
Journal of
Mathematical

Inequalities
Volume 5, Number 1 (2011), 21–31

ON REFINED YOUNG INEQUALITIES AND REVERSE INEQUALITIES

SHIGERU FURUICHI

(Communicated by J.-I. Fujii)

Abstract. In this paper, we show refined Young inequalities for two positive operators. Our
results refine the ordering relations among the arithmetic mean, the geometric mean and the
harmonic mean for two positive operators. In addition, we give two different reverse inequalities
for the refined Young inequality for two positive operators.

1. Introduction

We start from the famous arithmetic-geometric mean inequality which is often
called Young inequality:

(1−ν)a+νb � a1−νbν (1)

for nonnegative real numbers a , b and ν ∈ [0,1] .
Recently, the inequality (1) was refined by F.Kittaneh and Y.Manasrah in the fol-

lowing form, for the purpose of the study on matrix norm inequalities.

PROPOSITION 1.1. ([1]) For a,b � 0 and ν ∈ [0,1] , we have

(1−ν)a+νb � a1−νbν + r(
√

a−
√

b)2, (2)

where r ≡ min{ν,1−ν} .

In the section 2 of this paper, we give refined Young inequalities for two positive
operators based on the scalar inequality (2).

As for the reverse inequalities of the Young inequality, M.Tominaga gave the fol-
lowing interesting operator inequalities. He called them converse inequalities, however
we use the term reverse for such inequalities, throughout this paper.

PROPOSITION 1.2. ([2]) Let ν ∈ [0,1] , positive operators A and B such that
0 < mI � A,B � MI with h ≡ M

m > 1 . Then we have the following inequalities for
every ν ∈ [0,1] .
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(i) (Reverse ratio inequality)

S(h)A�νB � (1−ν)A+νB,

where the constant S(h) is called Specht’s ratio [3, 4] and defined by

S(h) ≡ h
1

h−1

e logh
1

h−1

, (h �= 1)

for positive real number h.

(ii) (Reverse difference inequality)

hL(m,M) logS(h)+A�νB � (1−ν)A+νB, (3)

where the logarithmic mean L is defined by

L(x,y) ≡ y− x
logy− logx

, (x �= y) L(x,x) ≡ x

for two positive real numbers x and y.

In the section 3 of this paper, we give reverse ratio type inequalities of the refined
Young inequality for positive operators. In the section 4 of this paper, we also give re-
verse difference type inequalities of the refined Young inequality for positive operators.

2. Refined Young inequalities for positive operators

Let H be a complex Hilbert space. We also represent the set of all bounded
operators on H by B(H ) . If A ∈ B(H ) satisfies A∗ = A , then A is called a self-
adjoint operator. A self-adjoint operator A satisfies 〈x|A|x〉 � 0 for any |x〉 ∈ H , then
A is called a positive operator. For two self-adjoint operators A and B , A � B means
A−B � 0.

It is well-known that we have the following Young inequalities for invertible pos-
itive operators A and B :

(1−ν)A+νB � A�νB �
{
(1−ν)A−1 +νB−1}−1

, (4)

where A�νB ≡ A1/2(A−1/2BA−1/2)νA1/2 defined for ν ∈ [0,1] . The power mean was
originally introduced in the paper [5]. The simplified and elegant proof for the in-
equalities (4) was given in [6]. See also [7] for the reader having interests in operator
inequalities.

As a refinement of the inequalities (4), we have the following refined Young in-
equality for positive operators.
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THEOREM 2.1. For ν ∈ [0,1] and positive operators A and B, we have

(1−ν)A+νB � A�νB+2r

(
A+B

2
−A�1/2B

)
(5)

� A�νB (6)

�
{

A−1�νB
−1 +2r

(
A−1 +B−1

2
−A−1�1/2B

−1
)}−1

(7)

�
{
(1−ν)A−1 +νB−1}−1

(8)

where r ≡ min{ν,1−ν} and A�νB ≡ A1/2(A−1/2BA−1/2)νA1/2 defined for ν ∈ [0,1] .

Proof. The second inequality (6) is trivial. We prove the first inequality. From the
inequality (2), we have for ν ∈ [0,1] and x � 0

(1−ν+νx)− xν −2r

(
1+ x

2
−√

x

)
� 0. (9)

From here, we suppose that A and B are invertible. (For a general case, we consider the
invertible positive operator Aε ≡ A+ εI for positive real number ε . If we take a limit
ε → 0, the following result also holds. Throughout this paper, we apply this continuity
argument, however, from now on, we omit such descriptions for simplicity.) In general,
by using the notion of the representing function fm(x) = 1mx for operator mean m , it
is well-known [5] that fm(x) � fn(x) holds for x > 0 if and only if AmB � AnB holds
for all positive operators A and B . Therefore the inequality (9) implies the inequality
(5). Since we have

(
A−1�νB−1

)−1 = A�νB , we also have the third inequality (7) and
the last inequality (8). �

In the paper [8], the equivalent relation between the Young inequality and the
Hölder-McCarthy inequality [9] was shown by a simplified elegant proof. Here we
show a kind of the refinement of the Hölder-McCarthy inequality applying Theorem
2.1.

COROLLARY 2.2. For ν ∈ [0,1] and any positive operator A on the Hilbert space
H and any unit vector |x〉 ∈ H , if 〈x|A|x〉 �= 0 , then we have

1−〈x|A|x〉−ν〈x|Aν |x〉 � r
(
1−〈x|A|x〉−1/2〈x|A1/2|x〉

)2
, (10)

where r ≡ min{ν,1−ν} .

Proof. If ν = 0, then the inequality (10) is trivial. It is sufficient that we prove it
for the case of ν ∈ (0,1] . From the inequality (9), we have for any positive real number
k , the unit vector |x〉 ∈ H and the positive operator A ,

νk
1
ν 〈x|A|x〉+1−ν � k〈x|Aν |x〉+ r

(
k

1
2ν 〈x|A1/2|x〉−1

)2
. (11)

In the inequality (11), if we put k = 〈x|A|x〉−ν , then we obtain the inequality (10). �
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REMARK 2.3. From Hölder-McCarthy inequality [9]:

〈x|A|x〉ν � 〈x|Aν |x〉 (12)

for any unit vector |x〉 ∈ H , if 〈x|A|x〉 �= 0, then we have

1−〈x|A|x〉−ν〈x|Aν |x〉 � 0.

The inequality (10) gives a refined one for the above inequality which is equivalent to
the inequality (12) in the case of 〈x|A|x〉 �= 0.

3. A reverse ratio inequality for a refined Young inequality

For positive real numbers a,b and ν ∈ [0,1] , M.Tominaga showed the following
inequality [2]:

S
(a

b

)
a1−νbν � (1−ν)a+νb, (13)

which is called the converse ratio inequality for the Young inequality in [2]. In this
section, we show the reverse ratio inequality of the refined Young inequality (2).

LEMMA 3.1. For positive real numbers a,b and ν ∈ [0,1] , we have

S

(√
a
b

)
a1−νbν � (1−ν)a+νb− r(

√
a−

√
b)2, (14)

where r ≡ min{ν,1−ν} .

Proof. It is sufficient to prove the case of ν � 1/2, since we have S(h) = S(1/h)
for all h > 0 and AmνB = Bm1−νA for all parametrized means mν in this paper. We
consider the following function.

gb(ν) ≡ νb+(1−ν)−ν(
√

b−1)2

bν
,

(
0 � ν � 1

2

)
.

Then we have

g′b(ν) =
2(
√

b−1)−
{
2(
√

b−1)ν+1
}

logb

bν

so that the equation g′b(ν) = 0 implies

ν =
1

logb
− 1

2(
√

b−1)
≡ νb.

From the Klein inequality:

1− 1√
b

� log
√

b �
√

b−1, (b > 0)
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we have νb ∈ [0, 1
2 ] . We also find that g′b(ν) > 0 for ν < νb and g′b(ν) < 0 for ν >

νb . Thus the function gb(ν) takes a maximum value when ν = νb, (b �= 1) and it is
calculated as follows.

max
0�ν� 1

2

gb(ν) = gb(νb) =
2(
√

b−1)
(

1
logb − 1

2(
√

b−1)

)
+1

b
1

logb b
−1

2(
√

b−1)

=
2(
√

b−1)
logb

eb
−1

2(
√

b−1)

=

(√
b
) 1√

b−1

e log
(√

b
) 1√

b−1

= S(
√

b).

Thus we have the following inequality.

S(
√

b)bν � νb+(1−ν)−ν(
√

b−1)2.

In the case of b = 1, we have the equality in the above inequality, since we have S(1) =
1. Replacing b by b

a and then multiplying a to both sides, we have

S

(√
a
b

)
a1−νbν � (1−ν)a+νb−ν(

√
a−

√
b)2,

since we have S(x) = S(1/x) for x > 0. �

REMARK 3.2. We easily find that both sides in the inequality (14) is less than or
equal to those in the inequality (13) so that neither the inequality (14) nor the inequality
(13) is uniformly better than the other.

In addition, our next interest moves to the ordering between S
(√ a

b

)
a1−νbν and

(1−ν)a+νb . However we have no ordering between them, because we have the fol-
lowing examples. For example, let a = 1 and b = 10. If ν = 0.9, then (1−ν)a+νb−
S
(√ a

b

)
a1−νbν �−0.246929. And if ν = 0.6, then (1−ν)a+νb−S

(√ a
b

)
a1−νbν �

1.71544.

Applying Lemma 3.1, we have the reverse ratio inequality of the refined Young
inequality for positive operators.

THEOREM 3.3. We suppose two invertible positive operators A and B satisfy
0 < mI � A,B � MI , where I represents an identity operator and m,M ∈ R . For any
ν ∈ [0,1] , we then have

S(
√

h)A�νB � (1−ν)A+νB−2r

(
A+B

2
−A�1/2B

)
,

where h ≡ M
m > 1 and r ≡ min{ν,1−ν} .
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Proof. In Lemma 3.1, we put a = 1, then we have for all b > 0,

S(
√

b)bν � νb+(1−ν)− r(
√

b−1)2

We consider the invertible positive operator T such that 0 < mI � T � MI . Then we
have the following inequality

max
m�t�M

S(
√

t)T ν � νT +(1−ν)− r(T −2T1/2 +1),

for any ν ∈ [0,1] . We put T = A−1/2BA−1/2. Since we then have 1
h = m

M � A−1/2BA−1/2

� M
m = h , we have

max
1
h �t�h

S(
√

t)
(
A−1/2BA−1/2

)ν

� νA−1/2BA−1/2 +(1−ν)− r

{
A−1/2BA−1/2−2

(
A−1/2BA−1/2

)1/2
+1

}
.

Note that h > 1 and S(x) is monotone decreasing for 0 < x < 1 and monotone increas-
ing for x > 1 [2]. Thus we have

S(
√

h)
(
A−1/2BA−1/2

)ν
� νA−1/2BA−1/2 +(1−ν)− r

{
A−1/2BA−1/2−2

(
A−1/2BA−1/2

)1/2
+1

}
.

Multiplying A1/2 to the above inequality from both sides, we have the present theo-
rem. �

4. A reverse difference inequality for a refined Young inequality

For the classical Young inequality, the following reverse inequality is known. For
positive real numbers a,b and ν ∈ [0,1] , M.Tominaga showed the following inequality
[2]:

L(a,b) logS
(a

b

)
� (1−ν)a+νb−a1−νbν , (15)

which is called the converse difference inequality for the Young inequality in [2]
In this section, we show the reverse difference inequality of the refined Young

inequality (2).

LEMMA 4.1. For positive real numbers a,b and ν ∈ [0,1] , we have

ωL(
√

a,
√

b) logS

(√
a
b

)
� (1−ν)a+νb−a1−νbν − r

(√
a−

√
b
)2

, (16)

where ω ≡ max
{√

a,
√

b
}

.
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Proof. We firstly consider the following function.

gb(ν) ≡ νb+(1−ν)−bν−ν(
√

b−1)2,

(
0 � ν � 1

2

)
.

From g′b(ν) = 2(
√

b−1)−bν logb , we have

g′b(ν) = 0 ⇔ ν =
log

√
b−1

log
√

b

logb
≡ νb.

We also find that νb ∈ [0, 1
2 ] by elementally calculations with the following inequalities:

1− 1√
b

� log
√

b �
√

b−1, (b > 0).

In addition, we have g′′b(ν) = −bν (logb)2 < 0. Therefore gb takes a maximum value
when ν = νb , and it is calculated as gb(νb) = L(1,

√
b) logS(

√
b) by simple but slightly

complicated calculations. Thus we have

L(1,
√

b) logS
(√

b
)

� νb+(1−ν)−bν−ν(
√

b−1)2.

We put b
a instead of b in the above inequality, and then multiplying a to both sides, we

have

√
aL(

√
a,
√

b) logS

(√
a
b

)
� (1−ν)a+νb−a1−νbν −ν(

√
a−

√
b)2, (17)

since xL
(
1, y

x

)
= L(x,y) = L(y,x) and S(x) = S(1/x) for x > 0.

For the case of ν � 1/2, by the similar way, we also have the following inequality:

√
bL(

√
b,
√

a) logS

(√
a
b

)
� (1−ν)a+νb−a1−νbν − (1−ν)(

√
a−

√
b)2, (18)

From the inequalities (17) and (18), we have the present theorem. �

REMARK 4.2. We easily find that the right hand side of the inequality (15) is
greater than that of the inequality (16). Therefore, if the left hand side of the inequality
(16) is greater than that of the inequality (15), then Theorem 4.1 is trivial one. However,
we have not yet found any counter-example such that

L(a,b) logS
(a

b

)
� ωL(

√
a,
√

b) logS

(√
a
b

)
, (19)

where ω = max
{√

a,
√

b
}

for any a,b > 0 by the computer calculations. Here we

give a remark that we have the following inequalities:

L(a,b) � ωL(
√

a,
√

b), and logS
(a

b

)
� logS

(√
a
b

)
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for any a,b > 0. At least, we actually have many examples satisfying the inequality
(19) so that we claim that Theorem 4.1 is nontrivial as a refinement of the inequality
(15).

In addition, it is remarkable that we have no ordering between

L(a,b) logS
(a

b

)
and

ωL(
√

a,
√

b) logS

(√
a
b

)
+ r
(√

a−
√

b
)2

for any a,b > 0 and ν ∈ [0,1] . Therefore we may claim that Theorem 4.1 is also
nontrivial from the sense of finding a tighter upper bound of (1−ν)a+νb−a1−νbν .

Moreover, we have not yet found any counter-example such that

ωL(
√

a,
√

b) logS

(√
a
b

)
� (1−ν)a+νb−a1−νbν ,

for any positive numbers a and b , and ν ∈ [0,1] by the computer calculations. There-
fore we may have a conjecture such that the left hand side of the inequality (16) exists
between the left hand side of the inequality (15) and the right hand side of the inequality
(15).

Finally we prove the following theorem. It can be proven by the similar method in
[2].

THEOREM 4.3. We suppose two invertible positive operators satisfy 0 < mI �
A,B � MI , where I represents an identity operator and m,M ∈ R . For any ν ∈ [0,1] ,
we then have

h
√

ML(
√

M,
√

m) logS(
√

h) � (1−ν)A+νB−A�νB−2r

(
A+B

2
−A�1/2B

)
, (20)

where h ≡ M
m > 1 and r ≡ min{ν,1−ν} .

Proof. From the inequality (16), we have

ωL(
√

b,1) logS(
√

b) � νb+(1−ν)−bν− r(b−2
√

b+1),

for all ν ∈ [0,1] , putting b = 1. We consider the invertible positive operator T such
that 0 < mI � T � MI . Then we have the following inequality

max
m�t�M

max
{√

t,1
}

L(
√

t,1) logS(
√

t) � νT +(1−ν)−Tν − r(T −2T1/2 +1),

for any ν ∈ [0,1] . We put T = A−1/2BA−1/2. Since we then have 1
h = m

M � A−1/2BA−1/2

� M
m = h , we have

max
1
h �t�h

max
{√

t,1
}

L(
√

t,1) logS(
√

t) � νA−1/2BA−1/2 +(1−ν)−
(
A−1/2BA−1/2

)ν

−r

{
A−1/2BA−1/2−2

(
A−1/2BA−1/2

)1/2
+1

}
.
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Note that h > 1 and L(u,1) is monotone increasing function for u > 0. In addition,
we note that S(x) is monotone decreasing for 0 < x < 1 and monotone increasing for
x > 1 [2]. Thus we have

√
hL(

√
h,1) logS(

√
h) � νA−1/2BA−1/2 +(1−ν)−

(
A−1/2BA−1/2

)ν
−r

{
A−1/2BA−1/2−2

(
A−1/2BA−1/2

)1/2
+1

}
.

Multiplying A1/2 to the above inequality from both sides, we have

√
hL(

√
h,1) logS(

√
h)A � (1−ν)A+νB−A�νB−2r

(
A+B

2
−A�1/2B

)
.

Since the left hand side in the above inequality is less than
√

hL(
√

h,1) logS(
√

h)M = h
√

ML(
√

M,
√

m) logS(
√

h),

the proof is completed. �

REMARK 4.4. As mentioned in Remark 4.2, we have not yet found the ordering
between the left hand side of the inequality (20) and that of the inequality (3). Therefore
Theorem 4.3 is not a trivial result.

5. Concluding remarks

As we have seen, we gave refined Young inequalities for two positive operators. In
addition, we gave reverse ratio type inequalities and reverse difference type inequalities
for the refined Young inequality for positive operators. Closing this paper, we shall give
a refinement of the weighted arithmetic-geometric mean inequality for n real numbers
by a simple proof.

PROPOSITION 5.1. For a1, · · · ,an � 0 and p1, · · · , pn � 0 with ∑n
j=1 p j = 1 , we

have
n

∑
i=1

piai−
n

∏
i=1

api
i � nλ

(
1
n

n

∑
i=1

ai−
n

∏
i=1

a1/n
i

)
, (21)

with equality if and only if a1 = · · · = an , where λ ≡ min{p1, · · · , pn} .

Proof. We suppose λ = p j . For any j = 1, · · · ,n , we then have

n

∑
i=1

piai− p j

(
n

∑
i=1

ai−n
n

∏
i=1

a1/n
i

)
= np j

(
n

∏
i=1

a1/n
i

)
+

n

∑
i=1,i�= j

(pi − p j)ai

�
n

∏
i=1,i�= j

(
a1/n

1 · · ·a1/n
n

)np j
a

pi−p j
i

= ap1
1 · · ·apn

n .
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In the above process, the classical weighted arithmetic-geometric mean inequality [10,
11];

n

∑
j=1

p ja j �
n

∏
j=1

a
pj
j , (22)

with equality if and only if a1 = · · · = an , was used. The equality in the inequality (21)
holds if and only if

(a1a2 · · ·an)
1
n = a1 = a2 = · · · = a j−1 = a j+1 = · · · = an

by the equality condition of the classical weighted arithmetic-geometric mean inequal-

ity. Therefore a1 = a2 = · · · = a j−1 = a j+1 = · · · = an ≡ a , then we have a
1
n
j a

n−1
n = a

from the first equality. Thus we have a j = a , which completes the proof. �

Proposition 5.1 gives a refinement of the classical weighted arithmetic-geometric
mean inequality (22). At the same time, it gives a natural generalization of the inequal-
ity (2) proved in [1]. It is also notable that Proposition 5.1 can be proven by using the
bounds for the normalized Jensen functional, which were obtained by S. S. Dragomir
in [12].
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