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Abstract. By using the notion of the subdifferential of a convex function, we state and prove a
new general refined weighted Hardy-type inequality for convex functions and the integral oper-
ator with a non-negative kernel. We point out that the obtained result generalizes and refines the
classical one-dimensional Hardy’s, Pólya–Knopp’s, and Hardy–Hilbert’s inequalities, as well as
related dual inequalities. We show that our results may be seen as generalizations of some re-
cent results related to Riemann-Liouville’s and Weyl’s operator, as well as a generalization and
a refinement of the so-called Godunova’s inequality.

1. Introduction

First, we recall some well-known integral inequalities. If p > 1, then Hardy’s
integral inequality
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0
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holds for all non-negative functions f ∈ Lp(R+) , where R+ = (0,∞) . Another impor-
tant inequality, closely related to (1.1), is Hardy–Hilbert’s inequality,
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which holds for p > 1 and non-negative functions f ∈ Lp(R+) . Moreover, we mention
Pólya–Knopp’s inequality,

∫ ∞
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)
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∫ ∞

0
f (x)dx, (1.3)

for positive functions f ∈ L1(R+) . Since (1.3) can be obtained from (1.1) by rewriting

it with the function f replaced with f
1
p and then by letting p → ∞ , Pólya–Knopp’s
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inequality may be considered as a limiting case of Hardy’s inequality. Observe that the

constants
(

p
p−1

)p
,

(
π

sin π
p

)p

, and e , respectively appearing on the right-hand sides of

(1.1), (1.2), and (1.3), are the best possible, that is, none of them can be replaced with
any smaller constant.

Since being discovered, the above inequalities have been discussed by several au-
thors, who either gave their alternative proofs using different techniques, or applied,
refined and generalized them in various ways. Further information and remarks con-
cerning the rich history, development, generalizations, and applications of inequalities
(1.1) – (1.3) can be found e.g. in the monographs [12, 20, 21, 24, 26], expository pa-
pers [6, 14, 19], and the references cited therein. Besides, we also emphasize the pa-
pers [3–5, 7–9, 11, 15, 16, 18, 25], all of which to some extent have guided us in the
research presented in this paper.

In particular, recently, it was pointed out by S. Kaijser et al. in [15] that both (1.1)
and (1.3) are just special cases of a much more general Hardy-Knopp’s type inequality,
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, (1.4)

where Φ is a convex function on R+ and f : R+ → R is a locally integrable positive
function. Note that (1.4) follows by a standard application of Jensen’s inequality and
Fubini’s theorem.

On the other hand, E. K. Godunova, [11] (see also [26, Chapter VIII, p. 233]),
proved that the inequality
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holds for a non-negative function l : R
n
+ → R+ , such that

∫
R

n
+

l(x)dx = 1, a convex

function Φ : [0,∞)→ [0,∞) , and a non-negative function f on R
n
+ , such that the func-

tion x �→ Φ( f (x))
x1···xn

is integrable on R
n
+ .

Finally, K. Krulić et al. [18] unified the above results by studying the measure
spaces (Ω1,Σ1,μ1) , (Ω2,Σ2,μ2) , and the general integral operator Ak defined by

Ak f (x) =
1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y), x ∈Ω1, (1.6)

where f : Ω2 −→ R is a measurable function, k : Ω1 ×Ω2 → R is measurable and
non-negative, and

K(x) =
∫
Ω2

k(x,y)dμ2(y) > 0, x ∈Ω1. (1.7)
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Just by using Jensen’s inequality and Fubini’s theorem, they elegantly proved the weighted
inequality ∫

Ω1

u(x)Φ(Ak f (x))dμ1(x) �
∫
Ω2

v(y)Φ( f (y))dμ2(y), (1.8)

where u : Ω1 → R is a non-negative measurable function, x �→ u(x) k(x,y)
K(x) is integrable

on Ω1 for each fixed y ∈Ω2 , v is defined on Ω2 by

v(y) =
∫
Ω1

u(x)
k(x,y)
K(x)

dμ1(x), (1.9)

Φ is a convex function on an interval I ⊆ R , and f : Ω2 → R is such that f (y) ∈ I ,
for all y ∈ Ω2 . Some important and useful modular inequalities related to (1.8) can be
found e.g. in [13, 17, 22].

Although the papers [15] and [18] are fairly new, the role of Jensen’s inequality in
such type of results was known much earlier, e.g. already in [23]. However, the idea
to use the notion of the subdifferential of the convex function Φ , instead of Jensen’s
inequality, is new and it enables us to get a refinement of (1.8). Therefore, in this
paper we consider the operator (1.6) and prove a refined general weighted Hardy–type
inequality with a kernel, related to an arbitrary convex function. Further, we point out
that our result unifies, generalizes and refines inequalities (1.1), (1.2), (1.3), (1.4), (1.5),
and (1.8), as well as some further results from the literature. Finally, applying it to some
important particular measure spaces, kernels, weights, and convex functions, we derive
a series of new refined Hardy–type inequalities.

The paper is organized in the following way. After this Introduction, in Section 2
we introduce some necessary notation and state and prove our main result in this paper:
a general refined weighted Hardy–type inequality with a non-negative kernel and an
arbitrary convex (or concave) function. Especially, we show that our relation can be
regarded as a refinement of (1.8). In the same section, we discuss some particular cases
of the obtained general inequality, related to power and exponential functions, and to
the simplest possible kernel – the one with separate variables. Further, in the next two
sections, our general results are applied to various one-dimensional settings and the
Lebesgue measure. Namely, in Section 3 we derive refined Hardy and Pólya–Knopp–
type inequalities, as well as their dual inequalities, while Section 4 is dedicated to new
refined Hardy–Hilbert–type inequalities. Among other interesting new results, in Sec-
tion 3 we obtain new refined inequalities related to Riemann–Liouville’s and Weyl’s
operator. On the other hand, in Section 4 we get new refined Hardy–Hilbert’s and
Hardy–Littlewood–Pólya’s inequality. The paper is concluded with Section 5, where
a particular multidimensional setting is analyzed. As a special case, a new refined
Godunova–type inequality is obtained.

Conventions. Throughout this paper, all measures are assumed to be positive and σ -
finite, and all functions to be measurable, while expressions of the form 0 ·∞ , 0

0 , ∞
∞ ,

and a
∞ , where a ∈ R , are taken to be equal to zero. By |Ω|μ we denote the measure of

a measurable set Ω with respect to the measure μ . In particular, we use the symbol | |1
as an abbreviation for ‖ ‖L1(Ω,μ) . In addition, by a weight function (shortly: a weight)
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we mean a non-negative measurable function on the actual set, while an interval in R

stands for any convex subset of R . Moreover, IntI denotes the interior of an interval
I ⊆ R . Finally, inequalities like (2.1) are interpreted to mean that if the left-hand side
is finite, so is the right-hand side and the inequality holds.

2. New general refined Hardy-type inequalities with kernels

For readers’ convenience, we introduce some necessary notation and recall some
basic facts about convex functions. Let I be an interval in R and Φ : I −→ R be
a convex function. For x ∈ I , by ∂Φ(x) we denote the subdifferential of Φ at x ,
that is, the set ∂Φ(x) = {α ∈ R : Φ(y)−Φ(x)−α(y− x) � 0, y ∈ I} . It is well-
known that ∂Φ(x) �= /0 for all x ∈ Int I . More precisely, at each point x ∈ Int I we have
−∞<Φ′−(x) �Φ′

+(x) <∞ and ∂Φ(x) = [Φ′−(x), Φ′
+(x)] , while the set on which Φ is

not differentiable is at most countable. Moreover, each function ϕ : I −→ R such that
ϕ(x) ∈ ∂Φ(x) , whenever x ∈ Int I , is increasing on IntI .

Now, we are ready to state and prove the central result of this paper, that is, a new
refined general weighted Hardy-type inequality with a non-negative kernel and related
to an arbitrary convex function. It is given in the following theorem.

THEOREM 2.1. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with posi-
tive σ -finite measures, u be a weight function on Ω1 , k a non-negative measurable
function on Ω1×Ω2 , and K be defined on Ω1 by (1.7) . Suppose that K(x) > 0 for all

x ∈Ω1 , that the function x �→ u(x) k(x,y)
K(x) is integrable on Ω1 for each fixed y ∈Ω2 , and

that v is defined on Ω1 by (1.9) . If Φ is a convex function on an interval I ⊆ R and
ϕ : I → R is any function, such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI , then the inequality∫

Ω2

v(y)Φ( f (y))dμ2(y)−
∫
Ω1

u(x)Φ(Ak f (x))dμ1(x)

�
∫
Ω1

u(x)
K(x)

∫
Ω2

k(x,y) | |Φ( f (y))−Φ(Ak f (x))|

− |ϕ(Ak f (x))| · | f (y)−Ak f (x)| | dμ2(y)dμ1(x) (2.1)

holds for all measurable functions f :Ω2 →R , such that f (y)∈ I for all y∈Ω2 , where
Ak f is defined on Ω1 by (1.6).

Proof. First, note that for an arbitrary x ∈Ω1 and the function hx : Ω2 → R defined by
hx(y) = f (y)−Ak f (x) , we have∫

Ω2

k(x,y)hx(y)dμ2(y) =
∫
Ω2

k(x,y) f (y)dμ2(y)−
∫
Ω2

k(x,y)Ak f (x)dμ2(y)

= K(x)Ak f (x)−Ak f (x)
∫
Ω2

k(x,y)dμ2(y) = 0. (2.2)

Our next step is to show that Ak f (x) ∈ I , for all x ∈ Ω1 . Otherwise, let x0 ∈ Ω1 be
such that Ak f (x0) /∈ I . In this setting, since I is an interval in R and f (Ω2) ⊆ I ,
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the function hx0 is either strictly positive or strictly negative on Ω2 and the product
k(x0,y)hx0(y) has a constant sign on Ω2 . Moreover, by assumptions of Theorem 2.1
we have K(x0) > 0, so there exists a set Ω̃2 ∈ Σ2 such that |Ω̃2|μ2 > 0 and k(x0,y) > 0
for all y ∈ Ω̃2 . Therefore,

∫
Ω2

k(x0,y)hx0(y)dμ2(y) �= 0, which contradicts (2.2). Thus
Ak f (x) ∈ I , x ∈ Ω1 . In particular, if Ak f (x) is an endpoint of I for some x ∈ Ω1 (in
cases when I is not an open interval), then hx (or −hx ) will be a non-negative function
whose integral over Ω2 , with respect to the measure μ2 , is equal to 0. Hence, hx ≡ 0,
that is, f (y) = Ak f (x) holds for μ2 –a.e. y ∈Ω2 .

To prove inequality (2.1), observe that for all r ∈ IntI , s ∈ I , and any function
ϕ : I → R such that ϕ(x) ∈ ∂Φ(x) for x ∈ Int I , we have

Φ(s)−Φ(r)−ϕ(r)(s− r) � 0.

Therefrom,

Φ(s)−Φ(r)−ϕ(r)(s− r) = |Φ(s)−Φ(r)−ϕ(r)(s− r)|
� | |Φ(s)−Φ(r)|− |ϕ(r)| · |s− r| | . (2.3)

Substituting r = Ak f (x) and s = f (y) in (2.3), for Ak f (x) ∈ Int I we get

Φ( f (y))−Φ(Ak f (x))−ϕ(Ak f (x))( f (y)−Ak f (x))
� | |Φ( f (y))−Φ(Ak f (x))|− |ϕ(Ak f (x))| · | f (y)−Ak f (x)| | . (2.4)

The above analysis provides (2.4) to hold even if Ak f (x) is an endpoint of I . In that
case, both sides of inequality (2.4) are equal to 0 for μ2 –a.e. y ∈Ω2 .

Multiplying (2.4) by u(x) k(x,y)
K(x) � 0 for a fixed x ∈Ω1 , and then integrating it over

Ω2 and Ω1 respectively, we obtain

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ( f (y))dμ2(y)dμ1(x)

−
∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ(Ak f (x))dμ2(y)dμ1(x)

−
∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

ϕ(Ak f (x))( f (y)−Ak f (x)) dμ2(y)dμ1(x)

�
∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

| |Φ( f (y))−Φ(Ak f (x))|
− |ϕ(Ak f (x))| · | f (y)−Ak f (x)| | dμ2(y)dμ1(x). (2.5)

By using Fubini’s theorem and the definition (1.9) of the weight v , the first integral on
the left-hand side od (2.5) becomes

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ( f (y))dμ2(y)dμ1(x) =
∫
Ω2

v(y)Φ( f (y))dμ2(y), (2.6)
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while for the second integral on the left-hand side of (2.5) we have

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

Φ(Ak f (x))dμ2(y)dμ1(x)

=
∫
Ω1

u(x)Φ(Ak f (x))
(

1
K(x)

∫
Ω2

k(x,y)dμ2(y)
)

dμ1(x)

=
∫
Ω1

u(x)Φ(Ak f (x))dμ1(x). (2.7)

Finally, applying (2.2) we similarly get

∫
Ω1

∫
Ω2

u(x)
k(x,y)
K(x)

ϕ(Ak f (x))( f (y)−Ak f (x)) dμ2(y)dμ1(x)

=
∫
Ω1

u(x)
K(x)

ϕ(Ak f (x))
(∫

Ω2

k(x,y)hx(y)dμ2(y)
)

dμ1(x) = 0, (2.8)

so (2.1) holds by combining (2.5), (2.6), (2.7), and (2.8). �

REMARK 2.1. Let Φ be a concave function (that is, −Φ is convex). Then for all
r ∈ Int I and s ∈ I we have

Φ(r)−Φ(s)−ϕ(r)(r− s) � 0,

and (2.3) reads

Φ(r)−Φ(s)−ϕ(r)(r− s) = |Φ(r)−Φ(s)−ϕ(r)(r− s)|
� | |Φ(s)−Φ(r)|− |ϕ(r)| · |s− r| | ,

where ϕ is an arbitrary real function on I such that ϕ(x) ∈ ∂Φ(x) = [Φ′
+(x), Φ′−(x)] ,

for all x ∈ IntI . Hence, in this setting, (2.1) holds with its left-hand side replaced with
∫
Ω1

u(x)Φ(Ak f (x))dμ1(x)−
∫
Ω2

v(y)Φ( f (y))dμ2(y).

REMARK 2.2. Since the right-hand side of (2.1) is non-negative, we get (1.8) as
an immediate consequence of Theorem 2.1 and Remark 2.1. Consequently, our new
result can be regarded as a refinement of the general weighted Hardy-type inequality
(1.8). The same holds also for a concave function Φ .

Although (2.1) holds for all convex (or concave) functions, some choices of Φ are
of particular interest. Namely, we shall consider power and exponential functions. To
start with, let p ∈ R \ {0} and the function Φ : R+ → R be defined by Φ(x) = xp .
Obviously, ϕ(x) =Φ′(x) = pxp−1 , x ∈ R+ , so Φ is convex for p ∈ R\ [0,1) , concave
for p ∈ (0,1] , and affine, that is, both convex and concave for p = 1. In this setting,
we get the following consequence of Theorem 2.1.
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COROLLARY 2.1. Let Ω1,Ω2,μ1,μ2,u,k,K , and v be as in Theorem 2.1. Let
p∈R be such that p �= 0 , f :Ω2 → R be a non-negative measurable function (positive
for p < 0), Ak f be defined by (1.6), and

Rp,k f (x,y) =
∣∣∣ ∣∣ f p(y)−Ap

k f (x)
∣∣−|p| · |Ak f (x)|p−1 | f (y)−Ak f (x)|

∣∣∣ , (2.9)

for x ∈Ω1 , y ∈Ω2 . If p � 1 or p < 0 , then the inequality

∫
Ω2

v(y) f p(y)dμ2(y)−
∫
Ω1

u(x)Ap
k f (x)dμ1(x)

�
∫
Ω1

u(x)
K(x)

∫
Ω2

k(x,y)Rp,k f (x,y)dμ2(y)dμ1(x) (2.10)

holds, while for p ∈ (0,1) relation (2.10) holds with

∫
Ω1

u(x)Ap
k f (x)dμ1(x)−

∫
Ω2

v(y) f p(y)dμ2(y)

on its left-hand side.

REMARK 2.3. Note that relation (2.10) is trivial for p = 1, since both of its sides
are equal to 0.

On the other hand, for the convex function Φ : R → R , Φ(x) = ex , we have
ϕ(x) =Φ′(x) = ex and the following new general refined weighted Pólya–Knopp–type
inequality with a kernel, which is a generalization and refinement of the classical Pólya–
Knopp’s inequality (1.3).

COROLLARY 2.2. Let Ω1,Ω2,μ1,μ2,u,k,K , and v be as in Theorem 2.1 and let
p ∈ R , p �= 0 . Then the inequality

∫
Ω2

v(y) f p(y)dμ2(y)−
∫
Ω1

u(x)Gp
k f (x)dμ1(x)

�
∫
Ω1

u(x)
K(x)

∫
Ω2

k(x,y)Sp,k f (x,y)dμ2(y)dμ1(x) (2.11)

holds for all positive measurable functions f on Ω2 , where Gk f (x) and Sp,k f (x,y) are
for x ∈Ω1 and y ∈Ω2 respectively defined by

Gk f (x) = exp

(
1

K(x)

∫
Ω2

k(x,y) ln f (y)dμ2(y)
)

and

Sp,k f (x,y) =
∣∣∣∣ ∣∣ f p(y)−Gp

k f (x)
∣∣−|p|Gp

k (x)
∣∣∣∣ln f (y)

Gk f (x)

∣∣∣∣
∣∣∣∣ . (2.12)
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In particular, for p = 1 we get∫
Ω2

v(y) f (y)dμ2(y)−
∫
Ω1

u(x)Gk f (x)dμ1(x) �
∫
Ω1

u(x)
K(x)

∫
Ω2

k(x,y)×

×
∣∣∣∣ | f (y)−Gk f (x)|−Gk(x)

∣∣∣∣ ln f (y)
Gk f (x)

∣∣∣∣
∣∣∣∣dμ2(y)dμ1(x). (2.13)

Moreover, relations (2.11) and (2.13) are equivalent.

Proof. Apply (2.1) with Φ : R →R , Φ(x) = ex , and replace the function f with p ln f .
Note that Gk f = exp(Ak(ln f )) and Gk f p = Gp

k f , so equivalence of (2.11) and (2.13)
is evident. �

To conclude this section, we consider the simplest kernels k , that is, those with
separate variables. As a corollary of Theorem 2.1 in this setting, we get a refined
general Jensen’s inequality.

COROLLARY 2.3. Suppose Ω is a measure space with a positive σ -finite mea-
sure μ , m ∈ L1(Ω,μ) is a non-negative function such that |m|1 > 0 , a real function Φ
is convex on an interval I ⊆ R , and ϕ : I → R is any function such that ϕ(x) ∈ ∂Φ(x)
for all x ∈ Int I . Then the inequality∫

Ω
m(y)Φ( f (y))dμ(y)−|m|1Φ(Am f )

�
∫
Ω

m(y) | |Φ( f (y))−Φ(Am f )|− |ϕ(Am f )| · | f (y)−Am f | |dμ(y) (2.14)

holds for all measurable functions f : Ω→ R with values in I , where

Am f =
1

|m|1
∫
Ω

m(y) f (y)dμ(y).

If the function Φ is concave, the order of integrals on the left-hand side of (2.14) is
reversed.

Proof. Suppose that in Theorem 2.1 we have Ω2 = Ω , μ2 = μ , u ∈ L1(Ω1,μ1) such
that |u|1 > 0, and k of the form k(x,y) = l(x)m(y) , for some positive measurable
function l : Ω1 → R . Then K(x) = |m|1l(x) and Ak f (x) = Am f ∈ I , x ∈ Ω1 , while
v(y) = |u|1

|m|1 m(y) , y ∈Ω . Thus, (2.1) reduces to (2.14) and it does not depend on Ω1 , l ,
and u . �

REMARK 2.4. Observe that, for 0 < |Ω|μ < ∞ and m(y) ≡ 1 on Ω , we have
|m|1 = |Ω|μ , so (2.14) becomes classical refined Jensen’s inequality

1
|Ω|μ

∫
Ω
Φ( f (y))dμ(y)−Φ(A f )

� 1
|Ω|μ

∫
Ω
| |Φ( f (y))−Φ(A f )|− |ϕ(A f )| · | f (y)−A f | |dμ(y),
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where

A f =
1

|Ω|μ
∫
Ω

f (y)dμ(y).

3. One-dimensional refined Hardy–type inequalities

In the sequel, the general results obtained in Section 2 are applied to particular
measure spaces, convex functions, weights, and kernels. This enables us to refine and
even generalize some important inequalities previously known from the literature.

First, we consider an one-dimensional setting, with intervals in R and the Le-
besgue measure, to get refined Hardy and Pólya–Knopp–type inequalities, as well as
related dual relations. In the following theorem, we state and prove a refinement of a
Hardy–type inequality obtained by S. Kaijser et al. in [16].

THEOREM 3.1. Let 0 < b �∞ and k : (0,b)×(0,b)→R be a non-negative mea-
surable function, such that

K(x) =
∫ x

0
k(x,y) dy > 0, x ∈ (0,b). (3.1)

Let a weight u : (0,b) → R be such that the function x �→ u(x)
x · k(x,y)

K(x) is integrable on

(y,b) for each fixed y ∈ (0,b) , and let the function w : (0,b) → R be defined by

w(y) = y
∫ b

y

k(x,y)
K(x)

u(x)
dx
x

.

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality

∫ b

0
w(y)Φ( f (y))

dy
y
−
∫ b

0
u(x)Φ(Ak f (x))

dx
x

�
∫ b

0

u(x)
K(x)

∫ x

0
k(x,y)×

× ||Φ( f (y))−Φ(Ak f (x))|− |ϕ(Ak f (x))| · | f (y)−Ak f (x)| |dy
dx
x

(3.2)

holds for all measurable functions f : (0,b)→ R with values in I and for Ak f defined
by

Ak f (x) =
1

K(x)

∫ x

0
k(x,y) f (y) dy, x ∈ (0,b). (3.3)

If the function Φ is concave, the order of integrals on the left-hand side of (3.2) is
reversed.

Proof. Denote T1 = {(x,y)∈R
2
+ : 0 < y � x < b} and set Ω1 =Ω2 = (0,b) in Theorem

2.1. Relation (3.2) follows from (2.1) by replacing dμ1(x) , dμ2(y) , u(x) , and k(x,y)
respectively with dx , dy , u(x)

x , and k(x,y)χT1 (x,y) . In this case, (1.6) reduces to (3.3),
while (1.7) becomes (3.1). Moreover, w(y) = yv(y) , y ∈ (0,b) . �
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REMARK 3.1. Since the right-hand side of inequality (3.2) is non-negative, Theo-
rem 3.1 can be seen as a refinement of Theorem 4.1 in [16]. In particular, for k(x,y)≡ 1,
x,y ∈ (0,b) , and the classical Hardy’s operator

H f (x) =
1
x

∫ x

0
f (y)dy, x ∈ (0,b),

we get a refinement of Theorem 1 in [9], that is, the refined Hardy–type inequality for
convex functions,

∫ b

0
w(y)Φ( f (y))

dy
y
−
∫ b

0
u(x)Φ(H f (x))

dx
x

�
∫ b

0

u(x)
x2

∫ x

0
| |Φ( f (y))−Φ(H f (x))| − |ϕ(H f (x))| · | f (y)−H f (x)| |dydx,

where

w(y) = y
∫ b

y

u(x)
x2 dx, y ∈ (0,b).

Observing that the right-hand side of the above inequality is greater than∣∣∣∣
∫ b

0
u(x)

∫ x

0
|Φ( f (y))−Φ(H f (x))|dy

dx
x2

−
∫ b

0
u(x) |ϕ(H f (x))|

∫ x

0
| f (y)−H f (x)|dy

dx
x2

∣∣∣∣ ,
we obtain Theorem 2.2 in [4]. Therefore, Theorem 3.1 generalizes the result mentioned.

Applying Theorem 3.1 to power and exponential functions, we get the following
two corollaries.

COROLLARY 3.1. Let 0 < b � ∞ and k , K , u, and w be as in Theorem 3.1.
Let p ∈ R be such that p �= 0 , f be a non-negative measurable function on (0,b) ( f
positive for p < 0), and let Ak f and Rp,k f be defined by (3.3) and (2.9) respectively.
If p > 1 or p < 0 , then

∫ b

0
w(y) f p(y)

dy
y
−
∫ b

0
u(x)Ap

k f (x)
dx
x

�
∫ b

0

u(x)
K(x)

∫ x

0
k(x,y)Rp,k f (x,y)dy

dx
x

, (3.4)

while for p ∈ (0,1) the order of integrals on the left-hand side of (3.4) is reversed. If
p = 1 , then both-hand sides of (3.4) are equal to 0 .

COROLLARY 3.2. Let 0 < b � ∞ , k , K , u, and w be as in Theorem 3.1, and let
p ∈ R be such that p �= 0 . If f is a positive measurable function on (0,b) ,

Gk f (x) = exp

(
1

K(x)

∫ x

0
k(x,y) ln f (y)dy

)
, x ∈ (0,b),
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and Sp,k f is defined by (2.12), then

∫ b

0
w(y) f p(y)

dy
y
−
∫ b

0
u(x)Gp

k f (x)
dx
x

�
∫ b

0

u(x)
K(x)

∫ x

0
k(x,y)Sp,k f (x,y)dy

dx
x

. (3.5)

Moreover, for p = 1 we have

∫ b

0
w(y) f (y)

dy
y
−
∫ b

0
u(x)Gk f (x)

dx
x

�
∫ b

0

u(x)
K(x)

∫ x

0
k(x,y)×

×
∣∣∣∣ | f (y)−Gk f (x)|−Gk(x)

∣∣∣∣ ln f (y)
Gk f (x)

∣∣∣∣
∣∣∣∣dy

dx
x

(3.6)

and relations (3.5) and (3.6) are equivalent.

The above results can be applied to some important particular kernels. Namely,
in the following example we discuss refined Hardy and Pólya–Knopp–type inequalities
related to the Riemann–Liouville operator

Rγ f (x) =
γ
xγ

∫ x

0
(x− y)γ−1 f (y)dy, (3.7)

where γ ∈ R+ . Of course, for γ = 1 we have R1 = H , that is, the classical Hardy’s
integral operator.

EXAMPLE 3.1. Suppose 0 < b � ∞ , γ ∈ R+ , and T1 is as in the proof of The-
orem 3.1. If u(x) ≡ 1, k(x,y) = γ

xγ (x− y)γ−1χT1(x,y) , and Rγ f (x) is as in (3.7), then
inequality (3.2) reads

∫ b

0

(
1− y

b

)γ
Φ( f (y))

dy
y
−
∫ b

0
Φ(Rγ f (x))

dx
x

� γ
∫ b

0

∫ x

0
(x− y)γ−1×

× ∣∣ ∣∣Φ( f (y))−Φ(Rγ f (x))
∣∣− ∣∣ϕ(Rγ f (x))

∣∣ · ∣∣ f (y)−Rγ f (x)
∣∣ ∣∣dy

dx
xγ+1 , (3.8)

so we obtained a refinement of Example 4.2 in [16].

As in Corollaries 3.1 and 3.2, relation (3.8) can be considered with Φ being a
power or exponential function. In particular, let p,k ∈ R be such that k−1

p > 0, f be a
non-negative function on (0,b) (positive for p < 0), and

R f (x) =
∫ x

0

[
1−
(y

x

) k−1
p
]γ−1

f (y)dy, x ∈ (0,b).

Rewrite (3.8) for Φ(x) = xp and substitute b
k−1

p and f
(
y

p
k−1

)
y

p
k−1−1 instead of b and
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f (y) respectively. After suitable variable changes, for p � 1 and p < 0 we get

(
p

γ(k−1)

)p ∫ b

0

[
1−
(x

b

) k−1
p
]γ

xp−k f p(x)dx−
∫ b

0
x−kRp f (x)dx

�
∣∣∣∣∣
(

p
γ(k−1)

)p−1∫ b

0
x

1−k
p −1

∫ x

0

[
1−
(y

x

) k−1
p
]γ−1

y
k−1

p −1×

×
∣∣∣∣yp−k+1 f p(y)−

(
γ(k−1)

p

)p

x1−kRp f (x)
∣∣∣∣dydx

− |p|
∫ b

0
x−kRp−1 f (x)

∫ x

0

[
1−
(y

x

) k−1
p
]γ−1

×

×
∣∣∣∣ f (y)− k−1

p
· γ
y

(y
x

) k−1
p

R f (x)
∣∣∣∣dydx

∣∣∣∣ , (3.9)

while for p∈ (0,1) the order of integrals on the left-hand side of (3.9) is reversed. Note
that for γ = 1 inequality (3.9) reduces to the refined strengthened Hardy’s inequality
from Corollary 3.1 in [4]. Moreover, for b = ∞ and p = k we obtain a refinement of
classical Hardy’s inequality (1.1).

On the other hand, for γ = 1, Φ(x) = ex , a positive function f on (0,b) , f (y)
replaced with ln(y f (y)) , and

Gf (x) = exp

(
1
x

∫ x

0
ln f (y)dy

)
, x ∈ (0,b),

relation (3.8) becomes

e
∫ b

0

(
1− y

b

)
f (y)dy−

∫ b

0
Gf (x)dx �

∣∣∣∣
∫ b

0

∫ x

0
|ey f (y)− xG f (x)|dy

dx
x2

−
∫ b

0
Gf (x)

∫ x

0

∣∣∣∣ln
(

ey f (y)
xG f (x)

)∣∣∣∣dy
dx
x

∣∣∣∣ , (3.10)

so we obtained the refined strengthened Pólya–Knopp’s inequality from Corollary 3.3
in [4]. In the case when b = ∞ , we get a refinement of classical Pólya–Knopp’s in-
equality (1.3). �

We continue by formulating results dual to Theorem 3.1 and its corollaries. They
are derived from Theorem 2.1 by similar arguments. The following theorem is dual to
Theorem 3.1.

THEOREM 3.2. For 0 � b < ∞ , let k : (b,∞)× (b,∞) → R be a non-negative
measurable function, such that

K̃(x) =
∫ ∞

x
k(x,y) dy > 0, x ∈ (b,∞), (3.11)
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and a weight u : (b,∞) → R be such that the function x �→ u(x)
x · k(x,y)

K̃(x) is integrable on

(b,y) for each fixed y ∈ (b,∞) . Let the function w̃ : (b,∞) → R be defined by

w̃(y) = y
∫ y

b

k(x,y)
K̃(x)

u(x)
dx
x

.

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality∫ ∞

b
w̃(y)Φ( f (y))

dy
y
−
∫ ∞

b
u(x)Φ(Ãk f (x))

dx
x

�
∫ ∞

b

u(x)
K̃(x)

∫ ∞

x
k(x,y)×

× ∣∣ ∣∣Φ( f (y))−Φ(Ãk f (x))
∣∣− ∣∣ϕ(Ãk f (x))

∣∣ · ∣∣ f (y)− Ãk f (x)
∣∣ ∣∣dy

dx
x

(3.12)

holds for all measurable functions f : (b,∞) → R with values in I and for Ãk f defined
by

Ãk f (x) =
1

K̃(x)

∫ ∞

x
k(x,y) f (y) dy, x ∈ (b,∞). (3.13)

If the function Φ is concave, the order of integrals on the left-hand side of (3.13) is
reversed.

Proof. Let T2 = {(x,y) ∈ R
2
+ : b < x � y < ∞} . Inequality (3.12) follows directly

from Theorem 2.1, rewritten with Ω1 = Ω2 = (b,∞) , dμ1(x) = dx , dμ2(y) = dy , and

with u(x)
x and k(x,y)χT2(x,y) instead of u(x) and k(x,y) . Note that (1.6) and (1.7)

respectively become (3.13) and (3.11), while w̃(y) = yv(y) , y ∈ (b,∞) . �

REMARK 3.2. Note that Theorem 3.2 provides a refinement of Theorem 4.3 in
[16]. Furthermore, by setting k(x,y) = 1

y2 , x,y ∈ (b,∞) , and denoting

H̃ f (x) = x
∫ ∞

x
f (y)

dy
y2 , x ∈ (b,∞),

inequality (3.12) reduces to the following refined dual Hardy–type inequality for convex
functions:∫ ∞

b
w̃(y)Φ( f (y))

dy
y
−
∫ ∞

b
u(x)Φ(H̃ f (x))

dx
x

�
∫ ∞

b
u(x)

∫ ∞

x

∣∣ ∣∣Φ( f (y))−Φ(H̃ f (x))
∣∣− ∣∣ϕ(H̃ f (x))

∣∣ · ∣∣ f (y)− H̃ f (x)
∣∣ ∣∣ dy

y2 dx,

where

w̃(y) =
1
y

∫ y

b
u(x)dx, y ∈ (b,∞).

Since the right-hand side of this inequality is not less than∣∣∣∣
∫ ∞

b
u(x)

∫ ∞

x

∣∣Φ( f (y))−Φ(H̃ f (x))
∣∣ dy
y2 dx

−
∫ ∞

b
u(x)

∣∣ϕ(H̃ f (x))
∣∣∫ ∞

x

∣∣ f (y)− H̃ f (x)
∣∣ dy
y2 dx

∣∣∣∣ ,
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as a consequence of our result we get Theorem 2.3 in [4].

The next two corollaries are dual to Corollary 3.1 and Corollary 3.2.

COROLLARY 3.3. Let 0 � b < ∞ and let k , K̃ , u , and w̃ be as in Theorem 3.2.
For p ∈R , p �= 0 , and a non-negative measurable function f on (b,∞) ( f positive for
p < 0), let Ãk f be defined by (3.13) and

R̃p,k f (x,y) =
∣∣∣ ∣∣ f p(y)− Ãp

k f (x)
∣∣−|p| · ∣∣Ãk f (x)

∣∣p−1 ∣∣ f (y)− Ãk f (x)
∣∣ ∣∣∣ ,

for x,y ∈ (b,∞) . Then the inequality∫ ∞

b
w̃(y) f p(y)

dy
y
−
∫ ∞

b
u(x)Ãp

k f (x)
dx
x

�
∫ ∞

b

u(x)
K̃(x)

∫ ∞

x
k(x,y)R̃p,k f (x,y)dy

dx
x
(3.14)

holds for p > 1 and p < 0 . For p ∈ (0,1) the order of integrals on the left-hand side
of (3.14) is reversed, while for p = 1 its both-hand sides are equal to 0 .

COROLLARY 3.4. Suppose that p ∈ R\ {0} , 0 � b < ∞ , and that k , K̃ , u , and
w̃ are as in Theorem 3.2. If f is a positive measurable function on (b,∞) ,

G̃k f (x) = exp

(
1

K̃(x)

∫ ∞

x
k(x,y) ln f (y)dy

)
, x ∈ (b,∞),

and

S̃p,k f (x,y) =
∣∣∣∣ ∣∣ f p(y)− G̃p

k f (x)
∣∣−|p|G̃p

k (x)
∣∣∣∣ln f (y)

G̃k f (x)

∣∣∣∣
∣∣∣∣ , x,y ∈ (b,∞),

then the inequality∫ ∞

b
w̃(y) f p(y)

dy
y
−
∫ ∞

b
u(x)G̃p

k f (x)
dx
x

�
∫ ∞

b

u(x)
K̃(x)

∫ ∞

x
k(x,y)S̃p,k f (x,y)dy

dx
x
(3.15)

holds. In particular, for p = 1 we have∫ ∞

b
w̃(y) f (y)

dy
y
−
∫ ∞

b
u(x)G̃k f (x)

dx
x

�
∫ ∞

b

u(x)
K̃(x)

∫ ∞

x
k(x,y)×

×
∣∣∣∣ ∣∣ f (y)− G̃k f (x)

∣∣− G̃k(x)
∣∣∣∣ ln f (y)

G̃k f (x)

∣∣∣∣
∣∣∣∣dy

dx
x

(3.16)

and relations (3.15) and (3.16) are equivalent.

We conclude this section by giving results dual to those from Example 3.1, that
is, by explicating refined Hardy and Pólya–Knopp–type inequalities related to Weyl’s
fractional integral operator

Wγ f (x) = γx
∫ ∞

x
(y− x)γ−1 f (y)

dy
yγ+1 , (3.17)

where γ ∈ R+ . Note that W1 = H̃ , that is, for γ = 1 we get the classical dual Hardy’s
integral operator and related inequalities.
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EXAMPLE 3.2. Let 0 � b <∞ , γ ∈R+ , and T2 be as in the proof of Theorem 3.2.
For u(x) ≡ 1, k(x,y) = γ x

yγ+1 (y− x)γ−1χT2(x,y) , and Wγ f (x) as in (3.17), inequality
(3.12) becomes

∫ ∞

b

(
1− b

y

)γ
Φ( f (y))

dy
y
−
∫ ∞

b
Φ(Wγ f (x))

dx
x

� γ
∫ ∞

b

∫ ∞

x
(y− x)γ−1×

× ∣∣ ∣∣Φ( f (y))−Φ(Wγ f (x))
∣∣− ∣∣ϕ(Wγ f (x))

∣∣ · ∣∣ f (y)−Wγ f (x)
∣∣ ∣∣ dy

yγ+1 dx. (3.18)

Now, we apply (3.18) to power and exponential functions. Namely, let p,k ∈ R

be such that p
1−k > 0, f be a non-negative measurable function on (b,∞) ( f positive

for p < 0),

W f (x) =
∫ ∞

x

[
1−
(

x
y

) 1−k
p
]γ−1

f (y)dy, x ∈ (b,∞),

and Φ(x) = xp . Rewrite (3.18) with b
1−k
p and f

(
y

p
1−k

)
y

p
1−k +1 instead of b and f (y)

respectively. After some variable substitutions, for p � 1 and p < 0 we obtain the
inequality

(
p

γ(1− k)

)p∫ ∞

b

[
1−
(

b
x

) 1−k
p
]γ

xp−k f p(x)dx−
∫ ∞

b
x−kW p f (x)dx

�

∣∣∣∣∣∣
(

p
γ(1− k)

)p−1∫ ∞

b
x

1−k
p −1

∫ ∞

x

[
1−
(

x
y

) 1−k
p
]γ−1

y
k−1

p −1×

×
∣∣∣∣yp−k+1 f p(y)−

(
γ(1− k)

p

)p

x1−kW p f (x)
∣∣∣∣ dydx

− |p|
∫ ∞

b
x−kW p−1 f (x)

∫ ∞

x

[
1−
(

x
y

) 1−k
p
]γ−1

×

×
∣∣∣∣∣ f (y)− (1− k)

p
· γ
y

(
x
y

) 1−k
p

W f (x)

∣∣∣∣∣ dydx

∣∣∣∣∣ . (3.19)

For p ∈ (0,1) , relation (3.19) holds with integrals on its left-hand side written in the
reverse order. Moreover, if γ = 1, then (3.19) becomes the refined strengthened dual
Hardy’s inequality from Corollary 3.2 in [4].

In the case when γ = 1, Φ(x) = ex , f is a positive function on (b,∞) , and

G̃ f (x) = exp

(
x
∫ ∞

x
ln f (y)

dy
y2

)
, x ∈ (b,∞),
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after substituting ln(y f (y)) instead of f (y) , relation (3.18) reads

1
e

∫ ∞

b

(
1− b

x

)
f (x)dx−

∫ ∞

b
G̃ f (x)dx �

∣∣∣∣
∫ ∞

b

∫ ∞

x

∣∣∣∣1e y f (y)− xG̃ f (x)
∣∣∣∣ dy

y2 dx

−
∫ ∞

b
xG̃ f (x)

∫ ∞

x

∣∣∣∣ln
(

y f (y)
exG̃ f (x)

)∣∣∣∣ dy
y2 dx

∣∣∣∣ ,
that is, it is reduced to the refined strengthened dual Pólya–Knopp’s inequality given in
Corollary 3.4 in [4]. �

4. One-dimensional refined Hardy–Hilbert–type inequalities

We continue the above analysis by considering some important kernels related to
Ω1 =Ω2 = R+ and by assuming that dμ1(x) = dx , dμ2(y) = dy , and that Φ : R+ →R

is given by Φ(x) = xp , where p∈R , p �= 0. In this setting, Corollary 2.1 provides new
refinements of some well-known one-dimensional Hardy–Hilbert–type inequalities.

First, we obtain a generalization and a refinement of classical Hardy–Hilbert’s
inequality (1.2). It is given in the following example.

EXAMPLE 4.1. For p∈R\{0} , let s∈R be such that s−2
p , s−2

p′ >−1 and the ker-

nel k : R
2
+ →R be defined by k(x,y) =

( y
x

) s−2
p (x+y)−s . Let α ∈

(
− s−2

p′ −1, s−2
p +1

)
be arbitrary and the weight u : R+ → R be given by u(x) = xα−1 . Set

C1 = B

(
s−2

p
−α+1,

s−2
p′

+α+1

)
and C2 = B

(
s−2

p
+1,

s−2
p′

+1

)
,

where B(·, ·) denotes the usual Beta function. Suppose f is a non-negative function on
R+ (positive for p < 0) and

A f (x) =
∫ ∞

0

f (y)
(x+ y)s dy, x ∈ R+,

is its generalized Stieltjes transform (see e.g. [2] and [27] for further information).

Corollary 2.1, rewritten with f (y)y
2−s
p instead of f (y) , implies that the inequality

C1C
p−1
2

∫ ∞

0
yα−s+1 f p(y)dy−

∫ ∞

0
xα+(s−1)(p−1)Ap f (x)dx

�
∣∣∣∣∣Cp−1

2

∫ ∞

0
x
α+ s−2

p′
∫ ∞

0

y
s−2
p

(x+ y)s

∣∣∣∣∣ f p(y)y2−s− x(s−1)(p−1)+1

Cp
2

Ap f (x)

∣∣∣∣∣ dydx

− |p|
∫ ∞

0
xα+(s−1)(p−1)

∫ ∞

0

Ap−1 f (x)
(x+ y)s

∣∣∣∣ f (y)− 1
C2

x
s−2
p′ +1

y
s−2
p A f (x)

∣∣∣∣ dydx

∣∣∣∣ (4.1)

holds for p � 1 and p < 0, while for p ∈ (0,1) it holds with the reverse order of
the integrals on its left-hand side. In particular, for α = 0 we get a refinement of



SOME NEW REFINED HARDY-TYPE INEQUALITIES WITH KERNELS 497

the general Hardy–Hilbert–type inequality from [28], with the best possible constant

C = Cp
2 = Bp

(
s−2
p +1, s−2

p′ +1
)

. Moreover, for p > 1, α = 0, and s = 1, we have

C1 = C2 = B
(

1
p , 1

p′
)

= π
sin π

p
, so relation (4.1) provides a new refinement of classical

Hardy–Hilbert’s inequality (1.2). �

In the next example, we generalize and refine classical Hardy–Littlewood–Pólya’s
inequality.

EXAMPLE 4.2. Let the real parameters p , s , α , and the weight function u be as

in Example 4.1. Define the kernel k : R
2
+ → R by k(x,y) =

( y
x

) s−2
p max{x,y}−s and for

a non-negative function f on R+ (positive for p < 0) set

L f (x) =
∫ ∞

0

f (y)
max{x,y}s dy, x ∈ R+.

Finally, denote

D1 =
pp′s

(p− pα+ s−2)(α p′+ p′ + s−2)
and D2 =

pp′s
(p+ s−2)(p′+ s−2)

.

Applying the same procedure as in Example 4.1, we obtain that the inequality

D1D
p−1
2

∫ ∞

0
yα−s+1 f p(y)dy−

∫ ∞

0
xα+(s−1)(p−1)Lp f (x)dx

�
∣∣∣∣∣Dp−1

2

∫ ∞

0
x
α+ s−2

p′
∫ ∞

0

y
s−2
p

max{x,y}s

∣∣∣∣∣ f p(y)y2−s− x(s−1)(p−1)+1

Dp
2

Lp f (x)

∣∣∣∣∣ dydx

− |p|
∫ ∞

0
xα+(s−1)(p−1)

∫ ∞

0

Lp−1 f (x)
max{x,y}s

∣∣∣∣ f (y)− 1
D2

x
s−2
p′ +1

y
s−2
p L f (x)

∣∣∣∣ dydx

∣∣∣∣
(4.2)

holds for p � 1 and p < 0, while for p ∈ (0,1) it holds with integrals on its left-hand

side given in the reverse order. Note that the constant C = Dp
2 =

[
pp′s

(p+s−2)(p′+s−2)

]p
is

the best possible for the Hardy–Littlewood–Pólya–type inequalities with α = 0. As a
special case, for p > 1, α = 0, and s = 1, we get D1 = D2 = pp′ , that is, relation (4.2)
is a new refinement of the classical Hardy–Littlewood–Pólya’s inequality (see [12] for
further details). �

REMARK 4.1. A similar approach can be applied to obtain refined inequalities
involving the generalized Stieltjes transformation defined by

S f (x) =
∫ b

a

f (y)
ρ(x)+ρ(y)

dy, x ∈ (a,b),

where −∞� a < b �∞ and ρ is a positive, continuous and strictly increasing function
on (a,b) (see Remark 4.6. in [10] for further details).
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To calculate integrals in our last example of refined Hardy–Hilbert–type inequali-
ties, we used the well-known reflection formula for the Digamma function ψ ,

∫ ∞

0

lnx
x−1

x−αdx = ψ ′(1−α)+ψ ′(α) =
π2

sin2πα
,

where α ∈ (0,1) (for details on ψ see [1]).

EXAMPLE 4.3. As in previous examples, let p∈R , p �= 0. For α ∈ (0,1) , let the

kernel k be defined on R
2
+ by k(x,y) = lny−lnx

y−x

(
x
y

)α
and the weight u : R+ → R by

u(x) = xβ , where β ∈ (−α − 1,−1) . For a non-negative function f on R+ (positive
for p < 0), let

M f (x) =
∫ ∞

0

lny− lnx
y− x

f (y)dy, x ∈ R+.

Corollary 2.1, applied with the function y �→ f (y)yα instead of f , then implies the
inequality

π2p

sin2(p−1)πα · sin2π(α +β )

∫ ∞

0
ypα+β f p(y)dy−

∫ ∞

0
xpα+βMp f (x)dx

�
∣∣∣∣( π

sinπα

)2(p−1)∫ ∞

0
xα+β

∫ ∞

0

lny− lnx
y− x

y−α×

×
∣∣∣∣∣ f p(y)ypα −

(
sinπα
π

)2p

xpαMp f (x)

∣∣∣∣∣ dydx

− |p|
∫ ∞

0
xpα+βMp−1 f (x)

∫ ∞

0

lny− lnx
y− x

×

×
∣∣∣∣ f (y)− sin2πα

π2

(
x
y

)α
M f (x)

∣∣∣∣ dydx

∣∣∣∣ (4.3)

for p � 1 and p < 0, while for p ∈ (0,1) the order of integrals on the left-hand side
of (4.3) is reversed. Especially, for p > 1, α = 1

p , and β = −1, the left-hand side of
(4.3) becomes (

π
sin π

p

)2p ∫ ∞

0
f p(y)dy−

∫ ∞

0
Mp f (x)dx.

Since the above expression is positive (unless f ≡ 0) and bounded from below by a
positive constant, relation (4.3) provides a generalization and a refinement of another
classical Hardy–Hilbert–type inequality. �

5. Refined Godunova–type inequalities

In previous two sections, Theorem 2.1 was considered only in various one-dimen-
sional settings. Since it covers much more general situations, we conclude this paper
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by applying it to n -dimensional cells in R
n
+ . As a consequence, a generalization and a

refinement of Godunova’s inequality (1.5) is derived.

Before presenting our results, it is necessary to introduce some further notation.
For u,v ∈ R

n
+ , u = (u1,u2, . . . ,un) , v = (v1,v2, . . . ,vn) , let

u
v

=
(

u1

v1
,
u2

v2
, . . . ,

un

vn

)
and uv = uv1

1 uv2
2 · · ·uvn

n .

In particular, u1 =∏n
i=1 ui , u2 = (∏n

i=1 ui)2 , and u−1 = (∏n
i=1 ui)−1 , where n = (n,n, . . . ,n)

for n ∈ {−2,−1, 0, 1, 2, ∞} . We write u < v if componentwise ui < vi , i = 1, . . . ,n .
Relations � , > , and � are defined analogously. Finally, we denote (0,b) = {x ∈ R

n :
0 < x < b} and (b,∞) = {x ∈ R

n : b < x < ∞} .

Applying Theorem 2.1 with Ω1 = Ω2 = R
n
+ , the Lebesgue measure dμ1(x) = dx

and dμ2(y) = dy , and the kernel k : R
n
+ ×R

n
+ → R of the form k(x,y) = l

( y
x

)
, where

l : R
n
+ → R is a non-negative measurable function, we obtain the following theorem.

THEOREM 5.1. Let l and u be non-negative measurable functions on R
n
+ , such

that 0 < L(x) = x1 ∫
Rn

+
l(y)dy <∞ for all x ∈ R

n
+ , and that the function x �→ u(x)

l( y
x )

L(x)
is integrable on R

n
+ for each fixed y ∈ R

n
+ . Let the function v be defined on R

n
+ by

v(y) =
∫

R
n
+

u(x)
l
( y

x

)
L(x)

dx.

If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I , then the inequality∫

R
n
+

v(y)Φ( f (y))dy−
∫

R
n
+

u(x)Φ(Al f (x))dx

�
∫

Rn
+

u(x)
L(x)

∫
Rn

+

l
(y

x

)
RΦ,l f (x,y)dydx (5.1)

holds for all measurable functions f : R
n
+ → R with values in I , where Al f (x) and

RΦ,l f (x,y) are for x,y ∈ R
n
+ respectively defined by

Al f (x) =
1

L(x)

∫
R

n
+

l
(y

x

)
f (y)dy

and

RΦ,l f (x,y) = | |Φ( f (y))−Φ(Al f (x))|− |ϕ(Al f (x))| · | f (y)−Al f (x)| | . (5.2)

If the function Φ is concave, the order of integrals on the left-hand side of (5.1) is
reversed.

Especially, for
∫
R

n
+

l(t)dt = 1 and u(x) = x−1 , Theorem 5.1 becomes the follow-
ing refinement of Godunova’s inequality (1.5).
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COROLLARY 5.1. Let l : R
n
+ → R be a non-negative measurable function and∫

R
n
+

l(t)dt = 1 . If Φ is a convex function on an interval I ⊆ R and ϕ : I → R is any

function, such that ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI , then the inequality∫
R

n
+

Φ( f (y))
dy
y

−
∫

R
n
+

Φ(Al f (x))
dx
x

�
∫

R
n
+

x−2
∫

R
n
+

l
(y

x

)
RΦ,l f (x,y)dydx (5.3)

holds for all measurable functions f : R
n
+ → R with values in I , where

Al f (x) = x−1
∫

R
n
+

l
(y

x

)
f (y)dy, x ∈ R

n
+,

and RΦ,l f is defined by (5.2). If Φ is concave, the integrals on the left-hand side of
(5.3) are given in the reverse order.

To conclude the paper, we give n -dimensional analogues of some results from
Section 3, that is, some new multidimensional refined general Hardy–type inequalities.
These results can be regarded as refinements of those obtained in [25]. Namely, the
following theorem is a refinement of Lemma 2.1 in [25].

THEOREM 5.2. Suppose that 0 < b � ∞ , that u is a weight on (0,b) , such that

the function x �→ u(x)
x2 is locally integrable in (0,b) , and that the weight w is defined

by

w(y) = y1
∫

(y,b)
u(x)

dx
x2 , y ∈ (0,b).

Let Φ : I → R be a convex function and ϕ : I → R be any function, such that ϕ(x) ∈
∂Φ(x) for all x ∈ Int I . If f : (0,b) → R is a measurable function, such that f (y) ∈ I
for all y ∈ (0,b) , and H f (x) and RΦ f (x,y) are for x,y ∈ (0,b) respectively defined
by

H f (x) = x−1
∫

(0,x)
f (y)dy

and

RΦ f (x,y) = | |Φ( f (y))−Φ(H f (x))|− |ϕ(H f (x))| · | f (y)−H f (x)| | ,
then ∫

(0,b)
w(y)Φ( f (y))

dy
y1 −

∫
(0,b)

u(x)Φ(H f (x))
dx
x1

�
∫

(0,b)
u(x)

∫
(0,b)

RΦ f (x,y)dy
dx
x2 . (5.4)

If Φ is concave, the order of integrals on the left-hand side of (5.4) is reversed.

Proof. Let S1 = {(x,y) ∈ R
n
+×R

n
+ : 0 < y � x < b} and Ω1 =Ω2 = (0,b) . The proof

follows directly from Theorem 2.1, applied with dμ1(x) = dx , dμ2(y) = dy , k = χS1 ,

and with u(x) replaced with u(x)
x1 . Note that w(y) = y1v(y) . �
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REMARK 5.1. Observe that for u(x) ≡ 1 we have w(y) =
(
1− y

b

)1
.

Our last result is dual to Theorem 5.2 and provides a refinement of Lemma 2.3
in [25].

THEOREM 5.3. For 0 � b <∞ , let u : (b,∞) → R be a locally integrable weight
in (b,∞) , and the weight w be given by

w(y) = y−1
∫

(b,y)
u(x)dx, y ∈ (b,∞).

Suppose Φ : I → R is a convex function and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ IntI . If f : (b,∞) → R is a measurable function, such that
f (y)∈ I for all y∈ (b,∞) , and H̃ f (x) and R̃Φ f (x,y) are for x,y∈ (b,∞) respectively
defined by

H̃ f (x) = x1
∫

(x,∞)
f (y)

dy
y2

and

R̃Φ f (x,y) =
∣∣ ∣∣Φ( f (y))−Φ(H̃ f (x))

∣∣− ∣∣ϕ(H̃ f (x))
∣∣ · ∣∣ f (y)− H̃ f (x)

∣∣ ∣∣ ,
then the inequality ∫

(b,∞)
w(y)Φ( f (y))

dy
y1 −

∫
(b,∞)

u(x)Φ(H̃ f (x))
dx
x1

�
∫

(b,∞)
u(x)

∫
(x,∞)

R̃Φ f (x,y)
dy
y2 dx (5.5)

holds. If the function Φ is concave, the order of integrals on the left-hand side of (5.5)
is reversed.

Proof. Let S2 = {(x,y)∈ R
n
+×R

n
+ : b < x � y <∞} and Ω1 =Ω2 = (b,∞) . The proof

follows directly from Theorem 2.1, rewritten with the Lebesgue measures dμ1(x)= dx ,

dμ2(y) = dy , the kernel k(x,y) = y−2χS2(x,y) , and with the weight u(x)
x1 instead of

u(x) . Note that w(y) = y1v(y) . �

REMARK 5.2. Observe that for u(x) ≡ 1 we get w(y) =
(
1− b

y

)1
.

Of course, all results obtained in this section can be rewritten with particular con-
vex (or concave) functions, for example, with power and exponential functions. This
leads to multidimensional analogues of corollaries and examples from Section 3. Due
to the lack of space, they are omitted.
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Faculty of Textile Technology

University of Zagreb
Prilaz baruna Filipovića 28a
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