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Abstract. The aim of this work is to present a method of covering the unit sphere by means of
spherical caps of fixed radius. The method based on a set of rotations provides an explicit formula
for the number of spherical caps that cover the whole unit sphere and the exact positioning of
their centers.

1. Introduction

Covering the unit sphere with n spherical caps of smallest possible radius is still
a challenging unsolved problem. This led to the investigation of the general question:
how many spherical caps of radius h do we need to cover the unit sphere? We are not
looking for the optimal solution because it is beyond reach for the time being, rather
we are looking for an explicit formula for the number of spherical caps needed and an
exact positioning of the centers of the spherical caps that cover the whole unit sphere
without giving any preferences to any region on the sphere.

The centers of the spherical caps will be placed on the unit sphere using a method
described in [1]. This method uses Hecke operators on L2(S2) , the Hilbert space of
square integrable functions on the unit sphere, to generate very evenly distributed se-
quences of three-dimensional rotations. Moreover, bounds on the discrepancy and the
mean square discrepancy for spherical caps were obtained in [1]. We have previously
used this method in [2] to compress functions on the unit sphere and it did perform uni-
formly well independently of the location of the support of the function on the sphere,
and for functions supported in a small subset of S2 .

In this paper, we will refine a main result in [1] that estimates the discrepancy of
spherical caps generated of special sequences of three-dimensional rotations and use it
to produce an explicit formula for the number of spherical caps that cover the whole
unit sphere and the exact positioning of their centers.

Mathematics subject classification (2010): 26D05.
Keywords and phrases: Covering of the sphere, inequalities on the sphere.

c© � � , Zagreb
Paper JMI-04-48

537



538 MOHAMED ALLALI

2. Ramanujan set

The group G = SO(3) of proper rotations preserving the dot product, acts on
L2(S2) as follows:

ρ(γ) f (σ) = f (γ−1σ) (γ ∈ G, σ ∈ S2, f ∈ L2(S2)). (2.1)

Each operator ρ(γ) defined in (2.1) is unitary. For any f ,g ∈ L2(S2) the func-
tion G � γ → (ρ(γ) f ,g) ∈ C is continuous. Moreover, ρ(γ1)ρ(γ2) = ρ(γ1γ2) for any
γ1,γ2 ∈ G . In other words, (ρ ,L2(S2)) is a unitary representation of the group G , see
[3].

Let S ⊆ SO(3) be a finite symmetric set. In other words, the number of elements
of S , denoted by |S| = 2N, is even and γ ∈ S if and only if γ−1 ∈ S . Let (TS f )(x) =
∑γ∈S f (γx) , where f ∈ L2(S2) . Furthermore, let u(x) = 1, x ∈ S2 , denote the unit
function and H0 = Cu . The orthogonal projection PH0 : L2(S2) → H0 is given by:

PH0 f =
(

1
4π

∫
S2

f (x)dx

)
u ( f ∈ L2(S2)). (2.2)

THEOREM 2.1. [1] For any finite symmetric set S ⊆ SO(3)

∥∥∥∥ 1
|S|TS −PH0

∥∥∥∥� 2

√|S|−1
|S| . (2.3)

A set where the equality holds is called a Ramanujan set. Let p be a prime, equal
to 1 modulo 4. Then there exists in [1] an explicitly described Ramanujan set, Sp , with
|Sp| = p+1.

Let Sp be a Ramanujan set, Sp = {γ1, ...,γ p+1
2

,γ−1
1 , ...,γ−1

p+1
2
} , and let SM

p ⊆ SO(3)

denote the set of reduced words of length at most M = 1,2,3, ... in Sp (by reduced we
mean all the obvious cancelations such as γγ−1 have been carried out). It is straight-
forward to verify by induction that

∣∣SM
p

∣∣= pM+1 + pM − p−1
p−1

. (2.4)

In [1], we have the following theorem:

THEOREM 2.2. ∥∥∥∥∥ 1∣∣SM
p

∣∣TSM
p
−PH0

∥∥∥∥∥� const
log(

∣∣SM
p

∣∣)√∣∣SM
p

∣∣ . (2.5)
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3. Main theorem

We will use in this paper the Ramanujan set of rotations only in the case when p =
5. For p = 5, the construction can be described quite concisely. S5 = {A,B,C,A−1,B−1,
C−1} , where A , B , C are rotations about the X , Y , and Z axes, each through an angle
of arccos(−3

5 ) .

SM
5 = {A,B,C,A−1,B−1,C−1,AA,AB,AC,AB−1,AC−1, ...}. (3.1)

Using (2.4), SM
5 contains 3

2(5M −1) elements of rotations.
Let A⊆ S2 be a spherical cap with center y∈ S2 and radius h . The area |A|= 2πh .

Denote by χA the characteristic function of A . In order for the set{γA}γ∈SM
5

to cover

the whole unit sphere, one has to make sure that for every x ∈ S2 , there exists at least
one spherical cap, say γA , where γ ∈ SM

5 , such that x ∈ γA .

THEOREM 3.1. Let CM = 5
M
2 (M + 1 + M√

5
) , and let k = 16 (4+

√
π)

π . Then, for

every cap A ⊆ S2 and for all x ∈ S2 we have

∣∣∣∣∣∣|A|−
1∣∣SM
5

∣∣ ∑
γ∈SM

5

χγA(x)

∣∣∣∣∣∣�
3

4
1
3

(4π)
1
3

[
CM∣∣SM

5

∣∣k
] 2

3

. (3.2)

4. Main lemma

The Legendre polynomials Pn(x) are defined as

Pn(x) =
1

2nn!
dn

dxn (x2 −1)n. (4.1)

Also Pn(1) = 1 and ∫ 1

−1
Pm(x)Pn(x)dx =

2
2n+1

δm,n. (4.2)

To prove Theorem 3.1, we will use the following lemma.

LEMMA 4.1. For 0 � θ � π , we have the following inequality

|Pn−1(cos(θ ))−Pn+1(cos(θ ))| � 8√
π

√
|sin(θ )|

n
. (4.3)

Proof. Recall a result of Stieltjes ([4], Theorem 7.33, page 165)

√
sin(θ ) |Pn(cos(θ )| �

√
2
π

1√
n

(0 � θ � π). (4.4)
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Bernstein’s theorem ([4], Theorem 1.22.1, page 5) states that for any trigonometric
polynomial g(θ ) of degree n , we have∣∣g′(θ )

∣∣� n . max
0�θ1�2π

|g(θ1)| (0 � θ � 2π). (4.5)

Let 0 < θ0 � π
2 . We see from (4.4) that

|Pn(cos(θ )| �
√

2
π

1√
n

1√
sin(θ )

�
√

2
π

1√
n

1√
sin(θ0)

(θ0 � θ � π
2

). (4.6)

Let cos(θ ) = cos(θ0)cos(u). Then by (4.6) for all real u

|Pn(cos(θ0)cos(u))| �
√

2
π

1√
n

1√
sin(θ0)

. (4.7)

Hence, (4.5) and (4.7) imply

∣∣cos(θ0)sin(u)P′
n(cos(θ0)cos(u))

∣∣�
√

2
π

√
n√

sin(θ0)
. (4.8)

Equivalently, for θ0 � θ � π
2 ,

√
cos2(θ0)− cos2(θ ).

∣∣P′
n(cos(θ ))

∣∣�
√

2
π

√
n√

sin(θ0)
. (4.9)

Given 0 < γ � π
2 set θ0 = γ

2 , θ = γ. Then (4.9) implies

∣∣P′
n(cos(γ))

∣∣�
√

2
π

√
n√

cos2( γ2 )− cos2(γ)

1√
sin( γ2 )

. (4.10)

But

cos2
( γ

2

)
− cos2(γ) = sin2(γ)− sin2

( γ
2

)
= sin2

( γ
2

)(
4cos2

( γ
2

)
−1
)

� sin2
( γ

2

)
.

Hence, by (4.10), ∣∣P′
n(cos(γ))

∣∣�
√

2
π

√
n

(sin( γ2 ))
3
2

. (4.11)

From ([4], (1), page 360) we have

Pn−1(x)−Pn+1(x) =
2n+1

n(n+1)
(1− x2)P′

n(x). (4.12)

By combining (4.11) and (4.12) we get

|Pn−1(cos(γ))−Pn+1(cos(γ))| � 2n+1
n(n+1)

sin2(γ)
√

2
π

√
n

(sin( γ2 ))
3
2

=
2n+1
n+1

1√
n

√
2
π

sin2(γ)
(sin( γ2 ))

3
2

.

(4.13)
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But
sin(γ) = 2sin

( γ
2

)
cos
(γ

2

)
.

So
1

sin( γ2)
=

2cos( γ2 )
sin(γ)

� 2
sin(γ)

.

Therefore

|Pn−1(cos(γ))−Pn+1(cos(γ))| � 4
2n+1
n+1

1√
n

1√
π
√

sin(γ). (4.14)

Consequently, for 0 � γ � π
2 ,

|Pn−1(cos(γ))−Pn+1(cos(γ))| � 8√
π

√
|sin(γ)|

n
. (4.15)

Hence, the lemma is proven. �
A proof of Lemma 4.1 can be found in the book of Szegö (see [5], Theorem 7.33.3,

page 172.) However, the proof does not provide the constant explicitly as we did.

5. Proof of main theorem

Proof of Theorem 3.1. Here we follow Theorem 2.5 in [1] making it more precise
at various points.

Let A1 , A2 be two spherical caps about y with radii h−2ε , h+2ε , respectively.
Therefore, |A1| = 2π(h−2ε), and |A2| = 2π(h+2ε). We have

||Aν |− |A|| = 2π |(h±2ε)−h| = 4πε, (ν = 1, 2). (5.1)

For ε > 0 let kε(z,ξ ) be the point-pair invariant

kε(z,ξ ) =

⎧⎨
⎩

1
2π(1− cos(ε))

if d(z,ξ ) < ε,

0 otherwise.
(5.2)

Define k ∗ f (z) by

k ∗ f (z) =
∫

S2
k(z,ξ ) f (ξ )dω(ξ ). (5.3)

We get∣∣∣∣∣∣
1∣∣SM
5

∣∣ ∑
γ∈SM

5

(χAν ∗ kε)(γx)−|A|
∣∣∣∣∣∣�
∣∣∣∣∣∣

1∣∣SM
5

∣∣ ∑
γ∈SM

5

(χAν ∗ kε)(γx)−|Aν |
∣∣∣∣∣∣+ ||Aν |− |A||

=

∣∣∣∣∣∣
1∣∣SM
5

∣∣ ∑
γ∈SM

5

(χAν ∗ kε)(γx)−|Aν |
∣∣∣∣∣∣+4πε.

(5.4)
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Let

Iν =

∣∣∣∣∣∣ ∑γ∈SM
5

(χAν ∗ kε)(γx)−
∣∣SM

5

∣∣ |Aν |
∣∣∣∣∣∣ . (5.5)

Then ∣∣∣∣∣∣
1∣∣SM
5

∣∣ ∑
γ∈SM

5

(χAν ∗ kε)(γx)−|A|
∣∣∣∣∣∣�

1∣∣SM
5

∣∣ Iν +4πε. (5.6)

Now, we need to estimate Iν . By (2.9) in [1], we have

Iν =

∣∣∣∣∣∣
∞

∑
m=1

k̂ε(m)k̂Aν (m) ∑
| j|�m

ϕ j,m(y) ∑
γ∈SM

5

ϕ j,m(γx)

∣∣∣∣∣∣ (5.7)

where

k̂Aν (m) = 2π
∫ 1

cosρν
Pm(x)dx (ρ1 = h+2ε, ρ2 = h−2ε), (5.8)

and

k̂ε(m) =
1

1− cosε

∫ 1

cosε
Pm(x)dx. (5.9)

Furthermore, the ϕ j,m are simultaneous eigenvectors for the averaging operator TS , and
for the operator defined by kε .

Using (1.25) and (1.26) in [1], we have

∑
γ∈SM

5

ϕ j,m(γx) = 5
M
2

(
sin((M +1)θ )

sin(θ )
+

sin(Mθ )√
5 sin(θ )

)
ϕ j,m(x). (5.10)

Thus we have∣∣∣∣∣∣ ∑γ∈SM
5

ϕ j,m(γx)

∣∣∣∣∣∣� 5
M
2

( | sin((M +1)θ )|
| sin(θ )| +

| sin(Mθ )|√
5 | sin(θ )|

)∣∣ϕ j,m(x)
∣∣

= 5
M
2

⎛
⎝
∣∣∣ ei(M+1)θ − e−i(M+1)θ

∣∣∣
| eiθ − e−iθ | +

∣∣ eiMθ − e−iMθ ∣∣
√

5 | eiθ − e−iθ |

⎞
⎠∣∣ϕ j,m(x)

∣∣

= 5
M
2

⎛
⎝
∣∣∣ 1− e−i2(M+1)θ

∣∣∣
| 1− e−i2θ | +

∣∣ 1− e−i2Mθ
∣∣

√
5 | 1− e−i2θ |

⎞
⎠∣∣ϕ j,m(x)

∣∣

= 5
M
2

(∣∣∣∣∣
M

∑
k=0

e−i2θk

∣∣∣∣∣+ 1√
5

∣∣∣∣∣
M−1

∑
k=0

e−i2θk

∣∣∣∣∣
)∣∣ϕ j,m(x)

∣∣
� 5

M
2

(
M

∑
k=0

∣∣∣e−i2θk
∣∣∣+ 1√

5

M−1

∑
k=0

∣∣∣e−i2θk
∣∣∣
)∣∣ϕ j,m(x)

∣∣
= 5

M
2

(
M +1+

M√
5

)∣∣ϕ j,m(x)
∣∣ . (5.11)
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Therefore, we have the following inequality∣∣∣∣∣∣ ∑γ∈SM
5

ϕ j,m(γx)

∣∣∣∣∣∣� CM
∣∣ϕ j,m(x)

∣∣ . (5.12)

Hence,

Iν � CM

∞

∑
m=1

∣∣k̂ε(m)k̂Aν (m)
∣∣ ∑
| j|�m

∣∣ϕ j,m(x)ϕ j,m(y)
∣∣. (5.13)

By the Cauchy-Schwartz inequality, we obtain

∑
| j|�m

∣∣ϕ j,m(x)ϕ j,m(y)
∣∣�
(
∑

| j|�m

∣∣ϕ j,m(x)
∣∣2)

1
2
(
∑

| j|�m

∣∣ϕ j,m(y)
∣∣2)

1
2

. (5.14)

Furthermore, for all z in S2 we have

∑
| j|�m

∣∣ϕ j,m(z)
∣∣2 =

2m+1
2π

. (5.15)

Consequently,

Iν � CM

∞

∑
m=1

∣∣k̂ε(m)k̂Aν (m)
∣∣2m+1

2π
. (5.16)

The next step in the proof is to bound k̂Aν (m) and k̂ε (m). Recall that

(2m+1)Pm(x) = P′
m+1(x)−P′

m−1(x). (5.17)

Using the above equation, k̂Aν (m) and k̂ε(m) , defined in (5.8) and (5.9), can be rewrit-
ten as

k̂Aν (m) =
2π

2m+1
[Pm−1(cosρν)−Pm+1(cosρν)] (5.18)

and

k̂ε (m) =
1

(2m+1)(1− cosε)
[Pm−1(cosε)−Pm+1(cosε)] . (5.19)

To bound k̂Aν (m) and k̂ε (m) we use lemma 4.1. Setting t = 8√
π , we have the following

inequalities ∣∣k̂Aν (m)
∣∣� 2π

2m+1
t

√
|sin(ρν )|

m
� 2πt

(2m+1)
√

m
. (5.20)

Similarly ∣∣k̂ε(m)
∣∣� 1

(2m+1)(1− cos(ε))
t

√
sin(ε)√

m
. (5.21)
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Also, based on (5.9), and using the fact that for |x| � 1 we have |Pn(x)| � 1 (see [6],
Theorem 60) we have

∣∣k̂ε(m)
∣∣� 1 for all m , to conclude that

Iν � CM ∑
1�m� 1

ε

∣∣k̂ε(m)k̂Aν (m)
∣∣2m+1

2π
+CM ∑

m> 1
ε

∣∣k̂ε(m)k̂Aν (m)
∣∣2m+1

2π

� CM

⎡
⎣ ∑

1�m� 1
ε

2πt
(2m+1)

√
m

2m+1
2π

+ ∑
m> 1

ε

t
√

sin(ε)
(2m+1)(1−cos(ε))

√
m

2πt
(2m+1)

√
m

2m+1
2π

⎤
⎦

= CM

⎡
⎣ ∑

1�m� 1
ε

t√
m

+ ∑
m> 1

ε

t2
√

sin(ε)
(1− cos(ε))

1
(2m+1)m

⎤
⎦

= CMt

⎡
⎣ ∑

1�m� 1
ε

1√
m

+t

√
sin(ε)

(1− cos(ε)) ∑
m> 1

ε

1
(2m+1)m

⎤
⎦ .

(5.22)
Notice that for the first part of the sum we have

∑
1�m� 1

ε

1√
m

�
∫ 1

ε

0

1√
x
dx = 2

1√
ε
. (5.23)

Furthermore, for the second part we need the following lemma

LEMMA 5.1.

max
0�x�π

x
3
2
√

sinx
2(1− cosx)

= 1. (5.24)

Proof.

x
3
2
√

sinx
2(1− cosx)

=
x

3
2
√

2sin x
2 cos x

2

2(2sin2 x
2 )

=
x

3
2
√

cos x
2

2
√

2(sin x
2 )

3
2

=
( x

2

sin x
2

) 3
2
√

cos
x
2

In [7], it was proved that the inequality

cosx <

(
sinx
x

)3

(5.25)

is valid for x ∈ (0, π2 ] , and the exponent 3 is the best possible. Using (5.25), we have

0 �
( x

sinx

)3
cosx < 1, 0 < x � π

2
. (5.26)
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Therefore,

x
3
2
√

sinx
2(1− cosx)

< 1, 0 < x � π .

Moreover,

lim
x→0

x
3
2
√

sinx
2(1− cosx)

= lim
x→0

( x
2

sin x
2

) 3
2
√

cos
x
2

= 1.

Consequently, the lemma follows. �

It follows then that from the previous lemma that√
sin(ε)

(1− cos(ε))
� 2

1

ε
3
2

. (5.27)

Moreover,

∑
m> 1

ε

1
(2m+1)m

� 1
2 ∑

m> 1
ε

1
m2 � 1

2

∞∫
1
ε

1
x2 dx =

ε
2
. (5.28)

Hence,

Iν � CMt

[
2

1√
ε

+2t
1

ε
3
2

ε
2

]
= CMt(2+ t)

1√
ε
. (5.29)

By combining the previous formula with (5.6) we get∣∣∣∣∣∣
1∣∣SM
5

∣∣ ∑
γ∈SM

5

(χAν ∗ kε)(γx)−|A|
∣∣∣∣∣∣�

CM∣∣SM
5

∣∣ t(2+ t)
1√
ε

+4πε. (5.30)

Set k = t(2+ t) = 16 (4+
√
π)

π . It easy to verify that, for any x1, ...,xn ∈ S2, we have

n

∑
r=1

(χA1 ∗ kε)(xr) �
n

∑
r=1

χA(xr) �
n

∑
r=1

(χA2 ∗ kε)(xr). (5.31)

In conclusion, ∣∣∣∣∣∣|A|−
1∣∣SM
5

∣∣ ∑
γ∈SM

5

χA(γx)

∣∣∣∣∣∣�
CM∣∣SM

5

∣∣k 1√
ε

+4πε. (5.32)

The previous inequality is valid for every ε , such that 0 < ε < 1, so the following
inequality still holds∣∣∣∣∣∣|A|−

1∣∣SM
5

∣∣ ∑
γ∈SM

5

χA(γx)

∣∣∣∣∣∣� min
0<ε<1

(
CM∣∣SM

5

∣∣k 1√
ε

+4πε

)
. (5.33)
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LEMMA 5.2.

min
0<ε<1

(
CM∣∣SM

5

∣∣k 1√
ε

+4πε

)
=

3

4
1
3

(4π)
1
3

[
CM∣∣SM

5

∣∣k
] 2

3

. (5.34)

Proof. Let J(ε) = k1ε + k2√
ε , where ε > 0. The minimum of J(ε) occurs at

ε0 = ( k2
2k1

)
2
3 , and minJ(ε) = J(ε0) = 3

4
1
3
k

1
3
1 k

2
3
2 . In our case, k1 = 4π and k2 = CM|SM

5 |k.
Therefore, the lemma follows. �

Combining (5.33) and Lemma 5.2, Theorem 3.1 is proven. �

6. Necessary condition for sphere covering

Further, in order to use Theorem 3.1 to guarantee the covering of the sphere we
need the next lemma.

LEMMA 6.1. ∣∣∣∣∣∣|A|−
1∣∣SM
5

∣∣ ∑
γ∈SM

5

χγA(x)

∣∣∣∣∣∣< |A| ⇒
⋃

γ∈SM
5

γA = S2. (6.1)

Proof. As γA ⊆ S2 , then
⋃
γ∈SM

5
γA ⊆ S2. Now, let x ∈ S2 we have obviously

∣∣∣∣∣∣|A|−
1∣∣SM
5

∣∣ ∑
γ∈SM

5

χγA(x)

∣∣∣∣∣∣< |A| ⇒ ∑
γ∈SM

5

χγA(x) 
= 0. (6.2)

So, we can see that there exists a γ0 ∈ SM
5 such that χγ0A(x) = 1, which is equivalent to

say that x ∈ γ0A. As γ0A ⊆⋃γ∈SM
5
γA the lemma follows. �

Based on this fact and on Theorem 3.1, we reach a covering if

3

4
1
3

(4π)
1
3

⎡
⎣5

M
2 (M +1+ M√

5
)∣∣SM

5

∣∣ 16

(
4+

√
π

π

)⎤⎦
2
3

< 2πh. (6.3)

As
∣∣SM

5

∣∣= 3
2(5M −1) , then inequality (6.3) can be simplified as follows

5
M
2 (M +1+ M√

5
)

5M −1
<

1
16

√
2
3

π2

4+
√
π

h
3
2 . (6.4)

Thus we have the following proposition.
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PROPOSITION 6.2. If M satisfies the following inequality

5
M
2 (M +1+ M√

5
)

5M −1
<

1
16

√
2
3

π2

4+
√
π

h
3
2 (6.5)

then the sphere covering is guaranteed⋃
γ∈SM

5

γA = S2. (6.6)
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