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Abstract. A variant of Cauchy mean-value theorem is presented. Applying a counterpart of the
Lagrange mean-value theorem, we introduce new type of means. The functions generating the
homogeneous means of this type are determined. In some special cases the effective formulas
for these means are presented. Mean-value-theorems which do not lead to any mean are also
mentioned.

1. Introduction

The classical Lagrange and Cauchy mean-value theorems, in a natural and straight-
forward way, lead to the important classes of means (cf. Bullen, Mitrinović, Vasić [2],
and Bullen [3]).

In section 2 we present a variant of the Cauchy mean-value theorem. As a special
case we obtain a counterpart of the Lagrange mean-value theorem (see Corollary 1).
For a given real differentiable function, it allows to define, at least in an implicit way,
a new type of mean. In general it is not symmetric. If it symmetric, then it coincides
with the Lagrange mean (Corollary 2). Contrary to the case of a Lagrange mean, it is
difficult to get its effective formula. Even the conditions for uniqueness of the mean
are not obvious. In section 3, assuming the continuous differentiability of the function
(a generator of the mean), we show that uniqueness of the mean implies its continuity
as a function of two variables. Applying the implicit function theorem, we prove that
twice differentiability of the generator with non-vanishing first derivative guarantee
local uniqueness of the mean in a neighbourhood of the diagonal. Moreover, some
sufficient conditions for the global uniqueness of the mean are presented (Theorem 3).

In section 4, under the regularity conditions mentioned above, we show that the
considered mean is homogeneous iff either its generator is a power function or logarith-
mic function (Theorem 4). We denote by F [p] the homogeneous mean generated by
the power function f (x) = xp for p �= 0 and by F [0] the mean generated by f = log .
We show that limp→0 F [p] = F [0] pointwise. Moreover, for p ∈ {

3,2,1, 1
2 ,−1,−2

}
we give the effective forms of the mean F [p] .

Mathematics subject classification (2010): Primary 26A24; Secondary 39B22.
Keywords and phrases: Mean–value theorem, mean, homogeneous mean, implicit function, inequali-

ties.

c© � � , Zagreb
Paper JMI-04-43

467



468 J. MATKOWSKI AND I. PAWLIKOWSKA

In section 5 some inequalities between the considered means and the arithmetic
mean are given.

At the end of our paper we present some Flett type mean-value theorems with a
comment explaining why these results are not useful in introducing the relevant means.

2. Some mean-value theorems and means

In this section we prove the following counterpart of the Cauchy mean-value the-
orem:

THEOREM 1. If f ,g : [a,b] → R are differentiable on (a,b) and continuous at
the points a and b, then there exists a point η ∈ (a,b) such that

g′(η) [ f (η)− f (a)] = f ′(η) [g(b)−g(η)].

If moreover g′(x) �= 0 for all x ∈ (a,b), then there exists a point η ∈ (a,b) such that

f (η)− f (a)
g(b)−g(η)

=
f ′(η)
g′(η)

.

Proof. The function ϕ : [a,b]→ R ,

ϕ(t) := [g(b)−g(t)] [ f (t)− f (a)] , t ∈ [a,b],

is continuous in [a,b]. Since ϕ(a) = 0 = ϕ(b), by the Rolle theorem there exists a
point η ∈ (a,b) such that ϕ ′(η) = 0. As

ϕ ′(t) = −g′(t) [ f (t)− f (a)]+ [g(b)−g(t)] f ′(t), t ∈ [a,b],

we hence get
−g′(η) [ f (η)− f (a)]+ [g(b)−g(η)] f ′(η) = 0,

which completes the proof of the first assertion. Since the moreover part is obvious, the
proof is complete. �

COROLLARY 1. If f : [a,b] → R is differentiable on (a,b) and continuous at a
and b, then there exists a point η ∈ (a,b) such that

f (η)− f (a) = f ′(η)(b−η).

Let I ⊂ R be an interval. Recall that a function M : I2 → I is called a strict mean
in I, if

min(x,y) < M(x,y) < max(x,y), (x,y) ∈ I2, x �= y; M(x,x) = x for x ∈ I.
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THEOREM 2. Let I ⊂ R be an interval. Suppose that f ,g : I → R are differen-
tiable and g′(x) �= 0 for x ∈ I . Then there exists a strict mean M : I2 → I such that

f (M(x,y))− f (x)
g(y)−g(M(x,y))

=
f ′(M(x,y))
g′ (M(x,y))

, x,y ∈ I, x �= y. (1)

Moreover, if f ′
g′ is one-to-one and M is symmetric, that is,

M(x,y) = M(y,x), x,y ∈ I,

then M[ f ,g] := M is unique, and

M[ f ,g] = C[ f ,g],

where C[ f ,g] : I2 → I is the Cauchy mean of the generators f and g, given by

C[ f ,g](x,y) :=
(

f ′

g′

)−1 (
f (x)− f (y)
g(x)−g(y)

)
, x �= y.

Proof. Take arbitrary x,y ∈ I, x �= y. Applying the previous theorem with a :=
min(x,y), b := max(x,y) we obtain the existence of a strict mean M such that (1)
holds true. If M is symmetric then, from (1),

f (M(x,y))− f (x)
g(y)−g(M(x,y))

=
f (M(x,y))− f (y)
g(x)−g(M(x,y))

,

whence

f (M(x,y)) =
f (x)g(x)− f (y)g(y)−g(M(x,y))[ f (x)− f (y)]

g(x)−g(y)
.

Now, making again use of (1), we get

f (x)g(x)− f (y)g(y)−g(M(x,y))[ f (x)− f (y)]
g(x)−g(y) − f (x)

g(y)−g(M(x,y))
=

f ′(M(x,y))
g′ (M(x,y))

,

which, after obvious simplifications, reduces to the equality

f (x)− f (y)
g(x)−g(y)

=
f ′(M(x,y))
g′ (M(x,y))

.

As f ′
g′ is one-to-one, we hence get

M(x,y) =
(

f ′

g′

)−1 (
f (x)− f (y)
g(x)−g(y)

)
.

Thus M = M[ f ,g] is unique and M[ f ,g] = C[ f ,g]. This completes the proof. �
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COROLLARY 2. Let I ⊂R be an interval. If f : I →R is differentiable, then there
exists a strict mean M : I2 → I such that

f (M(x,y))− f (x)
y−M(x,y))

= f ′(M(x,y)), x,y ∈ I, x �= y.

Moreover, if f ′ is one-to-one and M symmetric, that is,

M(x,y) = M(y,x), x,y ∈ I,

then M[ f ] := M is unique, and
M[ f ] = L[ f ],

where L[ f ] : I2 → I is the Lagrange mean (of a generator f ) given by

L[ f ](x,y) :=
(
f ′

)−1
(

f (x)− f (y)
x− y

)
, x �= y.

REMARK 1. Take I = (0,∞) . For f (x) = xp where p ∈ R , 0 �= p �= 1, we put
L [p] := L[ f ], that is

L [p](x,y) =
(

xp− yp

p(x− y)

)1/(p−1)

, x �= y.

The means {L [p] : p ∈ R} where

L [0](x,y) :=
x− y

logx− logy
, L [1](x,y) =

1
e

(
xx

yy

)1/(x−y)

, x �= y.

form the so called logarithmic family of means (cf. [2], p. 345). It is well known (and
easy to verify) that for fixed x,y > 0, x �= y, the function p → L [p](x,y) is continuous
and strictly increasing.

3. Uniqueness and continuity of the mean M[ f ]

THEOREM 3. Suppose that I ⊂ R is an open interval, f : I → R is continuously
differentiable and f ′(x) �= 0 for x ∈ I . Then

(i) if for every x,y ∈ I there is a unique mean-value M(x,y) = M[ f ](x,y) such that

f (M(x,y))− f (x) = f ′(M(x,y))(y−M(x,y)), x,y ∈ I, (1)

then M[ f ] is continuous;

(ii) if f is twice continuously differentiable, then for each x0 ∈ I there exist δ > 0
and a unique function M : (x0 − δ ,x0 + δ )2 → I satisfying the equation

f (M(x,y))− f (x) = f ′(M(x,y))(y−M(x,y)), x,y ∈ (x0− δ ,x0 + δ );

moreover M is a strict and continuously differentiable mean in (x0−δ ,x0 +δ )2.

(iii) if f is twice differentiable and f ′ f ′′ � 0 in I, then there exists a unique strict
mean M : I2 → I such that (1) holds true .



HOMOGENEOUS MEANS 471

Proof. Ad (i). The inequality

min(x,y) � M(x,y) � max(x,y), x,y > 0,

implies that M is continuous at each point (x,x). Take arbitrary point (x,y), x �= y, and
a sequence (xn,yn), xn �= yn, xn,yn > 0 for n ∈ N such that

lim
n→∞

(xn,yn) = (x,y).

Of course we have

f (M(xn,yn))− f (xn)
yn−M(xn,yn)

= f ′(M(xn,yn)), n ∈ N,

and the sequence (M(xn,yn)) is bounded. Choose an arbitrary convergent subsequence
of (M(xn,yn)). Without any loss of generality we can assume that (M(xn,yn)) is con-
vergent and denote by ξ its limit. Letting n → ∞ in the above equality and taking into
account the continuity of f and f ′, we obtain

f (ξ )− f (x)
y− ξ

= f ′(ξ ).

The assumed uniqueness of the mean value implies that ξ = M(x,y). It follows that

lim
n→∞

M(xn,yn) = M(x,y),

which proves the continuity of M.
Ad (ii). Suppose that f is twice continuously differentiable in I and f ′(x) �= 0 for

x ∈ I. Define F : I3 → R by

F(x,y,M) := f (M)− f (x)− f ′(M)(y−M), x,y,M ∈ I,

and fix x0 ∈ I , y0 = x0 and M0 = x0 . Note that

∂F
∂M

= f ′(M)− f ′′(M)(y−M)+ f ′(M) = 2 f ′(M)− f ′′(M)(y−M)

and
∂F
∂M

(x0,x0,M0) = 2 f ′(M0)− f ′′(x0)(x0−M0) = 2 f ′(x0) �= 0.

Since
F(x0,x0,M0) = f (M0)− f (x0)− f ′(M0)(x0−M0) = 0,

by the Implicit Function Theorem there is δ > 0 and a unique continuous function
M : (x0 − δ ,x0 + δ )2 → I such that

F(x,y,M(x,y)) = 0, x,y ∈ (x0 − δ ,x0 + δ ).
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Moreover M is of the class C1 on (x0 − δ ,x0 + δ )2. By Theorem 1, the function must
coincide with the mean M on (x0−δ ,x0 +δ )2. This proves the local uniqueness of M
in a neighborhood of (x0,x0).

Ad (iii). Take arbitrary x,y ∈ I, x �= y. Without any loss of generality we can
assume that x < y. Define a function ϕ : [x,y] → R by the formula

ϕ(t) := f (t)− f (x)− f ′(t)(y− t), t ∈ [x,y],

and note that
ϕ ′(t) = 2 f ′(t)− f ′′(t)(y− t), t ∈ [x,y].

Since y− t > 0 for all t ∈ (x,y) and, by the assumption, f ′(t) f ′′(t) � 0 for t ∈ [x,y],
the derivative ϕ ′ is either nonnegative or nonpositive in I. If there were a nontrivial
subinterval J ⊂ [x,y] such that ϕ ′(t) = 0 for t ∈ J, we would have

2 f ′(t)− f ′′(t)(y− t) = 0, t ∈ J,

whence, as t < y,
f ′′(t)
f ′(t)

=
2

y− t
> 0, t ∈ J,

which contradicts to the assumption that f ′ f ′′ � 0 in I. It follows that ϕ is strictly
monotonic in [x,y]. As, by the Lagrange mean-value theorem, f (y)− f (x) = f ′(ξ )(y−
x) for some ξ ∈ (x,y), we have

ϕ(x)ϕ(y) = − f ′(x)(y− x)[ f (y)− f (x)] = − f ′(x) f ′(ξ )(y− x)2.

Since f ′ is of a constant sign in I, we infer that ϕ(x)ϕ(y) < 0. It follows that there is
a unique M ∈ (x,y) such that ϕ(M) = 0. This completes the proof. �

REMARK 2. In the case when the mean M yielded by Theorem 1 is unique, we
denote it by M[ f ] and the function f is referred to as a generator of M.

REMARK 3. If f is a generator of M[ f ] and g = a f +b for some a,b∈ R , a �= 0,
then it easy to check that M[g] = M[ f ].

4. Homogeneity of M[ f ]

THEOREM 4. Let f : (0,∞) → R be twice differentiable and f ′(x) �= 0 for x > 0.

(i) If M : (0,∞)2 → (0,∞) is a unique homogeneous mean (that is M(tx,ty) =
tM(x,y) for t,x,y > 0)) and

f (M(x,y))− f (x) = f ′(M(x,y))(y−M(x,y)), x,y > 0, (2)

then either
f (x) = axp +b, x > 0,

for some p,a,b ∈ R , p �= 0 �= a, or

f (x) = a logx+b, x > 0,

for some a,b ∈ R , a �= 0.
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(ii) If f has one of the above forms then there is a unique function M : (0,∞)2 →
(0,∞) satisfying (2); moreover M is a strict homogeneous mean.

Proof. Ad (i). Suppose that f ′(x) �= 0 for x ∈ (0,∞) and M[ f ] is homogeneous.
Then

f (tM(x,y))− f (tx)
t[y−M(x,y)]

= f ′(tM(x,y)), t,x,y ∈ (0,∞), x �= y,

and, of course,

y−M(x,y)
f (M(x,y))− f (x)

=
1

f ′(M(x,y))
, x,y ∈ (0,∞), x �= y.

Multiplying the respective sides of these equations we obtain

f (tM(x,y))− f (tx)
t[ f (M(x,y))− f (x)]

=
f ′(tM(x,y))
f ′(M(x,y))

, t,x,y ∈ (0,∞), x �= y.

In view of Theorem 3 the mean M is continuous. Therefore, for every x ∈ (0,∞),
the set Jx := M(x,(0,∞)) = {M(x,y) : y ∈ (0,∞)} is an interval and x ∈ IntJx. Setting
u = M(x,y), we have

f (tu)− f (tx)
t[ f (u)− f (x)]

=
f ′(tu)
f ′(u)

, t ∈ (0,∞), u ∈ Jx, u �= x.

Since the left hand-side is symmetric with respect to x and u ∈ Jx, and the right hand-
side does not depend on x , we hence get

f (tx)− f (tu)
t[ f (x)− f (u)]

=
f ′(tx)
f ′(x)

, t ∈ (0,∞), x ∈ Ju, x �= u.

Both equations imply that

f ′(tu)
f ′(u)

=
f ′(tx)
f ′(x)

, t ∈ (0,∞), x,u ∈ Jx ∩ Ju, x �= u.

It follows that the set of all (t,x,y) satisfying this equality is open in (0,∞)3 . The
continuity of f ′ implies that it is also closed in (0,∞)3. Consequently,

f ′(tu)
f ′(u)

=
f ′(tx)
f ′(x)

, t,x,u > 0.

Since the function on the left hand-side does not depend on u, it follows that for every
t > 0 there is an m(t) such that

f ′(tu) = m(t) f ′(u), t,u > 0.

For u = 1 we hence get
f ′(t) = f ′(1)m(t), t > 0,
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whence, f ′(1) �= 0,
m(tu) = m(t)m(u), t,u > 0,

that is m is multiplicative. By the continuity of f ′, the function m is continuous.
Therefore (cf. J. Aczél [1], p. 41, or M. Kuczma [6], p. 311) there is p ∈ R such that

m(x) = xp−1, x > 0.

Consequently, if p �= 0
f (x) = axp +b, x > 0,

and
f (x) = a logx+b, x > 0.

where, in both cases, a = f ′(1) �= 0 and b ∈ R . This completes the proof of part (i).
Ad (ii). First suppose that f (x) = axp +b (t > 0) for some a,b ∈ R , a �= 0 �= p.

Then we have f ′(x) f ′′(x) = a2p2(p−1)x2p−3 for all x > 0. Now part (iii) of Theorem
3 implies the uniqueness of the mean M if p � 1.

To prove the uniqueness of the mean M in the case p > 1 let us fix arbitrary
x,y > 0, x < y and, similarly as in the proof of the previous theorem, consider the
function ϕ : [x,y] → R with f (x) = axp +b, that is

ϕ(t) := at p−axp−ap(y− t)t p−1, t ∈ [x,y].

Since

ϕ(t) = axp
(( t

x

)p
−1− p

(y
x
− t

x

)( t
x

)p−1
)

,

setting

u :=
t
x
, z :=

y
x

we get
ϕ(t) = axp [

(p+1)up− pzup−1−1
]
, u ∈ [1,z].

Define γ : [0,∞) → R by

γ(u) := (p+1)up− pzup−1−1, u > 0.

We have
γ ′(u) = pup−2 [(p+1)u− (p−1)z],

whence γ ′(u) < 0 for u < p−1
p+1z and γ ′(u) > 0 for u > p−1

p+1z. Consequently, γ is strictly

decreasing in the interval
[
0, p−1

p+1z
]

and strictly increasing in
[

p−1
p+1z,∞). Since γ(0) =

−1 and limu→∞ γ(u) =∞, it follows that there is exactly one u > 0 such that γ(u) = 0.
This proves the uniqueness of M(x,y) .

Now assume that f (x) = a logx+b for some a,b∈R , a �= 0. Since f ′(x) f ′′(x) =
−a2/x3 < 0, the uniqueness of M follows from part (iii) of Theorem 3. This completes
the proof. �
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NOTATION 1. Setting f (x) = axp +b (x > 0) for some a,b ∈ R , p �= 0 �= a, in
(2) we get

M(x,y)p − xp = pM(x,y)p−1(y−M(x,y)), x,y > 0. (3)

Denote the unique mean M satisfying this equality by F [p].

Setting f (x) = a logx+b (x > 0) for some a,b ∈ R , a �= 0, in (2) we get

logM(x,y)− logx =
y−M(x,y)

M(x,y)
, x,y > 0. (4)

Denote the unique mean M satisfying this equality by F [0].

PROPOSITION 1. For any x,y > 0,

lim
p→0

F [p](x,y) = F [0](x,y)

and

logF [0](x,y)− logx =
y−F [0](x,y)

F [0](x,y)
.

Proof. Applying the implicit function theorem to equality (3) we infer that, for
any x,y > 0, the function p → F [p](x,y) is continuous. So limp→0 F [p](x,y) exists.
Let us fix x,y > 0, x �= y. From (3) and the from definition of the mean F [p] for p �= 0
we have

(p+1)
[
F [p](x,y)

]p− py
[
F [p](x,y)

]p−1− xp = 0,

whence
(p+1)

[
F [p](x,y)

]p− xp

p
= y

[
F [p](x,y)

]p−1
. (5)

Since

lim
p→0

(p+1)up− xp

p
= lim

p→0
[up +(p+1)up logu− xp logx] = 1+ logu− logx,

letting p → 0 in (5) we get

1+ log lim
p→0

F [p](x,y)− logx = y

[
lim
p→0

F [p](x,y)
]−1

whence

log lim
p→0

F [p](x,y)− logx =
y− limp→0 F [p](x,y)

limp→0 F [p](x,y)
.

Now (4) and the uniqueness of M[log] imply that limp→0 F [p](x,y) = F [0](x,y). �
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REMARK 4. It easy to see that

F [1](x,y) =
x+ y

2
, F [−1] =

√
xy, x,y > 0.

so F [1] and F [−1] are symmetric.
After some calculations one gets, for x,y > 0,

F [1/2](x,y) =
2x+3y+2

√
x2 +3xy

9
, F [2](x,y) =

√
3x2 + y2 + y

3
,

F [−2](x,y) =
1
3

3
√

27x2y+3
√

81x4y2 +3x6 − x2

3
√

27x2y+3
√

81x4y2 +3x6
,

F [3](x,y) =
1
4

3
√

8x3 + y3 +4
√

x3y3 +4x6 +
1
4

y2

3
√

8x3 + y3 +4
√

x3y3 +4x6
+

1
4
y.

PROPOSITION 2. A mean F [p] ( p ∈ R) is symmetric if, and only if, p = 1 or
p = −1 .

Proof. For an indirect argument assume that F [p] is symmetric for some p /∈
{−1,0,1} . From (3) and the definition of the mean F [p] we have

(p+1)
[
F [p](x,y)

]p− py
[
F [p](x,y)

]p−1− xp = 0

for all x,y > 0. Now, interchanging x and y we get

(p+1)
[
F [p](y,x)

]p− px
[
F [p](y,x)

]p−1− yp = 0.

Since F [p](y,x) = F [p](x,y) , subtracting the suitable sides of the above equations, we
obtain

yp− xp = p
[
F [p](x,y)

]p−1
(y− x),

whence, taking into account the definition of L [p] in Remark 1,

F [p](x,y) =
(

yp− xp

p(y− x)

)1/(p−1)

= L [p](x,y), x,y > 0, x �= y,

Setting this into the first of the above two equations we obtain

(p+1)
[
F [p](x,y)

]p
=

yp+1− xp+1

y− x
,

whence

F [p](x,y) =
(

yp+1− xp+1

(p+1)(y− x)

)1/p

= L [p+1](x,y), x,y > 0, x �= y.
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Consequently, L [p+1] = F [p] = L [p], which is a contradiction.
Now assume that M := F [0] is symmetric. By Proposition 1 we would have

logM(x,y)− logx =
y−M(x,y)

M(x,y)
, logM(x,y)− logy =

x−M(x,y)
M(x,y)

, x,y > 0,

whence, by subtracting the respective sides of these equalities,

M(x,y) =
x− y

logx− logy
, x,y > 0,

that is, M = L [0]. Since M = L [0] does not satisfies any of these equalities, the proof
is completed. �

5. Some inequalities

PROPOSITION 3. Let f : I → R be differentiable in an interval I ⊂ R and let
M : I2 → I be a strict mean such that

f (M(x,y))− f (x)
y−M(x,y)

= f ′(M(x,y)), x,y ∈ I. (6)

(i) If f is convex (strictly convex) then, for all x,y ∈ I, x < y,

M(x,y) � x+ y
2

(
respectively, M(x,y) >

x+ y
2

)
;

(ii) If f is concave (strictly concave) then, for all x,y ∈ I, x < y,

M(x,y) � x+ y
2

(
respectively, M(x,y) <

x+ y
2

)
.

Proof. Take arbitrary x,y ∈ I, x < y, and note that (6) can be written in the form

f (M(x,y))− f (x)
M(x,y)− x

M(x,y)− x
y−M(x,y)

= f ′(M(x,y)).

Since x < M(x,y) < y, the convexity of f implies that

f (M(x,y))− f (x)
M(x,y)− x

� f ′(M(x,y)).

Now the above equality yields the inequality

M(x,y)− x
y−M(x,y)

� 1

whence
M(x,y) � x+ y

2
.

Obviously, if f is strictly convex then the above three inequalities are sharp. We omit
a similar argument in the remaining case. �
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6. Final remarks

Let us note the following mean-value results of Flett’ type.

THEOREM 5. Let I ⊂R be a nontrivial interval with endpoints a and b. Suppose
that f : I → R is differentiable.

(i) If f ′(a) = f ′(b) then there exists η ∈ int I such that

f (η)− f (a) = f ′(η)(b−η).

(ii) If
[ f (a)− f (b)]

[
f (a)− f (b)+ f ′(b)(b−a)

]
< 0

then there exists η ∈ intI such that

f (b)− f (a) = f ′(η)(η−a).

(iii) If [
f (a)− f (b)+ f ′(b)(b−a)

]
f ′(a)(b−a) < 0

then there exists η ∈ intI such that

f (η)− f (a) = f ′(η)(b−a).

Proof. Ad. (i). Let us define Φ : [a,b] → R by

Φ(t) = ( f (t)− f (a))(b− t).

By Lagrange Mean-ValueTheorem there exists η ∈ (a,b) such that Φ′(η)= Φ(b)−Φ(a)
b−a .

This concludes the proof.
Ad. (ii). Applying intermediate value property to the function Φ(t) = f ′(t)(t −

a)− f (b)+ f (a) , t ∈ (a,b) we obtain η ∈ (a,b) such that Φ(η) = 0 which completes
the proof.

Ad. (ii). The proof is the same as in (ii) applied to function Φ(t) = f (a)− f (t)+
f ′(t)(b−a) . �

(For some other generalizations of the Flett theorem cf. [4], [7], [8]).
For obvious reason, the boundary condition f ′(a) = f ′(b) excludes the Flett the-

orem as a tool in definining any means. Indeed, to determine a mean value M(x,y) for
arbitrary x,y ∈ I, x �= y, with the aid of Flett’s result, it would be necessary to assume
that f ′(x) = f ′(y) for all x,y ∈ I, x �= y, then f would have to be an affine function.

Note that from this point of view, the inequality type conditions of parts 2 and 3,
though strongly implicit, are less restrictive.

Acknowledgement. The authors are grateful to an anonymous reviewer for careful
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