �

∫ a

−a
f (x)ω(x)dx,

and if we set ω ≡ 1 on [−a,a] , we get

f (0) � 1
2a

∫ a

−a
f (x)dx

that is special case of (2), where n = 1.

APPLICATION 2. If in the Theorem 1, G = R
n with an additive operation and

Ω = X is an open bounded symmetric and convex subset of R
n , then the result of

section 2 holds.
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