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SHARP BOUNDS FOR SEIFFERT MEANS
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Abstract. In this paper, we establish two sharp inequalities as follows: P(a,b) > L 1 (a,b) and

1
5
T(a,b) <L, (a,b) for all a,b >0 with a # b. Here, L.(a,b), P(a,b) and T(a,b) are the
3

Lehmer, first and second Seiffert means of a and b, respectively.

1. Introduction

For r € R and a,b > 0, the Lehmer mean L, (a,b) was introduced by Lehmer [1]
as follows:

r+1 br+1
@ o (1.1)
a’ +b"

It is well known that L,(a,b) is increasing with respect to r € R for fixed a and
b. Many means are the special cases of Lehmer mean, for example,

L.(a,b) =

A(a,b) = 4L = Ly(a,b)
G(a,b) =ab=L

! (a,b) is the geometric mean,

is the arithmetic mean,

243 =L-1(a,b) is the harmonic mean.

Investigation of the inequalities between Lehmer and other means has attracted the
attention of a considerable number of mathematicians [2-5].

The first and second Seiffert means P(a,b) [6] and T (a,b) [7] of two positive
numbers a and b are defined by

#7 a b,
P(a,b) = { darctan(/) 7 # (1.2)
a, a=b
and

N

a—b a
T(a,b) = { 2arctan(z+;Z)’

a, a=

(1.3)
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respectively.

Recently, both means P and 7 have been the subject of intensive research. In
particular, many remarkable inequalities for P and T can be found in the literature
[7-11]. The first Seiffert mean P(a,b) can be rewritten as (see [10, Eq.(2.4)])

P(a,b)z{m “rb (1.4)

a, a=h.

The power mean of order p of the positive real numbers a and b is defined by

My(a,b) = \(/ai;rb"> 7&8
ab, p=0.

The main properties of the power mean M, are given in [12]. In particular,
Mp(a,b) is continuous and strictly increasing with respect to p € R for fixed a and
b with a #b.

Let

I(a,b) = {g(ﬁ—b)” ot

and

L(a,b) = { g iogar P # @

a, b=a

be the identric and logarithmic means of two positive numbers a and b, respectively.
Then it is well known that

min{a,b} < H(a,b) = L_i(a,b) = M_,(a,b) < G(a,b)
= Li% (a,b) = My(a,b) < L(a,b) < I(a,b) < A(a,b) (L.5)
= Lo(a,b) = M (a,b) < max{a,b}

forall a,b >0 with a#b.
In [6], Seiffert proved that

L(a,b) < P(a,b) < I(a,b) (1.6)

forall a,b >0 with a#b.
Alzer [4] established that

I(a,b) > L,%(Chb)

forall a,b >0 with a#b.
Seiffert [7] obtained the power mean bounds for the second Seiffert mean 7 as

follows:
M (a,b) < T(a,b) < Mp(a,b) (1.7)

for all a,b > 0 with a # b.
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The following bounds for the first Seiffert mean P in terms of power means are
proved by Histo [8]:
Mlloigz (a,b) < P(a,b) < M% (a,b)
og T
forall a,b >0 with a#b.
The purpose of this paper is to present the optimal upper and lower Lehmer mean
bounds for the first and second Seiffert means.

2. Main Results
THEOREM 2.1. Inequality L7% (a,b) < P(a,b) < Ly(a,b) holds for all a,b >0
with a # b, and L_% (a,b) and Lo(a,b) are the best possible lower and upper Lehmer
mean bounds for the first Seiffert mean P(a,b).
Proof. From (1.1) and (1.4) we clearly see that both L,(a,b) and P(a,b) are

symmetric and homogeneous of degree 1, without loss of generality, we assume that
a>b=1.Lett=Ya>1.Then (1.1) and (1.2) give

1 41) s (t+D(E-1)
Pla,b)—L b)=— 4arctans® — ———— 7.
(a,5) —é(a’ ) (4arctant3—7'c)(t+l)[ aretan 3 +1) d
(2.1)
Let .
r+1)(°—1)
) = darctans’ — X DE=D 2.2
£l6) = daretant® — == S (2.2)
then simple computations yield that
lim f(r) =0 (2.3)
11—
e (1= 1)+ )2 o4 1)
, =D+ 121+ 1
t)=— t 24
f() t2(l‘5+1)2([6+1) fl( )7 ( )
where
file) =104 438 147 500430 — 514 443 132+ 141
=10t + 34302 = 5) 443 43t —5) 43+ 3 e+ 1 (2.5)
>0
forall r > 0.

Therefore, P(a,b) > L_ ! (a,b) follows from (2.1)—(2.5).

On the other hand, P(a,b) < Ly(a,b) follows from (1.5) and (1.6).

Next, we prove that L _ 1 (a,b) and Ly(a,b) are the best possible lower and upper
Lehmer mean bounds for P(a,b).

For any € > 0 and x > 0, from (1.1) and (1.2) one has

o) — . 81(x)
L_%+8(1,1—|—) L1+ (4arctan\/x+l—n)[l—i-(x—i-l)’é*g} (26)
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and
P(l,x) . x—1

— lim — = je 2.7
oL o (Lr)  sode D) T 27

where g1(x) = [1+ (x-+ 1)3+¢] (4arctan Vx+T— ) —x{1 + (x-+ 1) ++¢].
Let x — 0, making use of the Taylor expansion we get

gi1lx) = [2+ <%+8>x+ (%—f—g) (%‘%) x2+o(x2)} [x— %x2+27—4x3+0(x3)

_x [24— (s— é)m— (g— %) (g _ %)x2+0(x2)]
= %€x3+o(x3). (2.8)

Equations (2.6) and (2.8) imply that for any € > 0 there exists d; = 6;(¢) > 0,
such that L7%+(9(17 1+x) > P(1,14x) for x € (0,01).

Equation (2.7) implies that for any € > 0 there exists X; = X;(¢) > 1, such that
P(l7x)>L—£(l7X) fOI'xG(Xhoo)' O

THEOREM 2.2. Inequality Ly(a,b) < T(a,b) < L%(a,b) holds for all a,b >0
with a # b, and Ly(a,b) and L% (a,b) are the best possible lower and upper Lehmer
mean bounds for the second Seiffert mean T (a,D).

Proof. From (1.1) and (1.3) we clearly see that both L,(a,b) and T(a,b) are

symmetric and homogeneous of degree 1, without loss of generality, we assume that
a>b=1.Lett=+/a>1.Then (1.1) and (1.3) give

41 B—-1)(t+1 -1
T(a,b)— L, (a,b) — L DAY etan (2.9)
3 Z(t—l—l)arctanﬁ " +1 r°+1
Let 3 3
(P =1)(r+1) -1
gt)= sl 2 arctan T (2.10)
then simple computations yield that
limg(r) =0, (2.11)

t—1

(t—D* P41 +1)
(t*+1)2(t°+1)

g1 =— (O +30 49+ 1203 + 92 +3r+1) <0 (2.12)

fort > 1.
Therefore, T (a,b) < L% (a,b) follows from (2.9)—(2.12).

On the other hand, T'(a,b) > Ly(a,b) follows from (1.5) and (1.7).
Next we prove that Ly(a,b) and L 1 (a,b) are the best possible lower and upper

Lehmer mean bounds for T'(a,b).
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For any € > 0 and x > 0, from (1.1) and (1.3) one has

T(1,14+x) —L;_(1,1+4x) = 82(4) (2.13)
3 2[1+ (1 +x)3~¢arctan 51
and »
Le(1 € 1
fim L) o 0T AD m (2.14)
x—too T(l,x)  x—te2(xf+1)(x—1) 2
where g>(x) = x[1 + (1 +x)3178] —2[1+(1 +x)§’g] arctan 3.
Let x — 0, making use of the Taylor expansion we get
1 1-3¢)(2+3
o) =x|24+(5—c¢ x_wxh_o()g)
3 18
1 1 4 4—-3¢)(1-3
—x[1—§x+ 6x2—|—0(x2)} [2—!— <§—8)x—|——( gl)é 8)x2—|—0(x2)
1
= —8x3—|—0(x3). (2.15)

2

Equations (2.13) and (2.15) imply that forany 0 < € < % , there exists 6, = & (&) >
0 such that T(1,1+x) > L%_e(l, 1+x) for x € (0,5,).

Equation (2.14) implies that for any € > 0 there exists X, = X5(&) > 1, such that
Le(1,x) > T(1,x) for x € (Xp,00). O
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