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TWO NEW INEQUALITIES FOR

GAUSSIAN AND GAMMA DISTRIBUTIONS

XIAO-LI HU

(Communicated by J. Pečarić)

Abstract. Two new inequalities regarding Q function and incomplete upper bound Gamma func-
tion are established, which are related to Gaussian and Gamma distributions respectively.

1. Introduction

Let us introduce some notations first. Assume that f (·) is a probability density
function with an interval support [a,b] , and F : [a,b] → [0,1] its corresponding dis-
tribution function. The corresponding reliability function or the survival function is
defined by F(x) = 1−F(x) =

∫ b
x f (t)dt . A function g(x) is logarithmically concave

(or log-concave for short), if its natural logarithm ln(g(x)) is concave. It is found in
[1] that if a continuously differentiable density function, with support [0,+∞) , is log-
concave, then for all ∀x,y � 0, we have

F(x+ y) � F(x)F(y). (1)

Moreover, if f is log-convex, then the above inequality is reversed.
Two typical distributions possessing property as (1) are Gamma distribution Γ(k,x)

and complementary error function erfc(x) , which is given as

Γ(k,x) =
∫ ∞

x

tk−1e−tdt
Γ(k)

, erfc(x) =
2√
π

∫ ∞

x
e−t2 .

Here Γ(k,x) is also called upper incomplete gamma function. It is also shown in [1]
that such property holds for Weibull distribution, chi-squared distribution and chi dis-
tribution as well.

On the other side, the reverse inequality of (1) would rarely be occurred, since
the general distributions are nearly all log-concave. It is the purpose of this paper to
consider the reverse inequality of (1) at a special angle, i.e., even if (1) holds for a
distribution, it is still possible to find a suitable parameter a such that

F
2
(x) � F(ax). (2)
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Obviously, (2) holds at least for a = 1, since F(x)∈ [0,1] . It seems difficult to consider
(2) for general distributions. As a starting point, here we study the corresponding in-

equality (2) for Gaussian Q function, i.e., Q(x) =
∫ ∞
x

1√
2π

e−
t2
2 , and upper incomplete

gamma function respectively.
The main results of this paper are listed as following:

THEOREM 1.1. Suppose that 1 � a �
√

2 , then for ∀x ∈ R

Q2(x) < Q(ax), (3)

where Q(x) =
∫ ∞
x

1√
2π e−

t2
2 .

THEOREM 1.2. Suppose that k > 1 and 0 � a � 2
1
k , then for ∀x > 0

Γ2(k,x) < Γ(k,ax), (4)

where Γ(k,x) =
∫ ∞
x

1
Γ(k) t

k−1e−tdt . On the other side, if k ∈ (0,1] , inequality (4) holds

for 0 � a < 2
1
k and ∀x > 0 .

REMARK 1.1. For a ∈ [0,1) in Theorem 1.1, the inequality (3) still holds for
x > 0 in view of the monotonicity of Q(x) .

If k = 1 in Theorem 1.2, by the fact that Γ(1,x) =
∫ ∞
x e−t dt = e−x , we know that

Γ2(1,x) = Γ(1,2x) .

2. Proofs for Main results

Proof of Theorem 1.1. By the fact 0 � Q(x) � 1, (3) holds naturally for a = 1.
Notice further that Q(x) decreases as x increases, it is sufficient to prove (3) for a =√

2.
Define ψ(x) = Q2(x)−Q(

√
2x) . Clearly,

lim
x→−∞ψ(x) = 0, lim

x→+∞
ψ(x) = 0, (5)

and

ψ ′(x) = −2Q(x)
1√
2π

e−
x2
2 +

√
2√
2π

e−x2

=
1√
2π

e−x2
(√

2−2Q(x)e
x2
2

)

Δ=
1√
2π

e−x2
ψ1(x). (6)

Let us study ψ1(x) first. Obviously, ψ1(0) =
√

2− 1 > 0. By the facts that

Q(−∞) = 1 and e
x2
2 −−−−→

x→−∞ +∞ , we have limx→−∞ψ1(x) = −∞ . Notice further the
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monotonicity of Q(x) and e
x2
2 as x → −∞ , the sign of function ψ1(x) changes once

from negative to positive as x moves from −∞ to 0.
It is left to consider the sign of ψ1(x) when x > 0. By the following inequality

Q(x) <
1

x
√

2π
e−

x2
2

for x > 0, we derive

Q(x)e
x2
2 <

1

x
√

2π
.

Hence, for ψ1(x) > 0, it is sufficient to require

√
2− 2

x
√

2π
> 0,

which is equivalent to x > 1√
π . This means ψ1(x) > 0 for x > 1√

π . Now only the case

for 0 < x � 1√
π is left. This can be analyzed directly as following: for 0 < x � 1√

π ,

ψ1(x) >
√

2− e
x2
2 �

√
2− e

1
2π = 1.4142 · · ·−1.1725 · · ·= 0.2417 · · ·> 0.

Here the approximating calculation in the last step is carried out by Matlab.
In conclusion, ψ1(x) changes its sign once from negative to positive as x moves

from −∞ to ∞ . Thus, by (6), ψ ′(x) change from negative to positive as x moves
from −∞ to ∞ , and the sign changes only once. This means ψ(x) has only one local
minimum. Together with (5), the assertion follows directly. �

We need an upper bound for incomplete Gamma function Γ(k,x) to prove Theo-
rem 1.2. We refer to [2] for more details about this topic.

LEMMA 2.1. For k > 0 and x > k+1 ,

Γ(k,x) <
1

Γ(k)
xke−x. (7)

Proof. Define ϕ(x) = Γ(k,x)− 1
Γ(k)x

ke−x. Thus,

ϕ ′(x) =
1

Γ(k)
(−xk−1e−x − kxk−1e−x + xke−x) =

1
Γ(k)

(xk−1e−x(x− k−1)) > 0

for x > k+1. Together with the fact that limx→∞ ϕ(x) = 0, the inequality (7) follows
directly. �

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We divide the whole proof into two cases: (i) k > 1, and
(ii) k ∈ (0,1] .
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(i). The case k > 1. By the facts that x > 0 and Γ(k,x) ∈ [0,1] , it is sufficient to

prove (4) for a = 2
1
k . Clearly, 2

1
k ∈ (1,2) , and we use a instead of 2

1
k below for brief.

Define φ(x) = Γ2(k,x)−Γ(k,ax) . Clearly,

φ(0) = 0, lim
x→+∞

φ(x) = 0, (8)

and

φ ′(x) = −2Γ(k,x)
xk−1e−x

Γ(k)
+

a(ax)k−1e−ax

Γ(k)

=
2xk−1e−x

Γ(k)

(
e(1−a)x−Γ(k,x)

)

Δ=
2xk−1e−x

Γ(k)
φ1(x). (9)

We use the fact ak = 2 in the above second step. Clearly, φ1(0) = 0 and limx→∞ φ1(x) =
0. By Lemma 2.1, for x > k+1, we have

φ1(x) > e(1−a)x− 1
Γ(k)

xke−x = e−x
(

e(2−a)x− 1
Γ(k)

xk
)

, (10)

which means φ1(x) > 0 when x > x0 with a sufficiently large point x0 . Now let us
consider the derivative of φ1 below.

φ ′
1(x) = (1−a)e(1−a)x +

xk−1e−x

Γ(k)

= e−x
(

xk−1

Γ(k)
− (a−1)e(2−a)x

)
Δ= e−xφ2(x). (11)

We find that φ2(0) =−(a−1)< 0 and limx→∞ φ2(x) =−∞ . Due to the facts that φ1(x)
has positive value for x > x0 , starting at φ1(0) = 0, we know that its derivative φ ′

1(x)
must be positive somewhere between 0 and x0 , and thus for φ2(x) .

If k is a positive integer, then the (k−1)-th and k -th derivatives are

φ (k−1)
2 (x) = 1− (a−1)(2−a)k−1e(2−a)x,

φ (k)
2 (x) = −(a−1)(2−a)ke(2−a)x < 0.

Notice further that φ (k−1)
2 (0) = 1−(a−1)(2−a)k−1 > 0 and limx→∞ φ

(k−1)
2 (x) =−∞ ,

we know that φ (k−1)
2 (x) starts at a positive value and then decreases monotonically

to −∞ . This further means that φ (k−2)
2 (x) starts from a negative value to a positive

local maximum and then decreases monotonically to −∞ , and so on till φ ′
2(x) . Thus,

φ2(x) increases piecewise monotonically from φ2(0) < 0 to a positive maximum and
then decreases to −∞ . And then φ ′

1(x) changes its sign twice, i.e., from negative to
positive and then negative. Hence, φ1(x) decreases from 0 to a negative minimum and
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then increase to positive maximum and then decreases to 0. And this further holds for
φ ′(x) , which means the sign of φ ′(x) changes from negative to positive once. Finally,
we know that φ(x) decreases from φ(0) = 0 to a negative minimum and then increases
to 0. This means φ(x) < 0 as desired.

When k is not an integer, the [k]-th and ([k]+1)-th derivatives are

φ ([k])
2 (x) =

(k−1) · · ·(k− [k])xk−[k]−1

Γ(k)
− (a−1)(2−a)[k]e(2−a)x,

φ ([k]+1)
2 (x) =

(k−1) · · ·(k− [k]−1)xk−[k]−2

Γ(k)
− (a−1)(2−a)[k]e(2−a)x < 0.

Notice further that φ ([k])
2 (0) = +∞ and limx→∞ φ

([k])
2 (x) = −∞ , we know that φ ([k])

2 (x)
decreases monotonically from +∞ to −∞ as x moves from 0 to ∞ . The rest reasoning
is similar to the above case.

(ii). The proof for the case k ∈ (0,1] is similar. It is sufficient to consider

a ∈ (1,2
1
k ) by the monotonicity of Γ(k,x) . By the same definition of φ(x) , the same

assertions (8) follow. Observe that 1 < a < 2
1
k this time, we have different derivative

of φ as:

φ ′(x) =
xk−1e−x

Γ(k)

(
ake(1−a)x−2Γ(k,x)

)
Δ=

xk−1e−x

Γ(k)
ϕ(x),

and thus, φ ′(0) < 0 since ϕ(0) = ak − 2 < 0, and limx→∞ φ ′(x) = 0. By Lemma 2.1
and similar to (10), we also know φ ′(x) is positive for sufficiently large x . The rest
proof is nearly the same to the counterpart of case (i). �
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