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LINEAR INTEGRAL INEQUALITIES INVOLVING

MAXIMA OF THE UNKNOWN SCALAR FUNCTIONS

SNEZHANA G. HRISTOVA AND KREMENA V. STEFANOVA

(Communicated by A. Čižmešija)

Abstract. This paper deals with linear integral inequalities that include the maximum of the
unknown scalar function of one variable. The considered inequalities are generalizations of the
classical integral inequality of Gronwall-Bellman. The importance of these integral inequalities
is defined by their wide applications in qualitative investigations of differential equations with
“maxima” and it is illustrated by some direct applications.

1. Introduction

Integral inequalities which provide explicit bounds of the unknown functions play
a fundamental role in the development of the theory of differential and integral equa-
tions. In the past few years, a number of integral inequalities had been established by
many scholars, which are motivated by certain applications such as existence, unique-
ness, continuous dependence, comparison, perturbation, boundedness and stability of
solutions of differential and integral equations (see for example [2] and the references
cited therein). Among these integral inequalities, we cite the famous Gronwall inequal-
ity and its different generalizations ([3], [4], [7], [8], [9], [11]).

In the last few decades, great attention has been paid to automatic control systems
and their applications to computational mathematics and modeling. Many problems in
the control theory correspond to the maximal deviation of the regulated quantity. For
example, E. P. Popov ([12]) in 1966 considered the system for regulating the voltage
of a generator of constant current. The object of the experiment was a generator of
constant current with parallel simulation and the regulated quantity was the voltage at
the source electric current. The equation describing the work of the regulator involves
the maximum of the unknown function and it has the form ([12])

T0u
′(t)+u(t)+q max

s∈[t−h,t]
u(s) = f (t),

where T0 and q are constants characterizing the object, u(t) is the regulated voltage
and f (t) is the perturbed effect.
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Later, N. Yoshida ([13]) used as a model differential equations with “maxima”
when he studied the control of the temperature in a thermal system.

The purpose of this paper is to establish some new integral inequalities in the case
when maxima of the unknown scalar function is involved in the integral. These inequal-
ities are mathematical tools in the theory of differential equations with “maxima”.

2. Main Results

Let t0 � 0 and T � t0 be fixed points. Note that T could be equal to ∞ .

THEOREM 1. Let the following conditions be fulfilled:
1. The function α ∈C1([t0,T ),R+) is nondecreasing and α(t) � t .
2. The functions f , g ∈C(R+, [1,∞)) .
3. The functions p, q ∈C([t0,T ),R+) and a, b ∈C([α(t0),T ),R+) .
4. The function φ ∈C([α(t0)−h,t0],R+) and M = maxs∈[α(t0)−h,t0]φ(s) .
5. The function k ∈ C([t0,T ),(0,∞)) is nondecreasing and the inequality M �

k(t0) holds.
6. The function u ∈C([α(t0)−h,T),R+) satisfies the inequalities

u(t) � k(t)+ f (t)
∫ t

t0

[
p(s)u(s)+q(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+g(t)
∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds for t ∈ [t0,T ),

(1)

u(t) � φ(t) for t ∈ [α(t0)−h,t0], (2)

where h = const � 0 .
Then for t ∈ [t0,T ) the inequality

u(t) � f (t)g(t)
k(t)
k(t0)

M exp

(∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)

× exp

(∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

) (3)

holds.

Proof. From inequality (1) we obtain for t ∈ [t0,T ) the inequality

u(t)
k(t)

� 1+ f (t)
∫ t

t0

[
p(s)

u(s)
k(t)

+q(s)
maxξ∈[s−h,s] u(ξ )

k(t)

]
ds

+g(t)
∫ α(t)

α(t0)

[
a(s)

u(s)
k(t)

+b(s)
maxξ∈[s−h,s] u(ξ )

k(t)

]
ds.

(4)

From the monotonicity of k(t) we obtain for t ∈ [t0,T ) and s ∈ [α(t0),t] the
inequality

maxξ∈[s−h,s] u(ξ )
k(t)

�
maxξ∈[s−h,s] u(ξ )

k̂(s)
= max

ξ∈[s−h,s]

u(ξ )
k̂(s)

� max
ξ∈[s−h,s]

u(ξ )
k̂(ξ )

, (5)
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where the continuous nondecreasing function k̂ : [α(t0)−h,T ) → R+ is defined by

k̂(t) =
{

k(t) for t ∈ [t0,T )
k(t0) for t ∈ [α(t0)−h,t0].

Define a function ϕ : [α(t0)−h,T ) → R+ by the equality ϕ(t) =
u(t)
k̂(t)

.

From inequalities (4), (5) and the definition of the function ϕ(t) follows that

ϕ(t) � 1+ f (t)
∫ t

t0

[
p(s)ϕ(s)+q(s) max

ξ∈[s−h,s]
ϕ(ξ )

]
ds

+g(t)
∫ α(t)

α(t0)

[
a(s)ϕ(s)+b(s) max

ξ∈[s−h,s]
ϕ(ξ )

]
ds for t ∈ [t0,T ),

(6)

ϕ(t) =
u(t)
k(t0)

� φ(t)
k(t0)

� M
k(t0)

for t ∈ [α(t0)−h,t0]. (7)

Then for t ∈ [t0,T ) the following inequality is valid

ϕ(t) � f (t)g(t)

(
M

k(t0)
+
∫ t

t0

[
p(s)ϕ(s)+q(s) max

ξ∈[s−h,s]
ϕ(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s)ϕ(s)+b(s) max

ξ∈[s−h,s]
ϕ(ξ )

]
ds

)
.

(8)

Let us define a function V : [α(t0)−h,T ) → R+ by

V (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M
k(t0)

+
∫ t
t0

[
p(s)ϕ(s)+q(s)maxξ∈[s−h,s]ϕ(ξ )

]
ds

+
∫ α(t)
α(t0)

[
a(s)ϕ(s)+b(s)maxξ∈[s−h,s]ϕ(ξ )

]
ds, t ∈ [t0,T )

M
k(t0)

, t ∈ [α(t0)−h,t0]

(9)

where M is defined by condition 4 of Theorem 1.
Note the function V (t) is nondecreasing and

ϕ(t) � f (t)g(t)V (t) for t ∈ [α(t0)−h,T). (10)

Therefore, maxs∈[t−h,t]ϕ(s)�V (t)maxs∈[t−h,t]
(
f (s)g(s)

)
for t ∈ [α(t0),T ) . Then

from the definition of the function V (t) and inequality (8) we get for t ∈ [t0,T )

V (t) � M
k(t0)

+
∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
V (s)ds

+
∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
V (s)ds.

(11)
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By a simple change of variable s = α(η) into the second integral of inequality
(11) we obtain

V (t) � M
k(t0)

+
∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
V (s)ds

+
∫ t

t0

[
a
(
α(η)

)
f
(
α(η)

)
g
(
α(η)

)
α ′(η)

+b
(
α(η)

)
α ′(η) max

ξ∈[α(η)−h,α(η)]

(
f (ξ )g(ξ )

)]
V
(
α(η)

)
dη .

(12)

We apply Gronwall inequality to (12) and obtain

V (t) � M
k(t0)

exp

(∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)

× exp

(∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)
.

(13)

From inequalities (10), (13) and the definitions of the functions ϕ(t) and k̂(t) we
obtain the required inequality (3).

�
As a special case of Theorem 1 we obtain the following result:

THEOREM 2. Let the following conditions be satisfied:
1. The function α ∈C1([t0,T ),R+) is nondecreasing and α(t) � t .
2. The functions p, q ∈C([t0,T ),R+) and a, b ∈C([α(t0),T ),R+) .
3. The function φ ∈C([α(t0)−h,t0],R+) .
4. The function u ∈C([α(t0)−h,T),R+) satisfies the inequalities

u(t) � k+
∫ t

t0

[
p(s)u(s)+q(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds for t ∈ [t0,T ),

(14)

u(t)� φ(t) for t ∈ [α(t0)−h, t0], (15)

where h = const � 0 , k = const > 0 such that k � maxs∈[t0−h,t0] φ(s) .
Then for t ∈ [t0,T ) inequality

u(t) �
(

max
s∈[t0−h,t0]

φ(s)
)

exp

(∫ t

t0

[
p(s)+q(s)

]
ds+

∫ α(t)

α(t0)

[
a(s)+b(s)

]
ds

)
(16)

holds.

REMARK 1. As a special case of Theorem 1 we obtain a result for integral in-
equality without maximum ([11], Theorem 1).
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In the case when the function k(t) involved into the right part of inequality (1) is
not a monotonic function, we obtain the following result:

THEOREM 3. Let the following conditions be fulfilled:
1. The conditions 1, 2, 3 of Theorem 1 are satisfied.
2. The function k ∈C([α(t0)−h,T ),R+) , maxs∈[α(t0)−h,t0]k(s) > 0 .
3. The function u ∈C([α(t0)−h,T),R+) satisfies the inequalities

u(t) � k(t)+ f (t)
∫ t

t0

[
p(s)u(s)+q(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+g(t)
∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds for t ∈ [t0,T ),

(17)

u(t) � k(t) for t ∈ [α(t0)−h,t0],
(18)

where h = const � 0 .
Then for t ∈ [t0,T ) the inequality

u(t) � k(t)+ f (t)g(t)e(t)exp

(∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)

× exp

(∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)
(19)

holds, where the function e : [t0,T ) → (0,∞) is defined by

e(t) = max
s∈[α(t0)−h,t0]

k(s)+
∫ t

t0

[
p(s)k(s)+q(s) max

ξ∈[s−h,s]
k(ξ )

]
ds

+
∫ max(α(t),t0)

α(t0)

[
a(s)k(s)+b(s) max

ξ∈[s−h,s]
k(ξ )

]
ds.

(20)

Proof. From inequality (17) for t ∈ [t0,T ) we obtain

u(t) � k(t)+ f (t)g(t)

(∫ t

t0

[
p(s)u(s)+q(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

)
.

(21)

Let us define a function z : [α(t0)−h,T ) → R+ by

z(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ t
t0

[
p(s)u(s)+q(s)maxξ∈[s−h,s] u(ξ )

]
ds

+
∫ α(t)
α(t0)

[
a(s)u(s)+b(s)maxξ∈[s−h,s] u(ξ )

]
ds, t ∈ [t0,T )

0, t ∈ [α(t0)−h,t0).

(22)
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The function z(t) is an increasing function and from inequality (21) it follows that

u(t) � k(t)+ f (t)g(t)z(t) for [α(t0)−h,T). (23)

Let t ∈ [t0,T ) be such that α(t) � t0 . Then from inequality (23) it follows the
validity of the inequality

∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

�
∫ max(α(t),t0)

α(t0)

[
a(s)k(s)+b(s) max

ξ∈[s−h,s]
k(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
z(s)ds.

(24)

Let t ∈ [t0,T ) be such that α(t) < t0 . Then from the definition of function z(t)
we get

∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

=
∫ α(t)

α(t0)

[
a(s)k(s)+b(s) max

ξ∈[s−h,s]
k(ξ )

]
ds

�
∫ max(α(t),t0)

α(t0)

[
a(s)k(s)+b(s) max

ξ∈[s−h,s]
k(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
z(s)ds.

(25)

From the definition of the function z(t) and inequalities (24), (25) follows that

z(t) � e(t)+
∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
z(s)ds

+
∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
z(s)ds, t ∈ [t0,T ),

(26)

z(t) = 0, t ∈ [α(t0)−h,t0],
(27)

where function e(t) is defined by equality (20). Note that function e : [t0,T ) → (0,∞)
is nondecreasing for t ∈ [t0,T ) and e(t0) = maxs∈[t0−h,t0] k(s) .

From inequalities (26), (27) as in the proof of Theorem 1 we get

z(t) � e(t)exp

(∫ t

t0

[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)

× exp

(∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds

)
.

(28)
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From inequalities (28) and (23) we obtain inequality (19).
�

Now we will consider an inequality in which the unknown function into the left
part is presented in a power.

THEOREM 4. Let the following conditions be fulfilled:
1. The conditions 1, 2, 3, 4 of Theorem 1 are satisfied.
2. The function k ∈ C([t0,T ),(0,∞)) is nondecreasing and the inequality M =

maxs∈[α(t0)−h,t0]φ(s) � n
√

k(t0) holds.
3. The function u ∈C([α(t0)−h,T),R+) satisfies the inequalities

un(t) � k(t)+ f (t)
∫ t

t0

[
p(s)u(s)+q(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+g(t)
∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds for t ∈ [t0,T ),

(29)

u(t) � φ(t) for t ∈ [α(t0)−h,t0],
(30)

where h = const � 0 , n = const > 1 .
Then for t ∈ [t0,T ) the inequality

u(t) � n
√

k(t)+ f (t)g(t)

(
M +

e(t)

n
(
k(t0)

)1− 1
n

)
exp
(
A(t)+B(t)

)
(31)

holds, where

e(t) =
∫ t

t0

[
p(s)ω(s)+q(s) max

ξ∈[s−h,s]
ω(ξ )

]
ds

+
∫ max(α(t),t0)

α(t0)

[
a(s)ω(s)+b(s) max

ξ∈[s−h,s]
ω(ξ )

]
ds,

(32)

A(t) =
1
n

∫ t

t0

(
k(s)

) 1−n
n
[
p(s) f (s)g(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds, (33)

B(t) =
1
n

∫ α(t)

α(t0)

(
K(s)

) 1−n
n
[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
ds, (34)

K(t) =
{

k(t), t ∈ [t0,T )
k(t0), t ∈ [α(t0),t0),

ω(t) =
{

n
√

k(t), t ∈ (t0,T )
M, t ∈ [α(t0)−h,t0].

Proof. From inequality (29) for t ∈ [t0,T ) we get

un(t) � k(t)+ f (t)g(t)

(∫ t

t0

[
p(s)u(s)+q(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

)
.

(35)
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Let us define a function z : [α(t0)−h,T ) → R+ by

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
√

k(t)
n k(t)

(∫ t
t0

(
p(s)u(s)+q(s)maxξ∈[s−h,s] u(ξ )

)
ds

+
∫ α(t)
α(t0)

(
a(s)u(s)+b(s)maxξ∈[s−h,s] u(ξ )

)
ds

)
, t ∈ [t0,T )

0, t ∈ [α(t0)−h,t0).

(36)

From inequality (35) we have for t ∈ [t0,T )

un(t) � k(t)

(
1+n f (t)g(t)

z(t)
n
√

k(t)

)
.

or

u(t) � n
√

k(t)

(
1+n f (t)g(t)

z(t)
n
√

k(t)

) 1
n

.

Apply Bernoulli’s inequality (1+x)a � 1+ax, where 0 < a < 1 and −1 < x , and
observe that

u(t) � n
√

k(t)

(
1+ f (t)g(t)

z(t)
n
√

k(t)

)

= n
√

k(t)+ f (t)g(t)z(t) = ω(t)+ f (t)g(t)z(t), t ∈ [t0,T ),

(37)

and

u(t) � φ(t) � ω(t), t ∈ [α(t0)−h,t0]. (38)

Therefore,

max
ξ∈[s−h,s]

u(ξ ) � max
ξ∈[s−h,s]

ω(ξ )+ z(s) max
ξ∈[s−h,s]

(
f (ξ )g(ξ )

)
s ∈ [α(t0),T ). (39)

Let t ∈ [t0,T ) be such that α(t) � t0 . Then from inequalities (37), (38) we get

∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

�
∫ max(α(t),t0)

α(t0)

[
a(s)ω(s)+b(s) max

ξ∈[s−h,s]
ω(ξ )

]
ds

+
∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
z(s)ds.

(40)
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Let t ∈ [t0,T ) be such that α(t) < t0 . Then from the definition of function z(t)
and inequalities (37), (38) we get

∫ α(t)

α(t0)

[
a(s)u(s)+b(s) max

ξ∈[s−h,s]
u(ξ )

]
ds

=
∫ max(α(t),t0)

α(t0)

[
a(s)ω(s)+b(s) max

ξ∈[s−h,s]
ω(ξ )

]
ds.

+
∫ α(t)

α(t0)

[
a(s) f (s)g(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ )g(ξ )

)]
z(s)ds.

(41)

Let C = Mn k(t0)1− 1
n > 0. Note the function v : [t0,T ) → (0,∞), v(t) = 1

n k(t0)1−
1
n(

C+e(t)
)

is nondecreasing and the equality v(t0) = 1

n k(t0)1−
1
n

(
C+e(t0)

)
= M holds,

where function e(t) is defined by (32). From the definition of the function z(t) and
inequalities (40), (41) follows that

z(t) �v(t)+
1

n k(t)1− 1
n

∫ t

t0

[
p(s) f (s)g(s)z(s)+q(s) max

ξ∈[s−h,s]

(
f (ξ ),g(ξ )

)
z(s)
]
ds

+
1

n k(t)1− 1
n

∫ α(t)

α(t0)

[
a(s) f (s)g(s)z(s)+b(s) max

ξ∈[s−h,s]

(
f (ξ ),g(ξ )

)
z(s)
]
ds

�v(t)+
∫ t

t0

1
n

[
p(s) f (s)g(s)(

k(s)
)1− 1

n

z(s)+
q(s)maxξ∈[s−h,s]

(
f (ξ ),g(ξ )

)
(
k(s)

)1− 1
n

z(s)

]
ds

+
∫ α(t)

α(t0)

1
n

[
a(s) f (s)g(s)(

K(s)
)1− 1

n

z(s)+
b(s)maxξ∈[s−h,s]

(
f (ξ ),g(ξ )

)
(
K(s)

)1− 1
n

z(s)
]
ds,

for t ∈ [t0,T ),
(42)

z(t)� v(t0)= M, t ∈ [α(t0)−h,t0].
(43)

From inequalities (42), (43) according to Theorem 1 we get

z(t) �
(

M +
e(t)

n
(
k(t0)

)1− 1
n

)
exp
(
A(t)+B(t)

)
, (44)

where A(t) and B(t) are defined by (33) and (34), respectively.
Substituting the bound (44) for z(t) into the right part of (37) we obtain the re-

quired inequality (31).
�

REMARK 2. As special cases of Theorem 3 and Theorem 4 we obtain results for
integral inequality without maximum ([9], Theorem 2.1 and Theorem 2.2).
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3. Applications

We will apply some of the proved above inequalities to study properties of so-
lutions of differential equations with “maxima”. Note that differential equations with
“maxima” are adequate models of real processes which present state depends on the
maximal its deviation in the past. Such kind of problems are, for example, Hausrath
equation ([13]), the model describing the vision process in the compound eye ([5]), the
model of generator ([12]). On the other hand, it is relevant to mention here the opinion
of Myshkis that “the specific character of these equations is not yet sufficiently clear”.
In his survey [10] he also distinguishes the equations with maxima as differential equa-
tions with deviating argument of complex structure.

EXAMPLE 1. Consider the system of differential equations with “maximum“

x
′
= F

(
t,x(t), max

s∈[β (t),α(t)]
x(s)

)
for t � t0 (45)

with initial condition

x(t) = φ(t) for t ∈ [α(t0)−h,t0], (46)

where x ∈ R
n
,φ : [t0−h,t0] → R

n
,F : [0,∞)×R

n×R
n → R

n , h > 0 is a constant.

THEOREM 5. (Uniqueness). Let the following conditions be fulfilled:
1. The functions α,β ∈C([t0,∞),R+) are such that α(t) is an increasing func-

tion, β (t) � α(t) � t , and there exists a constant h > 0 : 0 < α(t)− β (t) � h for
t � t0 .

2. The function F ∈C([t0,∞)×R
n×R

n
,R

n) and satisfies for t � t0 and xi,yi ∈
R

n
, i = 1,2 the condition

‖F(t,x1,y1)−F(t,x2,y2)‖ � P(t)‖x1 − x2‖+ r(t)‖y1− y2‖ ,

where P(t),r(t) ∈C([t0,∞),R+) .
3. For any initial function φ ∈ C([α(t0)− h,t0],R

n) the initial value problem
(45),(46) has at least one solution x(t;t0,φ) defined for t � α(t0)−h.

Then the initial problem (45),(46) has exactly one solution.

Proof. Let φ ∈ C([α(t0)− h,t0],R
n) be a fixed initial function. Assume there

exist two different solutions u(t) = u(t;t0,φ) and v(t) = v(t; t0,φ) of the initial value
problem (45),(46), defined for t � α(t0)−h . Both functions u(t) and v(t) satisfy the
integral equations

u(t) = φ(t0)+
∫ t

t0
F(s,u(s), max

ξ∈[β (s),α(s)]
u(ξ ))ds for t � t0,

v(t) = φ(t0)+
∫ t

t0
F(s,v(s), max

ξ∈[β (s),α(s)]
v(ξ ))ds for t � t0
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and u(t) = v(t) = φ(t) for t ∈ [α(t0)−h,t0] .
Then the norm of the difference of the solutions u(t) and v(t) satisfies the inequal-

ities

||u(t)−v(t)|| �
∫ t

t0
||F(s,u(s), max

ξ∈[β (s),α(s)]
u(ξ ))−F(s,v(s), max

ξ∈[β (s),α(s)]
v(ξ ))||ds

�
∫ t

t0

(
P(s)||u(s)−v(s)||ds+r(s)|| max

ξ∈[β (s),α(s)]
u(ξ )− max

ξ∈[β (s),α(s)]
v(ξ )||

)
ds

�
∫ t

t0
P(s)‖u(s)−v(s)‖ds+

∫ t

t0
r(s) max

ξ∈[β (s),α(s)]
‖u(ξ )−v(ξ )‖ds, t � t0,

(47)

Set w(t) = ‖u(t)− v(t)‖ for t ∈ [α(t0)− h,∞) , change the variable η = α(s) in
the second integral of (47), use the inequality maxξ∈[β (t),α(t)] w(ξ )� maxξ∈[α(t)−h,α(t)] w(ξ )
that follows from condition 1 of Theorem 5 and obtain the inequality

w(t) �
∫ t

t0
P(η)w(η)dη+

∫ α(t)

α(t0)
r(α−1(η))(α−1(η))

′
max

ξ∈[η−h,η]
w(ξ )dη , t � t0. (48)

According to Theorem 2 from inequality (48) and w(t) ≡ 0, t ∈ [α(t0)−h,t0] for
k = 0, p(t) ≡ P(t) , q(t) ≡ 0 on [t0,∞) , a(t) ≡ 0, b(t) ≡ r(α−1(η))(α−1(η))

′
on

[α(t0),∞) we obtain w(t) � 0 for t � t0, that proves the validity of inequality ‖u(t)−
v(t)‖ = 0 for t � t0 or u(t) ≡ v(t) .

�

EXAMPLE 2. Consider the scalar differential equations with “maxima“

x x
′
= F

(
t,x(t), max

s∈[β (t),α(t)]
x(s)

)
for t � t0 (49)

with initial condition

x(t) = φ(t) for t ∈ [α(t0)−h,t0], (50)

where x ∈ R , φ : [α(t0)−h,t0] → R , F : [0,∞)×R×R → R , h > 0 is a constant.

THEOREM 6. (Upper bound for solutions). Let the following conditions be ful-
filled:

1. The functions α,β ∈C([t0,∞),R+) are such that α(t) is an increasing func-
tion, β (t) � α(t) � t and there exists a constant h > 0 : 0 < α(t)− β (t) � h for
t � t0 .

2. The function F ∈ C([t0,∞)×R×R,R) , F(t,0,0) ≡ 0, t ∈ R and satisfies
for t � t0 and x,y ∈ R the condition |F(t,x,y)| � P(t)|x|+ r(t)|y|, where P(t),r(t) ∈
C([t0,∞),R+) .

3. The function φ ∈C([α(t0)−h,t0],R) and maxt∈[α(t0)−h,t0] |φ(t)| = M > 0 .
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4. The function x(t;t0,φ) is the solution of the initial value problem (49),(50),
defined for t � α(t0)−h.

Then the solution of initial value problem problem (49),(50) satisfies

|u(t)|� |φ(t0)|+M
(
1+

1
|φ(t0)|

∫ t

t0
(P(s)+r(s))ds

)
e

1
|φ (t0)|

∫ t
t0

(P(s)+r(s))ds
, t � t0. (51)

Proof. Let φ ∈C([α(t0)−h,t0],R) be an initial function and x(t) = x(t; t0,φ) be
a solution of the initial value problem (49),(50), that is defined for t � t0−h . Function
x(t) satisfies the integral equation(

x(t)
)2

=
(
φ(t0)

)2
+
∫ t

t0
2F(s,u(s), max

s∈[β (t),α(t)]
u(s))ds for t � t0,

x(t) = φ(t), t ∈ [α(t0)−h,t0],

Then we obtain

|x(t)|2 � |φ(t0)|2 +2
∫ t

t0
|F(s,x(s), max

ξ∈[β (s),α(s)]
x(ξ ))|ds

� |φ(t0)|2 +2
∫ t

t0
P(s)|x(s)|ds+2

∫ t

t0
r(s) max

ξ∈[β (s),α(s)]
|x(ξ )|ds, t � t0.

(52)

Set u(t) = |x(t)| for t ∈ [α(t0)−h,∞) , change the variable η =α(s) in the second
integral of (52), use the inequality maxξ∈[β (t),α(t)] u(ξ ) � maxξ∈[α(t)−h,α(t)] u(ξ ) that
follows from condition 1 of Theorem 6 and obtain for t � t0 the following inequality(
u(t)

)2
� |φ(t0)|2+

∫ t

t0
2P(η)u(η)dη+

∫ α(t)

α(t0)
2r(α−1(η))(α−1(η))

′
max

ξ∈[η−h,η]
u(ξ )dη .

(53)
According to Theorem 4 for n = 2,

f (t) = g(t) ≡ 1, p(t) = 2P(t), b(t) = 2r(α−1(t))(α−1(t))
′
, q(t) = a(t) = 0

from inequality (53) we obtain

u(t) � |φ(t0)|+
(
M +

1
2|φ(t0)|e(t)

)
eA(t)+B(t), (54)

where

e(t) � 2M
∫ t

t0

(
2P(s)+ r(s)

)
ds,

A(t) =
1

|φ(t0)|
∫ t

t0
P(s)ds,

B(t) =
1

2|φ(t0)|
∫ α(t)

α(t0)

[
2r(α−1(s))(α−1(s))

′]
ds =

1
|φ(t0)|

∫ t

t0
r(s)ds.

Inequality (54) proves the validity of inequality (51).
�
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[3] C. BUSE, C. P. NICULESCU, J. PEČARIĆ, Asymptotic stability and integral inequalities for solutions

of linear systems on Radon-Nikodým spaces, Math. Inequal. Appl., 8 , 2 (2005), 347–356.
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