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Abstract. For x = (x1,x2, · · · ,xn) ∈ R
n
+ , the symmetric function Fn(x,r) is defined by

Fn(x,r) = Fn(x1,x2 , · · · ,xn;r) = ∏
1�i1<i2 ···<ir�n

∑r
j=1 xi j

∑r
j=1(1+ xi j )

,

where r = 1,2, · · · ,n and i1, i2, · · · , in are positive integers. In this article, the Schur convexity,
Schur harmonic convexity and Schur multiplicative convexity of Fn(x,r) are discussed. As
applications, some inequalities are established by use of the theory of majorization.

1. Introduction

Throughout the paper we use R
n denote the n−dimensional Euclidean space, and

R
n
+ = {(x1,x2, · · · ,xn) : xi > 0, i = 1,2, · · · ,n} . In particular, we use R to denote R

1 .
For x = (x1,x2, · · · ,xn) , y = (y1,y2, · · · ,yn) ∈ R

n
+ and α > 0, let

x+ y = (x1 + y1,x2 + y2, · · · ,xn + yn),
xy = (x1y1,x2y2, · · · ,xnyn),
αx = (αx1,αx2, · · · ,αxn),
xα = (xα1 ,xα2 , · · · ,xαn ),
1
x

=
(

1
x1

,
1
x2

, · · · , 1
xn

)
logx = (logx1, logx2, · · · , logxn)

and
ex = (ex1 ,ex2 , · · · ,exn).
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For x = (x1,x2, · · · ,xn) ∈ R
n
+ , r ∈ N and r � n , the Hamy symmetric function

Hn(x,r) is defined by T. Hara, M. Uchiyama and S. Takahasi [1] as follows:

Hn(x,r) = Hn(x1,x2, · · · ,xn;r) = ∑
1�i1<i2<···<ir�n

(
r

∏
j=1

xi j

) 1
r

,

where i1, i2, · · · , in ∈ N.

Corresponding to this is the r− th order Hamy mean

σn(x,r) = σn(x1,x2, · · · ,xn;r) =
(n− r)!r!

n!
Hn(x,r).

T. Hara, M. Uchiyama and S. Takahasi [1] established the following refinement of
the classical arithmetic and geometric means inequalities:

Gn(x) = σn(x,n) � σn(x,n−1) � · · · � σn(x,2) � σn(x,1) = An(x),

where An(x) = 1
n ∑

n
i=1 xi and Gn(x) = (∏n

i=1 xi)
1
n denote the classical arithmetic and

geometric means of x , respectively.

The paper [2] by H. T. Ku, M. C. Ku and X. M. Zhang contains some interesting
inequalities including the fact that (σn(x,r))

1
r is log-concave. More results can be

found in the book [3] by P. S. Bullen.

Recently, the Schur convexity of the Hamy symmetric function Hn(x,r) was dis-
cussed and some analytic inequalities were established by K. Z. Guan [4].

The main purpose of this paper is to discuss the Schur convexity, Schur harmonic
convexity and Schur multiplicative convexity for the symmetric function

Fn(x,r) = Fn(x1,x2, · · · ,xn;r) = ∏
1�i1<i2···<ir�n

∑r
j=1 xi j

∑r
j=1(1+ xi j)

. (1.1)

As applications, some inequalities are established by use of the theory of majoriza-
tion.

For the reader convenience, we recall several definitions.

DEFINITION 1.1. Let E ⊆ R
n be a set, a real-valued function F on E is said to

be Schur convex if
F(x1,x1, · · · ,xn) � F(y1,y2, · · · ,yn)

for each pair of n -tuples x = (x1, · · · ,xn) and y = (y1, · · · ,yn) in E , such that x ≺ y ,
that is

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1,2, · · · ,n−1
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and
n

∑
i=1

x[i] =
n

∑
i=1

y[i],

where x[i] denotes the i th largest component in x . F is called Schur concave if −F is
Schur convex .

DEFINITION 1.2. Let E ⊆ R
n
+ be a set, a real-valued function F on E is said to

be Schur multiplicatively convex if

F(x1,x2, · · · ,xn) � F(y1,y2, · · · ,yn)

for each pair of n− tuples x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) in E , such that
logx ≺ logy . F is called Schur multiplicatively concave if 1

F is Schur multiplicatively
convex.

DEFINITION 1.3. Let E ⊆ R
n
+ be a set, a real-valued function F on E is said to

be Schur harmonic convex if

F(x1,x2, · · · ,xn) � F(y1,y2, · · · ,yn) (1.2)

for each pair of n− tuples x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) in E , such that
1
x ≺ 1

y . F is called a Schur harmonic concave on E if inequality (1.2) is reversed.

The Schur convexity was introduced by I. Schur [5] in 1923, G. H. Hardy, J. E.
Littlewood and G. Pólya were also interested in some inequalities that are related to the
Schur convexity [6]. Recently, the Schur multiplicative convexity was introduced and
investigated in paper [7, 8].

Very recently, the Schur harmonic convexity was introduced by Y. M. Chu and Y.
P. Lv [9], and the Schur harmonic convexity for the Hamy Symmetric function Hn(x,r)
was discussed. To investigate the Schur harmonic convexity for the symmetric function
Fn(x,r) is one of the main purpose in this article.

2. Lemmas

In order to establish our main results we need several lemmas, which we present
in this section.

LEMMA 2.1. ([5]) Suppose that f : R
n
+ → R+ is a continuous symmetric func-

tion. If f is differentiable in R
n
+ , then f is Schur convex in R

n
+ if and only if

(xi − x j)
(
∂ f
∂xi

− ∂ f
∂x j

)
� 0 (2.1)

for all i, j = 1,2, · · · ,n and x = (x1, · · · ,xn) ∈ R
n
+ . And f is Schur concave in R

n
+ if

and only if inequality (2.1) is reversed. Here f is a symmetric function in R
n
+ which

means that f (Px) = f (x) for any x ∈ R
n
+ and any n×n permutation matrix P.
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REMARK 2.1. Since f is symmetric, the Schur’s condition in Lemma 2.1, that is
(2.1) can be reduced to

(x1− x2)
(
∂ f
∂x1

− ∂ f
∂x2

)
� 0.

LEMMA 2.2. ([7, 8]) Suppose that f : R
n
+ → R+ is a continuous symmtric func-

tion. If f is differentiable in R
n
+ , then f is Schur multiplicatively convex in R

n
+ if and

only if

(logx1− logx2)
(

x1
∂ f
∂x1

− x2
∂ f
∂x2

)
� 0 (2.2)

for all x = (x1,x2, · · · ,xn) ∈ R
n
+ . And f is Schur multiplicatively concave in R

n
+ if and

only if inequality (2.2) is reversed.

LEMMA 2.3. ([9]) Suppose that f : R
n
+ → R+ is a continuous symmetric func-

tion. If f is differentiable in R
n
+ , then f is Schur harmonic convex in R

n
+ if and only

if

(x1 − x2)
(

x2
1
∂ f
∂x1

− x2
2
∂ f
∂x2

)
� 0 (2.3)

for all x = (x1,x2, · · · ,xn) ∈ R
n
+ . And f is Schur harmonic concave in R

n
+ if and only

if inequality (2.3) is reversed.

LEMMA 2.4. ([4, 8, 10]) Suppose that x = (x1,x2, · · · ,xn) ∈ R
n
+ and ∑n

i=1 xi = s.
If c � s, then

c− x
nc
s −1

=
(

c− x1
nc
s −1

,
c− x2
nc
s −1

, · · · , c− xn
nc
s −1

)
≺ (x1,x2, · · · ,xn) = x.

LEMMA 2.5. ([10]) Suppose that x = (x1,x2, · · · ,xn) ∈ R
n
+ and ∑n

i=1 xi = s. If
c � 0 , then

c+ x
nc
s +1

=
(

c+ x1
nc
s +1

,
c+ x2
nc
s +1

, · · · , c+ xn
nc
s +1

)
≺ (x1,x2, · · · ,xn) = x.

LEMMA 2.6. ([11]) Suppose that x = (x1,x2, · · · ,xn) ∈ R
n
+ and ∑n

i=1 xi = s. If
0 � λ � 1, then

s−λx
n−λ

=
(

s−λx1

n−λ
,
s−λx2

n−λ
, · · · , s−λxn

n−λ

)
≺ (x1,x2, · · · ,xn) = x.
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3. Main Results

THEOREM 3.1. Fn(x,r) is Schur concave in R
n
+ .

Proof. The proof is divided into four cases.
Case 1. If r = 1, then (1.1) leads to

Fn(x,1) = Fn(x1,x2, · · · ,xn;1) =
n

∏
i=1

xi

1+ xi
(3.1)

and

(x1 − x2)
(
∂Fn(x,1)
∂x1

− ∂Fn(x,1)
∂x2

)
= − (x1− x2)2(1+ x1 + x2)

x1x2(1+ x1)(1+ x2)
Fn(x,1) � 0.

Case 2. If r = n , then

Fn(x,n) = Fn(x1,x2, · · · ,xn;n) = ∑n
i=1 xi

∑n
i=1(1+ xi)

(3.2)

and

(x1− x2)
(
∂Fn(x,n)
∂x1

− ∂Fn(x,n)
∂x2

)
= 0.

Case 3. If n � 3 and r = 2, then

Fn(x,2) = Fn(x1,x2, · · · ,xn;2)

= Fn−1(x2,x3, · · · ,xn;2)
(x1 + x2)∏n

j=3(x1 + x j)
[(1+ x1)+ (1+ x2)]∏n

j=3[(1+ x1)+ (1+ x j)]
(3.3)

= Fn−1(x1,x3, · · · ,xn;2)
(x2 + x1)∏n

j=3(x2 + x j)
[(1+ x1)+ (1+ x2)]∏n

j=3[(1+ x2)+ (1+ x j)]

and

(x1 − x2)
(
∂Fn(x,2)
∂x1

− ∂Fn(x,2)
∂x2

)

= −2(x1− x2)2Fn(x,2)
n

∑
j=3

x1 + x2 +2x j +2
(x1 + x j)(x2 + x j)(2+ x1 + x j)(2+ x2 + x j)

� 0.

Case 4. If n � 4 and 3 � r � n−1, then

Fn(x,r) = Fn(x1,x2, · · · ,xn;r)

= Fn−1(x2,x3, · · · ,xn;r)
∏

3�i1<i2<···<ir−1�n
(x1 +∑r−1

j=1 xi j )

∏
3�i1<i2<···<ir−1�n

[(1+ x1)+∑r−1
j=1(1+ xi j)]

×
∏

3�i1<i2<···<ir−2�n
(x1 + x2 +∑r−2

j=1 xi j )

∏
3�i1<i2<···<ir−2�n

[(1+ x1)+ (1+ x2)+∑r−2
j=1(1+ xi j)]

(3.4)
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= Fn−1(x2,x3, · · · ,xn;r)
∏

3�i1<i2<···<ir−1�n
(x2 +∑r−1

j=1 xi j )

∏
3�i1<i2<···<ir−1�n

[(1+ x2)+∑r−1
j=1(1+ xi j)]

×
∏

3�i1<i2<···<ir−2�n
(x2 + x1 +∑r−2

j=1 xi j )

∏
3�i1<i2<···<ir−2�n

[(1+ x1)+ (1+ x2)+∑r−2
j=1(1+ xi j)]

.

and

(x1− x2)
(
∂Fn(x,r)
∂x1

− ∂Fn(x,r)
∂x2

)

= −r(x1− x2)2Fn(x,r) ∑
3�i1<i2<···<ir−1�n

r+ x1 + x2 +2∑r−1
j=1 xi j

Δ
� 0,

where

Δ=

(
x1 +

r−1

∑
j=1

xi j

)(
x2 +

r−1

∑
j=1

xi j

)(
r+ x1 +

r−1

∑
j=1

xi j

)(
r+ x2 +

r−1

∑
j=1

xi j

)
. (3.5)

�

Therefore, Theorem 3.1 follows from Lemma 2.1 and Remark 2.1 together with
Cases 1-4.

THEOREM 3.2. Fn(x,r) is Schur harmonic convex in R
n
+ .

Proof. We divided the proof into four cases.
Case I. If r = 1, then (3.1) leads to

(x1− x2)
(

x2
1
∂Fn(x,1)
∂x1

− x2
2
∂Fn(x,1)
∂x2

)
=

(x1 − x2)2

(1+ x1)(1+ x2)
Fn(x,1) � 0.

Case II. If r = n , then (3.2) yields

(x1− x2)
(

x2
1
∂Fn(x,n)
∂x1

− x2
2
∂Fn(x,n)
∂x2

)
=

n(x1− x2)2(x1 + x2)
[∑n

i=1(1+ xi)]2
� 0.

Case III. If n � 3 and r = 2, then (3.3) implies

(x1 − x2)
(

x2
1
∂Fn(x,2)
∂x1

− x2
2
∂Fn(x,2)
∂x2

)

= 2(x1− x2)2Fn(x,2)
[

1
x1 + x2 +2

+
n

∑
j=3

2x1x2 +2x1x j +2x2x j +2x1x2x j + x1x2
j + x2x2

j

(x1 + x j)(x2 + x j)(2+ x1 + x j)(2+ x2 + x j)

]
� 0.
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Case IV. If n � 4 and 3 � r � n−1, then from (3.4) we get

(x1− x2)
(

x2
1
∂Fn(x,r)
∂x1

− x2
2
∂Fn(x,r)
∂x2

)
= r(x1− x2)2Fn(x,r)

×
[

∑
3�i1<i2<···<ir−2�n

x1 + x2

(x1 + x2 +∑r−2
j=1 xi j)(r+ x1 + x2 +∑r−2

j=1 xi j )

+ ∑
3�i1<i2<···<ir−1�n

Θ
Δ

]
� 0,

where Θ= (x1 +x2)
(
∑r−1

j=1 xi j

)2
+2x1x2∑r−1

j=1 xi j + r(x1 +x2)∑r−1
j=1 xi j + rx1x2 and Δ is

defined as in (3.5).
Therefore, Theorem 3.2 follows from Lemma 2.3 and Cases I-IV. �

Next, we denote by

Ωn(t,r) = {(x1,x2, · · · ,xn) ∈ R
n : t � xi �

√
(r−1)2t2 + r(r−1)t}

for t > 0 and 2 � r � n−1.

For the Schur multiplicative convexity or concavity of the symmetric function
Fn(x,r) , we have the following Theorem 3.3.

THEOREM 3.3. (i) Fn(x,1) is Schur multiplicatively concave in R
n
+ ;

(ii) Fn(x,n) is Schur multiplicatively convex in R
n
+ ;

(iii) If n � 3 and 2 � r � n−1 , then Fn(x,r) is Schur multiplicatively convex in
Ωn(t,r) for any t > 0.

Proof. (i) From (3.1) we clearly see that

(logx1− logx2)
(

x1
∂Fn(x,1)
∂x1

− x2
∂Fn(x,1)
∂x2

)

= − (x1− x2)(logx1 − logx2)
(1+ x1)(1+ x2)

Fn(x,1) � 0. (3.6)

Therefore, Theorem 3.3(i) follows from (3.6) and Lemma 2.2.

(ii) Equation (3.2) leads to

(logx1− logx2)
(

x1
∂Fn(x,n)
∂x1

− x2
∂Fn(x,n)
∂x2

)

=
n(x1− x2)(logx1− logx2)

[∑n
i=1(1+ xi)]2

� 0. (3.7)

Therefore, Theorem 3.3(ii) follows from (3.7) and Lemma 2.2.



8 Y.-M. CHU, W.-F. XIA AND T.-H. ZHAO

(iii) We divided the proof into two cases.
Case A. If n � 3 and r = 2, then (3.3) implies

(logx1− logx2)
(

x1
∂Fn(x,2)
∂x1

− x2
∂Fn(x,2)
∂x2

)
(3.8)

= 2(x1− x2)(logx1− logx2)Fn(x,2)
[

1
(x1 + x2)(x1 + x2 +2)

+
n

∑
j=3

x2
j +2x j − x1x2

(x1 + x j)(x2 + x j)(x1 + x j +2)(x2 + x j +2)

]
� 0

for any t > 0 and x = (x1,x2, · · · ,xn) ∈Ωn(t,2).
Case B. If n � 4 and 3 � r � n−1, then (3.4) yields

(logx1− logx2)
(

x1
∂Fn(x,r)
∂x1

− x2
∂Fn(x,r)
∂x2

)
= r(x1 − x2)(logx1 − logx2)Fn(x,r)

×
[

∑
3�<i1<i2<···<ir−2�n

1

(x1 + x2 +∑r−2
j=1 xi j )(r+ x1 + x2 +∑r−2

j=1 xi j )

+ ∑
3�<i1<i2<···<ir−1�n

r∑r−1
j=1 xi j +(∑r−1

j=1 xi j )
2 − x1x2

Δ

]
� 0

for any t > 0 and x = (x1,x2, · · · ,xn) ∈Ωn(t,r), where Δ is defined as in (3.5).
Therefore, Theorem 3.3(iii) follows from Cases A and B together with Lemma

2.2. �

4. Applications

In this section, we establish some inequalities by use of Theorems 3.1–3.3 and the
theory of majorization.

The following Theorem 4.1 easily follows from Theorems 3.1 and 3.2 together
with Lemmas 2.4–2.6.

THEOREM 4.1. Suppose that x = (x1,x2, · · · ,xn) ∈ R
n
+ and ∑n

i=1 xi = s. If c1 �
s,c2 � 0, 0 � λ � 1 and r ∈ {1,2, · · · ,n} , then

(1) Fn(x,r) � Fn

(
c1 − x
nc1
s −1

,r

)
;

(2) Fn

(
1
x
,r

)
� Fn

( nc1
s −1

c1− x
,r

)
;

(3) Fn(x,r) � Fn

(
c2 + x
nc2
s +1

,r

)
;
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(4) Fn

(
1
x
,r

)
� Fn

( nc2
s +1

c2 + x
,r

)
;

(5) Fn(x,r) � Fn

(
s−λx
n−λ

,r

)
;

(6) Fn(
1
x
,r) � Fn

(
n−λ
s−λx

,r

)
.

For x = (x1,x2, · · · ,xn) ∈ R
n
+ , if we denote Hn(x) = n

∑n
i=1

1
xi

, then we clearly see

that
(An(x),An(x), · · · ,An(x)) ≺ (x1,x2, · · · ,xn) (4.1)

and (
1

Hn(x)
,

1
Hn(x)

, · · · , 1
Hn(x)

)
≺
(

1
x1

,
1
x2

, · · · , 1
xn

)
. (4.2)

It follows from (1.1) and (4.1)–(4.2) together with Theorems 3.1–3.2 that the fol-
lowing Theorem 4.2 is obvious.

THEOREM 4.2. Suppose that x = (x1,x2, · · · ,xn) ∈ R
n
+ . If r ∈ {1,2, · · · ,n} , then

(1) ∏
1�i1<i2···<ir�n

∑r
j=1 xi j

r+∑r
j=1 xi j

�
[

An(x)
An(1+ x)

] n!
r!(n−r)!

;

(2) ∏
1�i1<i2···<ir�n

∑r
j=1

1
xi j

r+∑r
j=1

1
xi j

�
[

1
An(1+ x)

] n!
r!(n−r)!

;

(3) ∏
1�i1<i2···<ir�n

∑r
j=1

1
xi j

r+∑r
j=1

1
xi j

�
[

1
1+Hn(x)

] n!
r!(n−r)!

;

(4) ∏
1�i1<i2···<ir�n

∑r
j=1 xi j

r+∑r
j=1 xi j

�
[

Hn(x)
1+Hn(x)

] n!
r!(n−r)!

.

If we take r = 1 in Theorem 4.2(1), (3) and (4), respectively, then we get

COROLLARY 4.1. If x = (x1,x2, · · · ,xn) ∈ R
n
+ , then

(1)
Gn(x)

Gn(1+ x)
� An(x)

An(1+ x)
;

(2) Gn(1+ x) � 1+Hn(x);

(3)
Gn(x)

Gn(1+ x)
� Hn(x)

1+Hn(x)
.

REMARK 4.1. Inequality in Corollary 4.1(1) was proved by V. Govedarica and
M. V. Jovanović in [12].
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REMARK 4.2. If we take ∑n
i=1 xi = 1 in Corollary 4.1(1), then we get the Weier-

strass inequality [13, p. 260]

n

∏
i=1

(x−1
i +1) � (n+1)n.

THEOREM 4.3. Let A = A1A2 · · ·An+1 be a n−dimensional simplex in R
n and

P be an arbitrary point in the interior of A . If Bi is the intersection point of straight
line AiP and hyperplane ∑i = A1A2 · · ·Ai−1Ai+1 · · ·An+1, i = 1,2, · · · ,n + 1. Then for
r ∈ {1,2, · · · ,n+1} we have

(1) ∏
1�i1<i2···<ir�n+1

∑r
j=1

PBi j
Ai j Bi j

r+∑r
j=1

PBi j
Ai j Bi j

�
(

1
n+2

) (n+1)!
r!(n−r+1)!

;

(2) ∏
1�i1<i2···<ir�n+1

∑r
j=1

PAi j
Ai j Bi j

r+∑r
j=1

PAi j
Ai j Bi j

�
(

n
2n+1

) (n+1)!
r!(n−r+1)!

;

(3) ∏
1�i1<i2···<ir�n+1

∑r
j=1

Ai j Bi j
PBi j

r+∑r
j=1

Ai j Bi j
PBi j

�
(

n+1
n+2

) (n+1)!
r!(n−r+1)!

;

(4) ∏
1�i1<i2···<ir�n+1

∑r
j=1

Ai j Bi j
PAi j

r+∑r
j=1

Ai j Bi j
PAi j

�
(

n+1
2n+1

) (n+1)!
r!(n−r+1)!

.

Proof. It is easy to see that ∑n+1
i=1

PBi
AiBi

= 1 and ∑n+1
i=1

PAi
AiBi

= n , these identities imply
that (

1
n+1

,
1

n+1
, · · · , 1

n+1

)
≺
(

PB1

A1B1
,

PB2

A2B2
, · · · , PBn+1

An+1Bn+1

)
(4.3)

and (
n

n+1
,

n
n+1

, · · · , n
n+1

)
≺
(

PA1

A1B1
,

PA2

A2B2
, · · · , PAn+1

An+1Bn+1

)
. (4.4)

Therefore, Theorem 4.3 follows from (4.3), (4.4), Theorem 3.1, Theorem 3.2 and
(1.1). �

REMARK 4.3. D. S. Mitrinović, J. E. Pec̆arić and V. Volenec [14, p. 473–479]
established a series of inequalities for PAi

AiBi
and PBi

AiBi
, i = 1,2, · · · ,n+1. Obviously, our

inequalities in Theorem 4.3 are different from theirs.
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