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SOME NONLINEAR DYNAMIC INEQUALITIES
ON TIME SCALES AND APPLICATIONS

S. H. SAKER

(Communicated by A. Peterson)

Abstract. Some nonlinear dynamic inequalities on a time scale T are formulated in this paper.
Some sufficient conditions for global existence and an estimate of the rate of decay of solutions
are obtained. The results not only unify the results of differential and difference inequalities but
can be applied on different types of time scales. These inequalities are of interest in a study
of continuous and discrete dynamical systems and nonlinear evolution equations as well as in
oscillation theory of dynamic equations on time scales and can be applied to the study of global
existence of nonlinear PDE. Some applications illustrating the main results are given.

1. Introduction

One of the most useful methods for studying linear and nonlinear dynamic equa-
tions on time scales is the use of linear and nonlinear dynamic inequalities which pro-
vide explicit bounds on the unknown functions. During the past decade a number of
dynamic inequalities on time scales has been established by some authors which are
motivated by some applications, for example, when studying the behavior of solutions
of certain class of dynamic equations on time scales, the bounds provided by earlier
inequalities are inadequate in applications and we need some new and specific type of
dynamic inequalities on time scales. For contributions, we refer the reader to [1], [2],
[31, [4], [5], [6], [71, [8], [12], [13], [17], [19], and the references cited therein. In [5,
Theorem 6.1] it is proved that if y, @ and p € C,y and p € Z™, then

VA1) < f(1)+ p(0)y(t), forallt € [y, o), (1.1)
implies
!
W(e) < y(to)ep(t,10) + /t ep(t,0(s))f(s)As, for all 1 € [tg,), (12)
0

where Z7 :={a€ % :1+u(t)a(t) >0, €T} and Z is the class of rd-continuous
and regressive functions.

Since (1.2) provides an explicit bound to the unknown function and a tool to the
study of many qualitative as well as quantitative properties of solutions of dynamic
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equations, it has become one of the very few classic and most influential results in the
theory and applications of inequalities. Following this trend in this paper, we consider
the general nonlinear dynamic inequality

g (1) < B() —y(t)g° (t) + au(t)g(r), fort > 1, (1.3)

on a time scale T which is unbounded above, where g(¢) > 0. Our concern in this
paper is to establish some sufficient conditions for global existence and an estimate of
the rate of decay of solutions to this inequality which is different from the usual task
that has been considered in the above mentioned papers. We note that (1.1) is a special
case of (1.3) when y(¢) = 0 and p = 1. Since we are interested in the asymptotic
behavior of solutions near infinity, we assume that sup T = o, and define the time scale
interval [fy,o) by [fy,o°)T := [fo,°0) N'T. For completeness, we recall the following
concepts related to the notion of time scales. A function f: T — R is said to be right—
dense continuous (rd -continuous) provided f is continuous at right—dense points and
at left—dense points in T, left hand limits exist and are finite. The set of all such
rd -continuous functions is denoted by C,;(T). The graininess function u for a time
scale T is defined by u(z) := o(r) —t, and for any function f:T — R the notation
SfC(t) denotes f(o(t)) where o(t) is the forward jump operator defined by o(r) :=
inf{s € T : s >t}. We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where gg© # 0, here g° =goo0)
of two differentiable functions f and g

A A, oA
(f2) = fig+ fog" = fgb+ fAg, and (f) RS | SO
8 88
An integration by parts formula reads
b A b b A c
| rogton = 105l - [ 207 (15)

We say that a function p : T — R is regressive provided 1+ u(z)p(z) #0, t € T. The
set of all regressive functions on a time scale T forms an Abelian group under the
addition ¢ defined by p® q:= p+ g+ upq. We denote the set of all f: T — R which
are rd—continuous and regressive by Z. If p € %, then we can define the exponential
function by e,(t,s) = exp ([; &u(e)(P(7))AT), for t € T, s € T¥, where &,(z) is the
cylinder transformation, which is given by

log(14-hz) h+0
= T )
a@={ "1,

Alternately, for p € Z one can define the exponential function e,(-,%), to be the
unique solution of the IVP x* = p(t)x, with x(tp) = 1. We define Z* :={f € % :
1+ u(r)f(z) >0, t € T}. From the properties of the exponential function, see Bohner
and Peterson [5], we will use the following properties e (z,19) = a(t)eq(t,t9) and
ep(0(1),t0) = [L+u(r)p(t)]ey(t,10). Also if a € Z, then e,(t,s) is real-valued and
nonzeroon T. If a € Z*, then e,(t,19) always positive and e, (r,7) = 1 and e((z,s) =
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1. Note that if T=R, then e4(t,20) = exp(; a(s)ds), it T=N, then e,(t,10) =
-1 -1
[T1(1+a(s)), and if T=¢"0, then e,(t,70) = [ (1+ (g —1)sa(s)).

s=t §=lo

The study of dynamic equations and inequalities on time scales, which goes back
to its founder Stefan Hilger [10], is an area of mathematics that has recently received a
lot of attention. The general idea is to prove a result for a dynamic equation or inequality
where the domain of the unknown function is a so-called time scale T, which may be
an arbitrary closed subset of the real numbers R. The book on the subject of time
scale, i.e., measure chain, by Bohner and Peterson [5] summarizes and organizes much
of time scale calculus. The three most popular examples of calculus on time scales are
differential calculus, difference calculus, and quantum calculus (see Kac and Cheung
[11]), i.e, when T=R, T=N and T =g = {¢' : + € No} where g > 1. There
are applications of dynamic equations on time scales to quantum mechanics, electrical
engineering, neural networks, heat transfer, and combinatorics. A cover story article
in New Scientist [20] discusses several possible applications.

Throughout the paper we will assume the following hypotheses:

o, P and y are real valued rd-continuous functions defined on [tg,),
(H) such that y € Z,
o(t) = 0,forall # > f9, where fo > 0 is a fixed number and p > 0 is a constant.

Also we consider the inequality
g™ (1) = B(e) —y(1)8° (1) + a(1)g” (1), fort > ro. (1.6)

on a time scale T which is unbounded above, and establish the lower bound of the
solution g(r) when g(zp) # 0.

Our motivations for considering this type of inequalities are their applications of
continuous and discrete dynamical systems. Also in studying the large time behavior of
solutions to nonlinear evolution equations and oscillation of dynamic equations on time
scales. Moreover these inequalities can be used in studying the stability of dynamical
system method of the ill-posed operator equations and in the study of global existence
of nonlinear PDE [15, 16, 18].

We note that, the inequalities (1.3) and (1.6) cover several different types of differ-
ential and difference inequalities depending on the choice of the time scale T. We con-
sider here (1.3) and give different types of inequalities and the reader can similarly con-
struct the others for (1.6). For example, if T =R, then o(t) =1, u(t) =0, g*(t) =g'(1)
and (1.3) becomes the differential inequality

g'(t) <B@)—y(t)g(t) + aft)g(t), fort > 1. (1.7)

If T=N,then o(n) =n+1, un) =1, g*n) =Ag(n) =gn+1)—g(n) and (1.3)
becomes the difference inequality

Ag(n) < B(n) —y(n)g(n+1) +a(n)gh(n), forn = no. (1.8)
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If T =hN, h > 0, then o(n) =n+h, u(n) =h, g*(n) =~Ang(n) = (g(n+h) —g(n)) /h,
and (1.3) becomes the generalized difference inequality

Apg(n) < B(n) —y(n)g(n+h)+ a(n)gl(n), for n = ng. (1.9)

If T={t:t=q",neN, g>1}, then o(t) =qt, u(t) = (g— 1)t, g2(t) =Ayg(t) =
(g(qt)—g@))/((g—1)t), and (1.3) becomes the quantum inequality

Agg(t) < B(r) —v(t)g(qt) + a(t)gh(t), fort > to. (1.10)

Our aim in this paper is to establish some sufficient conditions which yield the global
existence and estimate of the rate of decay of solutions to (1.3) and find the upper bound
of its solutions when p > 1 and when p = 1 < 1. Also we find the lower bound of
solutions of the inequality (1.6). The results not only unify the results for (1.7) and
(1.8) but also can be applied to (1.9) and (1.10). We will apply the results on nonlinear
evolution dynamic equation, Sine-Gordon nonhomogeneous equation, iterative process
of nonlinear evolution equations and a delay hyperbolic equation.

2. Main Results

In this section, we state and prove the main results. First, we consider (1.3).

THEOREM 2.1. Assume that (H) holds, p > 1, and there exists a positive rd-
continuous function 7t(t) such that © € C}[ty,>)t and

a(t) 1 72 (t) -
B0+ ok < s |10 - T port € oo, e
Let g(t) = 0 be a solution to inequality (1.3) such that

n(to)g(to) < 1. (2.2)

Then g(t) exists globally and the following estimate holds:

0<g(r) < fort > 1.

1
m(t)
Consequently, if imy_e (¢) = oo, then lim;_.. g(t) = 0.

Proof. Let w(t) := g(t)ey(,10). Using the product rule in (1.4), we have

wh(t) = g"(t)ey (1,10) +1(1)g° (t)ey (1,10).
This and (1.3) imply that
10) [B(t) = v(1)g7(1) + au(t)g” (1)] + v(1)g° (t)ey (1, 10)
10)B(1) = v(t)ey(t,10)8° (1) + cx(t)ey (,10)87 (1) + v(1)g (t)ey (t,10)

t
t

= eY(t7t0)B(t + OC(I)6y(t,t0) (t)

= b(t) +a(t)w(r), (2.3)
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where
b(t) :=ey(t,10)B(r) and a(r) = alr) (ey(t,to))lip > 0. (2.4)
Define
1,1
n) = ey; (I)O). 2.5)
From (2.2) and (2.5), we have
1
wito) = g(to) < ) n(to). (2.6)
where ey (fo,79) = 1. It follows from the inequalities (2.1), (2.3), and (2.6) that
1 A
WH ) < Blto) + alt0)g” (1) < Blro) + ;;% S 0w {Y(")) } 7;&0))]
_ ey(to, ) _ ™ (10)
- ) >0
Using the quotient rule in (1.4), we note that
i) [ w0 y(t)ey(r,tw eyt i0)m ()
mo(t) n(t) | o) m(1)mo (1)
() m(r)ey(1,10) — ey(t,10)mA (1)
m(1)mO (1)
_ ey(tato) A
= ( (0 ) . (2.8)
This, (2.5) and (2.7) imply that
A ey(t,to) A _ A
w2 (tg) < ( 00) ) » =n"(to). (2.9)

From (2.6) and (2.9), it follows that there exists € > 0, such that
w(t) <n(t), fortg<t<T, (2.10)
where € is chosen so that T =t + € € T. Now, we prove that if (2.10) holds, then
wh(t) <n(t), fort € [t,Ty], for Tj > 1. (2.11)
From (2.3), (2.4) and (2.10), we see that

wh(t) < ey(t,10)B(1) + a(t) (ey(t,1 )1 PP (1)
< ey(t,10)B(1) + (t) (ey(1.10)) " 0P (1)
= ey(t,10)p (t) (ey(t,10)) 1 b ( e":(’tt)o )

a(t)ey(t,10)
P(t)

= ey(t,10)B(1) +
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This, (2.8) and (2.1) imply that

WA () < eylt.10) [ﬁ(t)+ O‘@} < arltio)

mP(t)

A
= (ey:(,tf)o)> =n2(), for t>Ty.

Denote

Ty :=sup{0 e R:w(r) <n(t), fort € [to,to+ O]t}
Now, we claim that 7} = e, which says that every nonnegative solution g(¢) to in-
equality (1.3) satisfying assumption (2.2) is defined globally. Assume the contrary, i.e.,
T1 < oo. It follows from this and (2.11) that

wh(1) <n™(t), forr € 1, Ti]r. (2.12)
This implies, after integrating from ¢y to 77, that
no, LN
W) = wito) = [ wAe)as < [0 (s)as = n(T) - n(w).
1) 0

Since w(ty) < 1n(zp) by assumption (2.2), we see that
w(T1) <n(Th). (2.13)

It follows from (2.12) and (2.13), as above with ty = T;, there exists € > 0 such
that w(z) < n(¢), for Ty <t < T; + &, where ¢ is chosen so that 7} + & € T. This
contradicts the definition of 77 and the contradiction proves the desired conclusion
Ty = oo. It follows from the definitions of w(¢) and 1(z), and from the relation 7} = oo,

that :
t t
gt) = o) < n() =——, fort>1.
ey(tato) ey(t7t0) TL'([)
From this we see that if lim;_... () = 0, then lim;_..g(¢#) = 0. The proof is com-
plete. O

REMARK 2.1. In Theorem 2.1, if we assume that there exists a positive function
f(r) such that y(r) — (n(¢t) /7(t)) = f(t), then 7(t) = ey_s(t,10), with 7(rg) = 1. Us-
ing this in Theorem 2.1 and applying the property e,(o(¢),t0) = [1 + u(t)a(t)]eq(t, 1)
of the generalized exponential function, we get the following result.

THEOREM 2.2. Assume that (H) holds, p > 1 and there exists a positive rd -con-
tinuous function f(t) such that y(t) — f(t) € Z and

B(t)ey—r(t:10) + ouft) < f(0) (1 4+ u(e)(y(e) = f(2)))-

Let g(t) > 0 be a solution to inequality (1.3) such that g(ty) < 1. Then g(t) exists
globally and the following estimate holds: 0 < g(t) < (1/ey—s(t,10)), for t > ty. Con-
sequently, if y(t) > f(t), then limy_. g(¢) = 0.

REMARK 2.2. In Theorem 2.1, we assumed that there exists a positive rd -conti-
nuous function 72(¢), 7 € C![ty,*°)T such that (2.2) holds. The question now is: if it is
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possible to find new conditions without (2.2). This will be left to the interested reader
and also it will be of our interest in future.

With an appropriate choice of the functions a, 8, y, f and 7 one can derive a
number of results. For example we have the following results.

COROLLARY 2.1. Assume that (H) holds, p > 1 and there exists a positive rd -
continuous function 7t(t) >0, m € C}[ty,*°)T, and 0 € (0,1) such that

o< ) <028 lyin-Z 0] anapiy < -8 [ - T

(1) n(t) (1) n(t)

Let g(t) > 0 be a solution to inequality (1.3) such that 70(ty)g(to) < 1. Then g(t) exists
globally and 0 < g(t) < 1/7(¢), for t > ty. Consequently, if limy_.. 7T(t) = oo, then

COROLLARY 2.2. Assume that (H) holds, p > 1 and there exists a positive rd -
continuous function f(t) and 0 € (0,1) such that y(t) — f(t) € R, a(t) < Of(¢)(1+
u(@)(y(t) = f(1))), and B(t)ey—r(t,t0) < (L—0)f (1) (L+u(t)(v(t) — f(t)). Let g(t) >
0 be a solution to inequality (1.3) such that g(ty) < 1. Then g(t) exists globally and
the following estimate holds: 0 < g(t) < 1/ey_(t,t0), for t > ty. Consequently, if
y(t) > f(z), then limy_.. g(t) = 0.

—_

In the following, we apply Theorem 2.1 and Corollary 2.1 on different time scales
and the application of Theorem 2.2 and Corollary 2.2 is left to the interested reader.

First, we consider the case when T = R. In this case we have the results estab-
lished by Hoang and Ramm [9].

THEOREM 2.3. [9, Theorem 1]. Let o(t), B(¢) and y(t) be continuous functions
defined on [tg,>°) and o(t) >0 forall t >ty and p > 1. Suppose there exists a function
n(t) >0, € Cllty,), such that

po+ 20 < [ro-Z0).

nP(t)  w(t) 10

Let g(t) > 0 be a solution to inequality (1.7) such that 70(ty)g(to) < 1. Then g(t) exists
globally and 0 < g(t) < 1/7(t), for t > ty. Consequently, if lim;_,.. () = oo, then

COROLLARY 2.3. [9, Corollary 1]. Ler a(t), B(t) and y(t) be continuous func-
tions defined on [fy,*°) and a(t) 2 0 for all t >ty and p > 1. Suppose there exists a
function 7(t) >0, m € C}tg,), and 0 € (0,1) such that

_ 7' (t) 1-6 7' (t)
0< <OnP! — , and < — — .
() <0 1() v~ T | ana o) < 7 v - T
Let g(t) > 0 be a solution to inequality (1.7) such that 7(ty)g(to) < 1. Then g(t) exists
globally and 0 < g(t) < 1/7(¢), for t > ty. Consequently, if limy_.. 7T(t) = oo, then
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Now, we consider the case when T = N, and establish some criteria for the
inequality (1.8). Before we do this we should note that if we use the substitution
Ag(n) =g(n+1)—g(n), then (1.8) becomes

gt 1) < gy ¢ 20 )

gf(n), for n=ny, (2.14)

S 14y(n) I1+y(n) 1+y(n)
which is the same inequality that has been considered in [9, inequality (40)], with 1 —
y(n) is replaced by %;(n)’ B(n) is replaced by IE%) and o(n) is replaced by 1?-%7)
Also if we put Ag(n) = (g(n+1) — g(n)) /hy,, then (1.8) becomes
Ynhn hnB (}’l) hna(n)
1)< P(n), > no, 2.15
st DS T8 W T Ty T Ty ® ) for nzme, o @15)

which is the same inequality that has been considered in [9, inequality (30)]. The
following results are different from the results established in [9] for the difference in-
equalities (2.14) and (2.15) in the sense that our results do not require that 0 < y(n) < 1
and 0 < h,y(n) < 1 respectively.

THEOREM 2.4. Let a(n), B(n) and y(n) be nonnegative sequences and p > 1.
Suppose there exists a sequence m(n) > 0, for n > ng such that
o 1 m(n+1
() Ly F D
wP(n) ~ mwn+1) 7(n)

B(n)+

Let g(n) = 0 be a solution to inequality (1.8) such that m(ng)g(no) < 1. Then g(n)
exists globally and 0 < g(n) < 1/m(n), for n > ng. Consequently, if lim,,_... 7T(n) = oo,
then lim,_,.. g(n) = 0.

COROLLARY 2.4. Let o/n), B(n) and y(n) be nonnegative sequences and p >
L. Suppose there exists a sequence m(n) > 0, for n > ngsuch that

7P (n) w(n+1)
7t 1) [1”(”)‘ =0 ]

0<a(n)<06

and Lo (11 1)
- t(n+
1) ——— |1 -
BO) < s |17l Tt
Let g(n) > 0 be a solution to inequality (1.8) such that m(ng)g(no) < 1. Then g(n)
exists globally and 0 < g(n) < 1/m(n), for n > ng. Consequently, if lim,,_... 7T(n) = oo,
then lim,,_... g(n) = 0.

} , where 0 € (0,1).

Next, we consider the case when T = qN , and establish some criteria for the quan-
tum inequality (1.9).

THEOREM 2.5. Let o/(n), B(n) and y(n) be nonnegative sequences defined on
T = 4" and p > 1. Suppose there exists a sequence n(n) >0, for n = ngy such that

i+ 2« L [yt - )]

7(qn) m(n)
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Let g(n) > 0 be a solution to inequality (1.9) such that ©(ng)g(no) < 1. Then g(n)
exists globally and 0 < g(n) < 1/m(n), for n > ny. Consequently, if lim, ... T(n) = oo,
then lim,_,. g(n) = 0.

COROLLARY 2.5. Let a(n), B(n) and y(n) be nonnegative sequences defined
on T =g and p > 1. Suppose there exists a positive sequence n(n) >0, for n > ng,
such that

72 (n)  n(gn)
0<alm) <07 {1 IR ] :

and

1 -0 _n(qn) where
B(t)gn(qn)[l—ky(n) n(n)}’ here 0 € (0,1).

Let g(n) > 0 be a solution to inequality (1.9) such that ©(ng)g(no) < 1. Then g(n)
exists globally and 0 < g(n) < 1/m(n), for n > ng. Consequently, if lim,,_... 7T(n) = oo,
then lim,_... g(n) = 0.

REMARK 1. The other results on the time scales T =hT, T =N? = {t2 it e
N}, To={v/n:neNo}, Ts={/n:n €Ny}, and when T=T, = {t, : n € No} can
similarly be stated. There are, however, no new principles involved. Note that if
T=N?={2:1c N}, then 6(r) = (Vi +1)? and u(r) = 1 +2v/, g2(r) = Apg(t) =
(g((Vi+1)?)—g(t)) / (1+2/), and (1.3) becomes the difference inequality

Aog(t) < B(t) —y(0)g((Vi+1)?) +a(t)gP(¢), fort > 1. (2.16)

If T=T, = {t,: n € N} where H, be the so-called harmonic numbers defined by
t0=0, t, = ¥{_, (1/k), n € Ny, then 0 (ty) = ty11, U(tn) = 57, 8(1) = Ay, 8(tn) =
(n+1)Ag(t,) and (1.3) becomes the inequality

A, g(t) < B(tn) = ¥(tn)8(tnr1) + 0c(tn) 8" (1n)- (2.17)

If T=Ty={yn:ne€Ny}, then 6(t) = Vn2+1 and u(n) = vVn2+1-n, gh(t) =
Ag(n) = (g( n2+1) —g(n)> / (\/n2+ 1 —n), and (1.3) becomes

Atg(n) < B(n) —y(n)g(Vn? +1) + a(n)g" (n). (2.18)

If T=Ts={Yn:necNy}, then 6(n) = Vn3+1 and u(n) = Vn3+1—n, g’(n) =
Asg(n) = (g( Vnd+1) —g(n)) / (\/3 n?+1 —n) , and (1.3) becomes

Asg(n) < B(n) = y(n)g(V/n® + 1)+ a(n)g" (n). (2.19)

In the following, we consider the case when p = (A +1)/A where A is a ratio
of odd positive integers, o(z) < 0, and assume that the solution of (1.3) exists for all
t 2 t9. In this case the inequality (1.3) reduces to

A+l

wA(t) <b(t) = 8()w 7 (1), (2.20)

where w(t) := g(t)ey(t,20) and b(t) :=ey(t,19)B(t),and §(t) := —a(t)e,

=

(¢,80) > 0.
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THEOREM 2.6. Assume that (H) holds, p = (A +1)/A where A is a ratio of
odd positive integers and o(t) < 0. Assume that there exists a positive rd -continuous
function ¢ such that ¢*(t) > 0. If ¢(t9)g(to) < 1, then a solution g(t) of (1.3) satisfies

1 1
00)er () | der(ti) J

Al (¢A(s))/l+l
O DA g(t)ey(t,10) /lo (8(s)po)*

Proof. Multiplying (2.20) by ¢°(¢), and integrating from #y to ¢, we have

/t(:qbc(s)wA(s)Asg/mt(})c( As—/ S(s %

Integrating the left hand side by parts, we have

0()w(0) < Blipwlin) + [ 67 (b(5)As

4 Atl
+/¢A As—/5 w A (
]

— 9(10)g(t0) + / 9°b(s)As

¢°b( JAs

g(t) <

As.

0(t0)g l0+/¢

- [(])A(s)w(s) —6(s)¢6(s)wlai(s)} As.

]

Applying the inequality (with A > 0) Bu —Au/lL < #B v by setting B =
d2(s), A= 58(s)9°(s) and u = w, we have
A 7L+1
s
<1+/¢ As+ Ty (P())
(3(s)9°)

where ¢(29)g(tp) < 1. This implies that

L L % R0

W) < g+ g L, 0T ORS s Oy
So that
O] q>(><>
S 90ert0) T oWertio)
A,A ((PA(S))AJFI )
+(/1 + D) H10(t)ey(1,10) /to (5(s)¢"(s)))LA ’
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which is the desired inequality. The proof is complete. [
As a special case of Theorem 2.6, if ¢(¢) = 1, we have the following result.

COROLLARY 2.6. Assume that (H) holds, p = (A +1)/A where A is a ratio of
odd positive integers and o(t) < 0. If g(to) < 1, then a solution g(t) of (1.3) (if it is
global) satisfies

2t < — ! / ey (5.10)B(5)As.

< +
ey(t,00) — ey(t:10) Jrg
In the following, we consider the inequality

1
g*(1) < B(1) —v(1)g (1) + ex(1)g7 (1), forallt € [tg,0)r, (2.21)
where ¢ > 1 and provides an explicit bound to the unknown function g(z). Note that
when y(r) = 0, then (2.21) becomes
1
(1) <B(t)+a(t)gi(r), forallz € [tg,o)r, (2.22)
which is different from (1.1) and has not been considered before in the literature.

THEOREM 2.7. Assume that o, Band y are real valued rd -continuous positive
functions defined on [ty,°)1. If g(t) is a solution of (2.21), then g(t) satisfies
t
8(0) < glto)enc 1,10) + —— [ es(t,0(5)K(5)As, for all 1 € 10, ),
eY(tvtO) to
_ By
where BOy = Ty
1—q

B(t) : = b(1) +d(r)%1k$, K(r) = éd(z)k 7 forany k>0,

1—

b(t) : = ey(t.10)B(t) and d(t) = alt) (ey(t,10))" 7 > 0.

Proof. Let w(t) := g(t)ey,(,19) and proceed as in the proof of Theorem 2.1 to get

WA(r) < b(t) +d(t)wi (1). (2.23)
Using the inequality ([14, Lemma 2]), since ¢ > 1,

11 14 q—1

1
wi < —ka w+ k4, for any k > 0,
q

we see that

wh(t) < b(t) +d(r) <équqw+ q; lk}f) =B(t) +K(t)w(t).

Using the inequality (1.2), we have

w(t) < w(to)ep(t,t) +/tt ep(t,0(s))K(s)As, forall t € [fy,o°)T.
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From this and w(z) := g(t)ey(t,%), we have

ep(t,t 1
5(1:00)
ey(t7t0) eY(t7t0

2(t) <(to) )lﬁﬂnd@mmm&ﬁnmzem@m,

which is the desired inequality. The proof is complete. [

COROLLARY 2.7. Assume that o, B and y are real valued rd -continuous posi-
tive functions defined on [tg,~)r. If g(t) is a solution of (2.22), then g(t) satisfies

l1-q

k a

g(t) < glto)ep(t,10) + /t ep(t,0(s))o(s)As, forallt € [fy,°°)T,

fo

where

B() = Bl1) + ("‘

In the following we consider the inequality (1.6) on a time scale T which is un-
bounded above, and establish the lower bound of its solution g(r) when g(#o) # 0.

11
k‘li) o(t), forany k > 0.

THEOREM 2.8. Assume that o, B and y are real valued rd -continuous positive
functions defined on |[ty,°)T, and p > 1 is a constant and y € Z. If g(t) is a solution
of (1.6) then g(t) satisfies

o(1) > Sl)ee(t: )
ey(t,1)
where

Q1) = p(p—1)"/771a! /P (0)p! =1/ r).
Proof. Let w(t) := g(t)ey(t,%). Using the product rule in (1.4), we have

wh(t) = g2(t)ey(t,t0) +y(1)g% ey (t,10).

This and (1.6) imply that

wh(1) = ey(1,10) [B(r) = v(1)8 () + cx(t)g” (1)] + ¥(1)g ey (¢, 10)
= ey(t,20)B(1) = y(t)ey(t,10)8% (1) + cx(t)ey (,10)8" (1) + v(1)g ey (2, 10)
= ey(1,10) (1) + a(t)ey(t,10)g" (1)
= b(t) +a(t)w (1), (2.24)
where
b(t) :=ey(t,10)B(t) and a(t):=a(r) (ey(t,to))lip > 0. (2.25)

Using the fact that the function (where a and b be as defined in (2.24))

b
Gw) =aw" ' =,
w
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satisfies
1 1
Gw) = y(y—1)7 'a?p'""" for y>landw >0,

we see that
aw? +b > p(p— 1)1/1’71611/1’17171/1%7 where p > 1.

This and (2.24) imply that
wA() = p(p— 1)1 P ()b VP (0w = Q()wir).
This implies that
wh (1) — O(1)w(t) > 0.

Using the product rule and the properties pS g = ﬁ ,and ©(6¢q) = ¢, we see that

(w(t)eap(t,10))™ = w*(1)ecg(0(1),10) +(SQ()w(t)eco(t,10)

o0(1)
T Riegm)

= (W) = wi)(& (50(1)))) eco(o(1);10)
= (w0 — 0()w(r) ) eco(0(r).10) >0,

= WA(t)e@Q(O'(t),to) +w(?)

where eqg(0(t),%) > 0. This implies after using the fact that m =ep(t,t0) ([5,

Theorem 2.36]) that :

() > S —wt)elio)

From this we see that
g(to)eo(t,10)
g(t) >
eY (t ) tO)

which is the desired inequality. The proof is complete. [

3. Applications
In this section, we apply the results on some different continuous and discrete

inequalities which has been used in studying the large time behavior of solutions to
evolution equations.

EXAMPLE 1. Consider the nonlinear dynamic evolution equation
uh1) = A(t)u® +h(t,u) + f, u(to) = uo. 1 € [tg,%), 3.1)

where T is a time scale, and u : T —H, H is a Hilbert space, A is a linear dynamic
operator function in H, and % : T x H — H is a nonlinear dynamic operator, and f :
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T —H. Without specifying here all the assumptions on A, & and f, let us assume that
p>1,

Re (Au®,u) < —y(t) [u”|I*, Re (h(t,u),u) < oc(t) [l 1, @0 < BO). (B2)
We note that if T = R, the equation (3.1) becomes the evolution equation
W (t) =A@ u+h@,u)+f, ulto) =uo,t>1to. (3.3)
If T =N, then (3.1) becomes the discrete evolution equation
Au(n) = A(n)u(n) + h(n,u(n))+ f(n), u(ng) =up, n = ny. (3.4)

Multiplying (3.1) by u, we have
<uA,u> = (Au®,u) + (h,u) + (f,u).

Using the assumptions in (3.2), denoting |u(t)|| = g(¢) and assuming that g*(¢) =
(u®,uy, we have

g*(r) < —y(1)g°(r) + (1) (r) + B(1), p> 1.

Theorem 2.1 is directly applicable, and under the assumptions of Theorem 2.1 by dif-
ferent choice of the functions one can obtain the global existence of solutions and an
estimate of its large time behavior.

EXAMPLE 2. Consider the iterative process (see [16, Theorem 2])
Upi] = Uy — hnTazl[A*(un)F(un) + an(up —z)], u(0) = uo,

where A, >0 and a, > 0. We apply Theorem 2.4 and establish a sufficient condition on
ap and h, which guarantee that the sequence u,, converging to y, where y is a solution
of the equation F'(u) = 0, where F : HH —H be a map in a Hilbert space, such that

F'(y) # 0 and Sup,cp(u0 p) HFU’)(M)H <M;(R), j=0,1,2 and R > 0. Let w, =ty — y
and g(n) := ||wy|| and proceeding as in [16, Theorem 2] to get

hn COhn 2
1 < 1—— nln 5 = - . .
st 1)< (15 ) s+ L2 +han vl zo=lwo—sl- G

Putting g(n) = g(n+ 1) — Ag(n), we have form (3.5) that

Ag(n) < —y(n)g(n+1) + a(n)g*(n) + B(n), (3.6)
where , - .
e s e e AU =
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Assume that there exists a positive sequence 7(rn) such that g(ng)m(ng) < 1 and

2hpay || V| 2cohy, o1 2 m(n+1)
2—hy  m(n)2—hy)a,  wn+1) [2—hy)  7(n)

Then g(n) exists globally and 0 < g(n) < 1/m(n), for n > ng. Consequently, if
lim, . (1) = oo, then lim,_.. g(n) = 0. So by Theorem 2.4, we see that if there exists
a positive sequence 7(n) such that g(ng)m(ng) < 1, (3.7) holds and lim,—.. 7w(n) = oo,
then limy, e ||u, —y|| = 0.

3.7

ExXAMPLE 3. Consider the iterative process of ill-posed equation with monotone
operators ([15, Theorem 3.1])

Up+1 = Up — hn[A(un) +an}_l[B(un) + anity _.ﬂ’ M(O) = Uo,

where £, > 0 and a, > 0. We apply Theorem 2.4 and establish a sufficient condition
on a, and h, which guarantee that the sequence u, converging to the minimal norm
solution y, where y is a solution of the equation B(u) — f =0, where f € H and B is a

monotone, nonlinear Clzm_ operator in a real Hilbert space H, sup,cp(,, r) H BY(u H <

M;(R), j=0,1,2 and R > 0 is arbitrary, B(uo,R) = {u: |lu—up|| < R}, BY

the Fréchet derivative and the set N := {z: B(z) — f = 0} is non-empty, and y is 1ts
minimal-norm element. Let w, = u,, —y and g(n) := ||wy|| and proceeding as in [15,
Theorem 3.1] to get

Chn 2

gn+1) < (1 —hy)g(n) +—g (n) +b(n), go= lluo—yl, (3.8)

where 0 < h(n) < 1, b(n) = ||Vu41—Val|, where V, is a solution of the equation
B(V,) +a,Vo— f =0, a, > 0. Putting g(n) = g(n+ 1) — Ag(n), we have form (3.8)

that
chy,

an(1—nhy)

& (n) + b(n) (3.9)

A < -
g(n) -

l—h gn+1)+

Assume that there exists a positive sequence 7(n) such that g(ng)m(ng) < 1, and

b(n) chy 1 1 n(n+1)
i a2 (=t Sams D) 1=k a(n)

(3.10)

Then g(n) exists globally and 0 < g(n) < 1/m(n), for n > ny. Consequently, if
lim, e, (1) = o, then lim, ... g(n ) 0. So by Theorem 2.4, we see that if there exists
a positive sequence 7(n) such that g(ng)m(ng) < 1, (3.10) holds and lim, .. w(n) =

then limy, e ||u, —y|| = 0.

EXAMPLE 4. Consider the iterative process (see [16, Section 4])

Up+1 = Up— hnTazl[A*(Un)(F(vn) —f5) +an(v, — Z)]? Vo = U,
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which is the iterative of the dynamical equation F (1) = f, where f is unknown and the
noisy datum fg is known such that ||f5 — f|| < 8. Letting wy, := v, —y, |[w(n)|| := gn,
and proceeding as in [16], we have the inequality

g(n+1) <y(n)g(n) +pg*(n) +B(n). go=luo—yl, (3.11)
where 0 < y(n) <1, p>0and B(n) = %. Putting g(n) = g(n+1) — Ag(n), we

have form (3.11) that

agln) <~ L=V 1y g Py 4 P

¥(n) ¥(n) y(n)
Theorem 2.4 is directly applicable on (3.12), and show that if there exists a sequence
n(n) > 0, for n > ngy such that

h(n)d p yin) [ 1 =mn+1)
2a@w | ww) S wnt D) [ J

y(n)  7(n)
and g(ng) < 1/m(ng), then g(n) exists globally and 0 < g(n) < 1/7(n), for n > ny.
Consequently, if lim,_,. 7T(n) = oo, then lim,_...g(n) = 0. Note that the results do not
require that /(n) is a constant as proposed in [16]. This proves that if (3.13) holds, then
lim, . ||Uy —y|| = 0. Note that the result is different from the result in [16, Theorem
4] in the sense that we do not assume that the function a(n) = 16c(%g,%, which depends
on the solution g, .

(3.12)

(3.13)

EXAMPLE 5. Consider the Sine-Gordon nonhomogeneous equation of the form

2
a l(,;g.;’t) —a(z)Au(x,t)—l—qsinu:(])(t), (.X,l) EQXRJr:G, (314)

where Q = (a,b), abounded interval, g is a constant, u(z) satisfies the Dirichlet bound-
ary conditions and initial condition

du

u=0, on(x1)€ (a,b) xR, (u(x,0), =

(x,0)) = wo(x,0), x € [a,b].

Set H = L*(Q) and assume that N is globally bounded and globally Lipschitz contin-
uous. Define the operators A, R and N by

1= (b)) () (2)- )

So that the evolution equation of (3.14) can be written as

dw
2 — Awe) + ROw(0) + 911),
where w = (u,u’). Again Theorem 2.2 is directly applicable if one can choose the
coefficients as in Example 1.
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EXAMPLE 6. Consider the nonlinear delay hyperbolic equation
9%u(x,t)

or?
where Q is a bounded domain in R", n > 1, with a piecewise smooth boundary dQ,

and Au is the Laplacian in R", a € C(R1,R;), g € C((_},R+), g(r) <1, such that
g'(r) <0,and f € C(R,R) is convex in Ry, uf(u) >0 and f(u)/u >k >0 for u#0.
We consider (3.15) with the boundary condition

Jdu(x,1)
oON

=a(t)Au(x,t) — q(t) f(u(x,g(t))), (x,1) € Ax Ry =G, (3.15)

=0, on (x,1) € QX R4, (3.16)
where N is the unit exterior normal vector to dQ and y is a nonnegative continuous
function on dQ X R, . Integrating (3.15) with respect to x over the domain Q, we have
d2
" / w(x,1)dx = a(7) / Aux,1)dx — / g fulxg))dx  (3.17)
Q Q Q
Using Green’s formula and (3.16), we have

/Au(x,t)dx: mt) jo 0, 150 (3.18)
N '
Q 0Q

where dS is the surface element on dQ. Using Jensen’s inequality (where f is a convex
function), we have

[aswivg)dx>q) [ar | [uteg@as/ [ax ] iz0. G19)
Q Q Q

Q

Therefore, from (3.17)-(3.19), we have

"

U (t)+4q(0)f(U(g(t)) <0, t =1, (3.20)

where / /
U@t)= [ u(x,t)dx/ | dx, t>1. (3.21)

Q Q

Without loss of generality, we assume that u(x,7) > 0, and u(x,7) € Q X (fg,°°), (1 >
0). It follows that U(¢) >0, U'(t) >0 and U" (t) <0 for 1 > 1. Set

>0, fort>1. (3.22)

From (3.20) and (3.22), we have

W (1) < B(t) —y(O)w(t) + a(t)w?(r), forr>1, (3.23)
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where B(t) = —kp(t)q(t), y(t) = —% and a(t) = —g'(t)/p(t) > 0. Suppose there

exist two function p(t) and 7(t), p, m € C'[ty,), such that

J0 1 [P 7
~ke 4= S S 70 el w1l |

assume that such that m(f)w(fp) < 1. Then by Theorem 2.3, w(t) exists globally,
0 <w(t) <1/n(r), and consequently, if lim;_.., 77(¢) = oo, then limy_.. w(t) = 0.
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