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GENERALIZATIONS OF CONVERSE JENSEN’S

INEQUALITY AND RELATED RESULTS

S. IVELIĆ AND J. PEČARIĆ

(Communicated by A. Guessab)

Abstract. In this paper we prove generalizations of Converse Jensen’s inequality for convex
functions defined on convex hulls. As consequences we get generalizations of the Hermite-
Hadamard inequality for convex functions defined on k -simplices in R

k . We also present some
related results which generalize results in [8].

1. Introduction

Let U be a convex subset of R
k and n ∈ N. If f : U → R is a convex function,

xxxx1, ...,xxxxn ∈U and p1, ..., pn nonnegative real numbers with Pn =∑n
i=1pi, then the well

known Jensen’s inequality

f

(
1
Pn

n

∑
i=1

pixxxxi

)
� 1

Pn

n

∑
i=1

pi f (xxxxi) (1.1)

holds.
If the following conditions are satisfied

p1 > 0, pi � 0 (i = 2, ...,n) Pn > 0,

1
Pn

n

∑
i=1

pixxxxi ∈U,

then Reversed Jensen’s inequality

f

(
1
Pn

n

∑
i=1

pixxxxi

)
� 1

Pn

n

∑
i=1

pi f (xxxxi) (1.2)

holds (see [14]).
The convex hull of vectors xxxx1, . . . ,xxxxn ∈R

k is represented by K = conv({xxxx1, ...,xxxxn}).
Barycentric coordinates over K are continuous functions λ1,λ2, ...,λn on K with

following properties:
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(1) λi(xxxx) � 0, i = 1, ...,n,

(2)
n

∑
i=1

λi(xxxx) = 1,

(3) xxxx =
n

∑
i=1

λi(xxxx)xxxxi .

If xxxx2 − xxxx1, ...,xxxxn − xxxx1 are linearly independent vectors, then each xxxx ∈ K can be
written in unique way as convex combination of xxxx1, ...,xxxxn in the form (3) .

We also consider k -simplex S = [vvvv1, ...,vvvvk+1] in R
k which is convex hull of its

vertices vvvv1,vvvv2, ...,vvvvk+1 ∈ R
k. Barycentric coordinates λ1,λ2, ...,λk+1 over S are non-

negative linear polynomials on S and have special form (see the third section).

The next variant of Jensen’s inequality was proved by A. Matković and J. Pečarić
[8].

THEOREM A. Let U be a convex subset in R
k, xxxx1, ...,xxxxn ∈ U and yyyy1, ...,yyyym ∈

conv({xxxx1, ...,xxxxn}). If f is a convex function on U, then the inequality

f

⎛⎜⎜⎝
n
∑
i=1

pixxxxi −
m
∑
j=1

wjyyyy j

Pn−Wm

⎞⎟⎟⎠�

n
∑
i=1

pi f (xxxxi)−
m
∑
j=1

wj f (yyyy j)

Pn−Wm
(1.3)

holds for all positive real numbers p1, ..., pn and w1, ...,wm satisfying the condition

pi � Wm for all i = 1, ...,n,

where Pn = ∑n
i=1pi and Wm = ∑m

j=1wj.

In the following, let E be a nonempty set and L be a linear class of functions
f : E → R having the properties:

(L1) if f ,g ∈ L then (a f +bg)∈ L for all a,b ∈ R

(L2) 1 ∈ L where 1(t) = 1 for all t ∈ E.

We consider positive linear functionals A : L → R . That is, we assume:

(A1) A(a f +bg) = aA( f )+bA(g) for all f ,g ∈ L, a,b ∈ R (linearity)

(A2) if f ∈ L, f (t) � 0 for all t ∈ E then A( f ) � 0 (positivity).

From (A1) we obtain

(A1’) A

(
k
∑
i=1

aigi

)
=

k
∑
i=1

aiA(gi) for g1, ...,gk ∈ L, a1, ...,ak ∈ R (linearity).
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If in addition A(1) = 1 is satisfied, we say that A is a positive normalized linear
functional.

With Lk we denote a linear class of functions gggg : E → R
k defined by

gggg(t) = (g1(t), ...,gk(t)), gi ∈ L (i = 1, ...,k).

We also consider linear operators Ã : Lk → R
k defined by

Ã(gggg) = (A(g1), ...,A(gk)).

If A(1) = 1 is satisfied, then using (A1) we also have

(A3) A( f (gggg)) = f (Ã(gggg)) for every linear function f on R
k.

Next we introduce the functional versions of Jensen’s inequality and some related
results which we generalize in sequel.

B. Jessen [14, p. 47] gave the following generalization of Jensen’s inequality for
positive linear functionals.

THEOREM B. (Jessen’s inequality) Let L satisfy properties L1, L2 on nonempty
set E and A be a positive normalized linear functional on L. Let f be a continuous
convex function on an interval I ⊂ R . Then for all g ∈ L such that g(E) ⊂ I and
f (g) ∈ L, we have A(g) ∈ I and

f (A(g)) � A( f (g)). (1.4)

The next theorem, proved by J. Pečarić and P. R. Beesack, presents generalization
of Theorem Lah-Ribarić (see [10, p. 98], [14, p. 98]).

THEOREM C. (Converse Jessen’s inequality) Let L satisfy properties L1, L2 and
A be a positive normalized linear functional on L. Let f be a convex function on an
interval I = [m,M] ⊂ R (−∞ < m < M < ∞). Then for all g ∈ L such that g(E) ⊂ I
and f (g) ∈ L, we have

A( f (g)) � M−A(g)
M−m

f (m)+
A(g)−m
M−m

f (M). (1.5)

Using Theorem C, Beesack and Pečarić also proved the next result [14, p. 101].

THEOREM D. Let L, A and f be as in Theorem C. Let J be an interval in R

such that f (I) ⊂ J. If F : J× J → R is an increasing function in the first variable, then
for all g ∈ L such that g(E) ⊂ I and f (g) ∈ L, we have

F(A( f (g)), f (A(g))) � max
x∈[m,M]

F

(
M− x
M−m

f (m)+
x−m
M−m

f (M), f (x)
)

(1.6)

= max
θ∈[0,1]

F (θ f (m)+ (1−θ ) f (M), f (θm+(1−θ )M)).
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REMARK 1. If we choose F(x,y) = x− y, as a simple consequence of Theorem
D it follows

A( f (g))− f (A(g)) � max
θ∈[0,1]

[θ f (m)+ (1−θ ) f (M)− f (θm+(1−θ )M)]. (1.7)

Choosing F(x,y) =
x
y
, it follows

A( f (g))
f (A(g))

� max
θ∈[0,1]

[
θ f (m)+ (1−θ ) f (M)

f (θm+(1−θ )M)

]
. (1.8)

It is obviously that the main results in [15], [16] and [17] can be obtained as direct
consequences of Theorem D published many years earlier.

Additional generalization of Jessen’s inequality (1.4) is proved by E. J. McShane
(see [9], [14, p. 48]).

THEOREM E. (McShane’s inequality) Let L satisfy properties L1, L2, A be a
positive normalized linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear oper-
ator. Let f be a continuous convex function on a closed convex set U ⊂ R

k. Then for
all gggg ∈ Lk such that gggg(E) ⊂U and f (gggg) ∈ L, we have that Ã(gggg) ∈U and

f (Ã(gggg)) � A( f (gggg)). (1.9)

It is known that for a convex function f : [a,b] → R the Hermite -Hadamard in-
equality

f

(
a+b

2

)
� 1

b−a

b∫
a

f (x)dx � f (a)+ f (b)
2

(1.10)

holds.
In this paper, as our main results we present generalizations of Theorem C and

Theorem D for convex functions defined on convex hulls. As consequences, we obtain
generalizations of the Hermite-Hadamard inequality (1.10) for convex functions de-
fined on k -simplices in R

k . Some related results can be found in [5], [6], [7]. We also
present related results which generalize results in [8].

2. Main results

For n ∈ N we denote

Δn =
{

(Λ1, ...,Λn) : Λi � 0, ∀i ∈ {1, ...,n},
n
∑
i=1

Λi = 1

}
.

The next theorem presents generalization of Theorem C.



CONVERSE JENSEN’S INEQUALITY 47

THEOREM 1. Let L satisfy properties L1, L2 on nonempty set E and A be a pos-
itive normalized linear functional on L. Let xxxx1, ...,xxxxn ∈R

k and K = conv({xxxx1, ...,xxxxn}).
Let f be a convex function on K and λ1, ...,λn barycentric coordinates over K. Then
for all gggg ∈ Lk such that gggg(E) ⊂ K and f (gggg),λi(gggg) ∈ L (i = 1, ...,n) we have

A( f (gggg)) �
n

∑
i=1

A(λi(gggg)) f (xxxxi) . (2.1)

Proof. For each t ∈ E we have gggg(t)∈ K. Then there exist barycentric coordinates
λi(gggg(t)) � 0 (i = 1, ...,n) such that ∑n

i=1λi(gggg(t)) = 1 and

gggg(t) =
n

∑
i=1

λi(gggg(t))xxxxi.

Since f is convex on K, then

f (gggg(t)) = f

(
n

∑
i=1

λi(gggg(t))xxxxi

)
�

n

∑
i=1

λi(gggg(t)) f (xxxxi) .

Now, applying a functional A on the last inequality we get

A( f (gggg)) � A

(
n

∑
i=1

λi(gggg) f (xxxxi)

)
=

n

∑
i=1

A(λi(gggg)) f (xxxxi) . �

REMARK 2. If all the assumptions of Theorem 1 are satisfied and in addition f is
continuous, then

f (Ã(gggg)) � A( f (gggg)) �
n

∑
i=1

A(λi(gggg)) f (xxxxi)

The first inequality is consequence of Theorem E and the second of Theorem 1.

Using Theorem 1 we prove generalization of Theorem D.

THEOREM 2. Let L satisfy properties L1, L2 on nonempty set E, A be a positive
normalized linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator.
Let xxxx1, ...,xxxxn ∈ R

k and K = conv({xxxx1, ...,xxxxn}). Let f be a convex function on K and
λ1, ...,λn barycentric coordinates over K. If J is an interval in R such that f (K) ⊂ J
and F : J× J → R is an increasing function in the first variable, then for all gggg ∈ Lk

such that gggg(E) ⊂ K and f (gggg),λi(gggg) ∈ L (i = 1, ...,n) we have

F
(
A( f (gggg)), f (Ã(gggg))

)
� F

(
n

∑
i=1

A(λi(gggg)) f (xxxxi), f (Ã(gggg))

)
(2.2)

� max
(Λ1,...,Λn)∈Δn

F

(
n

∑
i=1

Λi f (xxxxi), f

(
n

∑
i=1

Λixxxxi

))
.
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Proof. For each t ∈ E we have gggg(t)∈ K. Then there exist barycentric coordinates
λi(gggg(t)) � 0 (i = 1, ...,n) such that ∑n

i=1λi(gggg(t)) = 1 and

gggg(t) =
n

∑
i=1

λi(gggg(t))xxxxi.

Since A is a positive normalized linear functional on L and Ã = (A, ...,A) a linear
operator on Lk, we have

Ã(gggg) = (A(g1), ...,A(gk)) =
n

∑
i=1

A(λi(gggg))xxxxi,

where
A(λi(gggg)) � 0, i = 1, ...,n

and
n

∑
i=1

A(λi(gggg)) = A

(
n

∑
i=1

λi(gggg)

)
= A(1) = 1.

Therefore, Ã(gggg) ∈ K.
Since F : J× J → R is an increasing function in the first variable, using (2.1) we

have

F
(
A( f (gggg)), f (Ã(gggg))

)
� F

(
n

∑
i=1

A(λi(gggg)) f (xxxxi), f (Ã(gggg))

)
. (2.3)

By substitutions
A(λi(gggg)) = Λi (i = 1, ...,n),

it follows

Ã(gggg) =
n

∑
i=1

Λixxxxi.

Now we have

F

(
n

∑
i=1

A(λi(gggg)) f (xxxxi), f (Ã(gggg))

)
= F

(
n

∑
i=1

Λi f (xxxxi), f

(
n

∑
i=1

Λixxxxi

))

� max
(Λ1,...,Λn)∈Δn

F

(
n

∑
i=1

Λi f (xxxxi), f

(
n

∑
i=1

Λixxxxi

))
. (2.4)

By combining (2.3) and (2.4) we get (2.2) . �

REMARK 3. If we choose F(x,y) = x−y, as a simple consequence of Theorem 2
it follows

A( f (gggg))− f (Ã(gggg)) � max
(Λ1,...,Λn)∈Δn

(
n

∑
i=1

Λi f (xxxxi)− f

(
n

∑
i=1

Λixxxxi

))
. (2.5)
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Choosing F(x,y) =
x
y
, it follows

A( f (gggg))

f (Ã(gggg))
� max

(Λ1,...,Λn)∈Δn

⎛⎜⎜⎜⎜⎝
n

∑
i=1

Λi f (xxxxi)

f

(
n

∑
i=1

Λixxxxi

)
⎞⎟⎟⎟⎟⎠ . (2.6)

The inequalities (2.5) and (2.6) present generalizations of (1.7) and (1.8) .

Replacing F by −F in Theorem 2 we get the next theorem.

THEOREM 3. Let L satisfy properties L1, L2 on nonempty set E , A be a positive
normalized linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator.
Let xxxx1, ...,xxxxn ∈ R

k and K = conv({xxxx1, ...,xxxxn}). Let f be a convex function on K and
λ1, ...,λn barycentric coordinates over K. If J is an interval in R such that f (K) ⊂ J
and F : J × J → R is an decreasing function in the first variable, then for all gggg ∈ Lk

such that gggg(E) ⊂ K and f (gggg),λi(gggg) ∈ L (i = 1, ...,n) we have

F
(
A( f (gggg)), f (Ã(gggg))

)
� F

(
n

∑
i=1

A(λi(gggg)) f (xxxxi), f (Ã(gggg))

)

� min
(Λ1,...,Λn)∈Δn

F

(
n

∑
i=1

Λi f (xxxxi), f

(
n

∑
i=1

Λixxxxi

))
.

3. Convex functions on k -simplices in R
k

In this section we give analogs to Theorem 1 and Theorem 2 for convex func-
tions defined on k -simplices in R

k. As a consequence we obtain generalizations of the
Hermite-Hadamard inequality (1.10).

Let S = [vvvv1,vvvv2, ...,vvvvk+1] be k -simplex in R
k with vertices vvvv 1, vvvv 2, ..., vvvv k+1 ∈ R

k.
The barycentric coordinates λ1, ...,λk+1 over S are nonnegative linear polynomials that
satisfy Lagrange’s property:

λi(vvvv j) = δi j =
{

1, i = j
0, i �= j

.

Therefore, it is known that for each xxxx ∈ S the barycentric coordinates λ1(xxxx), ...,
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λk+1(xxxx) have the form

λ1(xxxx) =
Volk ([xxxx,vvvv2, ...,vvvvk+1])

Volk(S)
,

λ2(xxxx) =
Volk ([vvvv1,x,vx,vx,vx,v3, ...,vvvvk+1])

Volk(S)
,

...

λk+1(xxxx) =
Volk ([vvvv1, ...,vvvvk,xxxx])

Volk(S)
, (3.1)

where Volk denotes k -dimensional Lebesgue measure on S.
Here, for example, [vvvv1,xxxx, ...,vvvvk+1] denotes the subsimplex obtained by replacing

vvvv2 by xxxx , i.e. the subsimplex opposite to vvvv2, when adding xxxx as a new vertex.
In other words, we see that the barycentric coordinates λ1, ...,λk+1 for each xxxx ∈ S

can be presented as the ratios of the volume of subsimplex with one vertex in xxxx and the
volume of S (see Picture 1).

Picture 1. 2 -simplex S = [vvvv1,vvvv2,vvvv3] in R
2 divided into 3 subsimplices.

The signed volume Volk(S) is given by (k+1)× (k+1) determinant

Volk (S) =
1
k!

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11

v12 v22 vk+12
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣
,

where vvvv1 = (v11,v12, ...,v1k), ...,vvvvk+1 = (vk+11,vk+12, ...,vk+1k) (see [18]).
Since vectors vvvv2 − vvvv1, ...,vvvvk+1 − vvvv1 are linearly independent, then each xxxx ∈ S can

be written in unique way as convex combination of vvvv1, ...,vvvvk+1 in the form

xxxx =
Volk ([xxxx,vvvv2, ...,vvvvk+1])

Volk(S)
vvvv1 + ...+

Volk ([vvvv1, ...,vvvvk,xxxx])
Volk(S)

vvvvk+1. (3.2)
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Now we present an analog of Theorem 1 for convex functions defines on k -
simplices in R

k .

THEOREM 4. Let L satisfy properties L1, L2 on nonempty set E, A be a positive
normalized linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator.
Let f be a convex function on k -simplex S = [vvvv1,vvvv2, ...,vvvvk+1] in R

k and λ1, ...,λk+1
barycentric coordinates over S. Then for all gggg ∈ Lk such that gggg(E) ⊂ S and f (gggg) ∈ L
we have

A( f (gggg)) �
k+1

∑
i=1

A(λi(gggg)) f (vvvvi) (3.3)

=
Volk

([
Ã(gggg),vvvv2, ...,vvvvk+1

])
Volk(S)

f (vvvv1)+ ...+
Volk

([
vvvv1,vvvv2, ..., Ã(gggg)

])
Volk(S)

f (vvvvk+1).

Proof. For each t ∈ E we have gggg(t) ∈ S. Then there exist the barycentric coordi-
nates

λ1 (gggg(t)) =
Volk ([gggg(t),vvvv2, ...,vvvvk+1])

Volk(S)
=

1
k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

g1(t) v21 vk+11
...

...
...

gk(t) v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣

,

...

λk+1(gggg(t)) =
Volk ([vvvv1, ...,vvvvk,gggg(t)])

Volk(S)
=

1
k!

∣∣∣∣∣∣∣∣∣
1 · · · 1 1

v11 vk1 g1(t)
...

...
...

v1k · · · vkk gk(t)

∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣
such that

k+1
∑
i=1

λi(gggg(t)) = 1 and gggg(t) =
k+1

∑
i=1

λi(gggg(t))vvvvi.

Since f is convex on S, then

f (gggg(t)) �
k+1

∑
i=1

λi(gggg(t)) f (vvvvi) .
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Using the Laplace expansion of the determinant we can easily check that λi(gggg) ∈ L for
all i = 1, ...,k+1.

Now, applying A on the last inequality we have

A( f (gggg)) � A

(
k+1

∑
i=1

λi(gggg) f (vvvvi)

)
=

k+1

∑
i=1

A(λi(gggg)) f (vvvvi) , (3.4)

where

A(λ1 (gggg)) =

1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
A(g1) v21 vk+11

...
...

...
A(gk) v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣

=
Volk

([
Ã(gggg),vvvv2, ...,vvvvk+1

])
Volk(S)

,

... (3.5)

A(λk+1 (gggg)) =

1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1
v11 vk1 A(g1)
...

...
...

v1k · · · vkk A(gk)

∣∣∣∣∣∣∣∣∣∣∣∣
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
v11 v21 vk+11
...

...
...

v1k v2k · · · vk+1k

∣∣∣∣∣∣∣∣∣∣∣∣

=
Volk

([
vvvv1, ...,vvvvk, Ã(gggg)

])
Volk(S)

,

By combining (3.4) and (3.5) we obtain (3.3) . �
Using Theorem 4 we prove an analog of Theorem 2.

THEOREM 5. Let L satisfy properties L1, L2 on nonempty set E, A be a positive
normalized linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator.
Let f be a convex function on k -simplex S = [vvvv1,vvvv2, ...,vvvvk+1] in R

k and λ1, ...,λk+1
barycentric coordinates over S. If J is an interval in R such that f (S) ⊂ J and F :
J × J → R an increasing function in the first variable, then for all gggg ∈ Lk such that
gggg(E) ⊂ S and f (gggg) ∈ L we have

F
(
A( f (gggg)), f (Ã(gggg))

)
� max

x∈x∈x∈x∈S
F

(
Volk ([xxxx,vvvv2, ...,vvvvk+1])

Volk(S)
f (vvvv1)+ ...+

Volk ([vvvv1, ...,vvvvk,xxxx])
Volk(S)

f (vvvvk+1), f (xxxx)
)

= max
(Λ1,...,Λk+1)∈Δk+1

F

(
k+1

∑
i=1

Λi f (vvvvi), f

(
k+1

∑
i=1

Λivvvvi

))
. (3.6)
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Proof. Since for each t ∈ E we have gggg(t) ∈ S, then it follows Ã(gggg) ∈ S (see the
first part of proof of Theorem 2).

Since F : J× J → R is an increasing function in the first variable, by Theorem 4
we have

F
(
A( f (gggg)), f (Ã(gggg))

)
� F

(
Volk([Ã(gggg),vvvv2,...,vvvvk+1])

Volk(S) f (vvvv1)+ ...+
Volk([vvvv1,...,vvvvk,Ã(gggg)])

Volk(S) f (vvvvk+1), f (Ã(gggg))
)

� max
x∈x∈x∈x∈S

F
(

Volk([xxxx,vvvv2,...,vvvvk+1])
Volk(S) f (vvvv1)+ ...+ Volk([vvvv1,...,vvvvk,xxxx])

Volk(S) f (vvvvk+1), f (xxxx)
)

.

The equality in (3.6) is simple consequence of substitutions

Λ1 =
Volk ([xxxx,vvvv2, ...,vvvvk+1])

Volk(S)
, ...,Λk+1 =

Volk ([vvvv1, ...,vvvvk,xxxx])
Volk(S)

,

and

xxxx =
k+1

∑
i=1

Λivvvvi. �

REMARK 4. Replacing F by −F in Theorem 5 we can get an analog of Theorem
3 for convex functions defines on k -simplices in R

k.

REMARK 5. If all the assumptions of Theorem 4 are satisfied and in addition f is
continuous, then

f (Ã(gggg)) � A( f (gggg))

�
k+1

∑
i=1

A(λi(gggg)) f (vvvvi) (3.7)

=
Volk

([
Ã(gggg),vvvv2, ...,vvvvk+1

])
Volk(S)

f (vvvv1)+ ...+
Volk

([
vvvv1, ...,vvvvk, Ã(gggg)

])
Volk(S)

f (vvvvk+1).

The first inequality is consequence of Theorem E and the second of Theorem 4.

EXAMPLE 1. Let p1, ..., pk+1 � 0 such that ∑k+1
i=1 pi = 1. We define the functional

A : L → R by

A(g) =
k+1

∑
i=1

pig(ti).

It is obviously that A is positive normalized linear functional on L. Then the linear
operator Ã = (A, ...,A) : Lk → R

k is defined by

Ã(gggg) =
k+1

∑
i=1

pigggg(ti).
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We set gggg(ti) = vvvvi for all i = 1, ...,k + 1. Let S = [vvvv1,vvvv2, ...,vvvvk+1] be k -simplex in R
k

and f be a continuous convex function on S such that f (gggg) ∈ L. Then as a simple
consequence of (3.7) it follows

f

(
k+1

∑
i=1

pivvvvi

)
� A( f (gggg)) �

k+1

∑
i=1

pi f (vvvvi) .

Setting p1 = ... = pk+1 = 1
k+1 we get

f

(
1

k+1

k+1

∑
i=1

vvvvi

)
� A( f (gggg)) � 1

k+1

k+1

∑
i=1

f (vvvvi) .

Related results are obtained in [1], [20].

EXAMPLE 2. Let S = [vvvv1,vvvv2, ...,vvvvk+1] be k -simplex in R
k and f a continuous

convex function on S. Let L = (E,A ,λ ) be a measure space with positive measure λ .
We define the functional A : L → R by

A(g) =
1

λ (E)

∫
E
g(t)dλ (t).

It is obviously that A is positive normalized linear functional on L. Then the linear
operator Ã = (A, ...,A) : Lk → R

k is defined by

Ã(gggg) =
1

λ (E)

∫
E
gggg(t)dλ (t).

We denote gggg = 1
λ (E)

∫
E
gggg(t)dλ (t). If gggg(E)⊂ S and f (gggg)∈ L, then from (3.7) it follows

f (gggg) � A( f (gggg)) (3.8)

� Volk ([gggg,vvvv2, ...,vvvvk+1])
Volk(S)

f (vvvv1)+ ...+
Volk ([vvvv1, ...,vvvvk,gggg])

Volk(S)
f (vvvvk+1),

Related results are obtained as consequences of Choquet’s theory (see [4], [11], [12],
[13], [19]) .

4. Related results

In this section we present generalizations of results in [8].
The next theorem generalizes Theorem A.

THEOREM 6. Let L satisfy properties L1, L2 on nonempty set E, A be a positive
linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator. Let xxxx1, ...,xxxxn ∈
R

k and K = conv({xxxx1, ...,xxxxn}). Let f be a convex function on K and λ1, ...,λn barycen-
tric coordinates over K. Then for all gggg ∈ Lk such that gggg(E) ⊂ K and f (gggg),λi(gggg) ∈ L
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(i = 1, ...,n) and positive real numbers p1, ..., pn, with Pn =∑n
i=1pi, satisfying the con-

dition
pi � A(1) for all i = 1, ...,n, (4.1)

we have

f

⎛⎜⎜⎝
n
∑
i=1

pixxxxi − Ã(gggg)

Pn−A(1)

⎞⎟⎟⎠�

n
∑
i=1

pi f (xxxxi)−
n
∑
i=1

A(λi(gggg)) f (xxxxi)

Pn−A(1)

�

n
∑
i=1

pi f (xxxxi)−A( f (gggg))

Pn−A(1)
. (4.2)

Proof. For each t ∈ E we have gggg(t)∈ K. Then there exist barycentric coordinates

λi(gggg(t)) � 0 (i = 1, ...,n) such that
n
∑
i=1

λi(gggg(t)) = 1 and gggg(t) =
n
∑
i=1

λi(gggg(t))xxxxi.

Since f is convex on K, then

f (gggg(t)) �
n

∑
i=1

λi(gggg(t)) f (xxxxi). (4.3)

Applying a positive linear functional A on (4.3) we get

A( f (gggg)) �
n

∑
i=1

A(λi(gggg)) f (xxxxi),

where
n

∑
i=1

A(λi(gggg)) = A

(
n

∑
i=1

λi(gggg)

)
= A(1)

and
A(1) � A(λi(gggg)) � 0 for all i = 1, ...,n.

Also we have

Ã(gggg) =
n

∑
i=1

A(λi(gggg))xxxxi.

Now we can write
n
∑
i=1

pixxxxi − Ã(gggg)

Pn−A(1)
=

1
Pn−A(1)

(
n
∑
i=1

pixxxxi −
n
∑
i=1

A(λi(gggg))xxxxi

)
=

1
Pn−A(1)

n
∑
i=1

(pi−A(λi(gggg)))xxxxi.

We have
1

Pn−A(1)

n

∑
i=1

(pi −A(λi(gggg))) = 1
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and
1

Pn−A(1)
(pi−A(λi(gggg))) � 0 for all i = 1, ...,n,

since

pi � A(1) � A(λi(gggg)) for all i = 1, ...,n.

Therefore, expression ∑n
i=1pixxxxi−Ã(gggg)

Pn−A(1) is convex combination of vectors xxxx1, ...,xxxxn and
belongs to K.

Since f is convex on K, we have

f

⎛⎜⎜⎝
n
∑
i=1

pixxxxi − Ã(gggg)

Pn−A(1)

⎞⎟⎟⎠= f

(
1

Pn−A(1)

n
∑
i=1

(pi −A(λi(gggg)))xxxxi

)

� 1
Pn−A(1)

n
∑
i=1

(pi −A(λi(gggg))) f (xxxxi)

=

n
∑
i=1

pi f (xxxxi)−
n
∑
i=1

A(λi(gggg)) f (xxxxi)

Pn−A(1)

�

n
∑
i=1

pi f (xxxxi)−A( f (gggg))

Pn−A(1)
. �

COROLLARY 1. Let L satisfy properties L1, L2 on nonempty set E and A be a
positive normalized linear functional on L. Let f be a convex function on an interval
I = [m,M] ⊂ R (−∞ < m < M < ∞). Then for all g ∈ L such that g(E) ⊂ I and
f (g) ∈ L, we have

f (m+M−A(g)) � A(g)−m
M−m

f (m)+
M−A(g)
M−m

f (M)

� f (m)+ f (M)−A( f (g)). (4.4)

Proof. For each t ∈ E we have gggg(t) ∈ I = [m,M].
Since interval I = [m,M] is 1-simplex with vertices m and M , then the barycentric

coordinates have the special form:

λ1(g(t)) =
M−g(t)
M−m

and λ2(g(t)) =
g(t)−m
M−m

Then applying a functional A we have

A(λ1(g)) =
M−A(g)
M−m

and A(λ2(g)) =
A(g)−m
M−m

. (4.5)
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Choosing n = 2, p1 = p2 = 1, x1 = m, x2 = M from (4.2) it follows

f (m+M−A(g)) � f (m)+ f (M)−
[
M−A(g)
M−m

f (m)+
A(g)−m
M−m

f (M)
]

=
A(g)−m
M−m

f (m)+
M−A(g)
M−m

f (M)

� f (m)+ f (M)−A( f (g)). �

REMARK 6. The inequalities in (4.4) are also obtained in [3]. Some related re-
sults are obtained in [2].

THEOREM 7. Let L satisfy properties L1, L2 on nonempty set E, A be a positive
linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator. Let xxxx1, ...,xxxxn ∈
R

k and K = conv({xxxx1, ...,xxxxn}). Let f be a convex function on K and λ1, ...,λn barycen-
tric coordinates over K. Then for all gggg ∈ Lk such that gggg(E) ⊂ K and f (gggg),λi(gggg) ∈ L
(i = 1, ...,n) and positive real numbers p1, ..., pn satisfying the conditions Pn−A(1) >
0, where Pn = ∑n

i=1pi, and
n
∑
i=1

pixxxxi − Ã(gggg)

Pn−A(1)
∈ K, (4.6)

we have

f

⎛⎜⎜⎝
n
∑
i=1

pixxxxi− Ã(gggg)

Pn−A(1)

⎞⎟⎟⎠�
Pn f

(
1
Pn

n
∑
i=1

pixxxxi

)
−A(1) f

(
1

A(1) Ã(gggg)
)

Pn−A(1)

�
Pn f

(
1
Pn

n
∑
i=1

pixxxxi

)
−

n
∑
i=1

A(λi(gggg)) f (xxxxi)

Pn−A(1)
. (4.7)

Proof. For each t ∈ E we have gggg(t)∈ K. Then there exist barycentric coordinates
λi(gggg(t)) � 0 (i = 1, ...,n) such that ∑n

i=1λi(gggg(t)) = 1 and

gggg(t) =
n
∑
i=1

λi(gggg(t))xxxxi.

Also we have

Ã(gggg) =
n

∑
i=1

A(λi(gggg))xxxxi.

We can easily see that

1
A(1)

Ã(gggg) =
1

A(1)

n

∑
i=1

A(λi(gggg))xxxxi ∈ K,
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since
1

A(1)

n

∑
i=1

A(λi(gggg)) = 1 and
1

A(1)
A(λi(gggg)) � 0, i = 1, . . . ,n.

Since f is convex on K , then

f

(
1

A(1)
Ã(gggg)

)
� 1

A(1)

n

∑
i=1

A(λi(gggg)) f (xxxxi). (4.8)

Using first (1.2) and then (4.8) we have

f

⎛⎜⎜⎝Pn

(
1
Pn

n
∑
i=1

pixxxxi

)
−A(1)

(
1

A(1) Ã(gggg)
)

Pn−A(1)

⎞⎟⎟⎠�
Pn f

(
1
Pn

n
∑
i=1

pixxxxi

)
−A(1) f

(
1

A(1) Ã(gggg)
)

Pn−A(1)

�
Pn f

(
1
Pn

n
∑
i=1

pixxxxi

)
−A(1) 1

A(1)

n
∑
i=1

A(λi(gggg)) f (xxxxi)

Pn−A(1)
. �

REMARK 7. If positive real numbers p1, ..., pn satisfy the condition (4.1) , then
the condition (4.6) is also satisfied since K is convex set. Then (4.2) can be extended
as follows

Pn f

(
1
Pn

n
∑
i=1

pixxxxi

)
−

n
∑
i=1

A(λi(gggg)) f (xxxxi)

Pn−A(1)
�

Pn f

(
1
Pn

n
∑
i=1

pixxxxi

)
−A(1) f

(
1

A(1) Ã(gggg)
)

Pn−A(1)

� f

⎛⎜⎜⎝
n
∑
i=1

pixxxxi − Ã(gggg)

Pn−A(1)

⎞⎟⎟⎠

�

n
∑
i=1

pi f (xxxxi)−
n
∑
i=1

A(λi(gggg)) f (xxxxi)

Pn−A(1)

�

n
∑
i=1

pi f (xxxxi)−A( f (gggg))

Pn−A(1)
. (4.9)

COROLLARY 2. Let L satisfy properties L1, L2 on nonempty set E and A be a
positive normalized linear functional on L. Let f be a convex function on an interval
I = [m,M] ⊂ R (−∞ < m < M < ∞). Then for all g ∈ L such that g(E) ⊂ I and
f (g) ∈ L, we have

f (m+M−A(g)) � 2 f

(
m+M

2

)
− f (A(g))

� 2 f

(
m+M

2

)
−
[
M−A(g)
M−m

f (m)+
A(g)−m
M−m

f (M)
]
. (4.10)
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Proof. Choosing n = 2, x1 = m, x2 = M, p1 = p2 = 1 and using (4.5) , the
inequalities in (4.10) easily follows from (4.7) . �

Next we give generalizations of Corollary 1 and Corollary 2 for convex functions
defined on k -simplices in R

k .

COROLLARY 3. Let L satisfy properties L1, L2 on nonempty set E, A be a posi-
tive normalized linear functional on L and Ã = (A, ...,A) : Lk → R

k a linear operator.
Let f be a convex function on k -simplex S = [vvvv1,vvvv2, ...,vvvvk+1] in R

k and λ1, ...,λk+1

barycentric coordinates over S. Then for all gggg ∈ Lk such that gggg(E) ⊂ S and f (gggg) ∈ L
we have

(k+1) f

(
1

k+1

k+1
∑
i=1

vvvvi

)
− k+1

∑
i=1

λi(Ã(gggg)) f (vvvvi)

k

�
(k+1) f

(
1

k+1

k+1
∑
i=1

vvvvi

)
− f (Ã(gggg))

k

� f

⎛⎜⎜⎝
k+1
∑
i=1

vvvvi − Ã(gggg)

k

⎞⎟⎟⎠

�

k+1
∑
i=1

f (vvvvi)−
k+1
∑
i=1

λi(Ã(gggg)) f (vvvvi)

k

�

k+1
∑
i=1

f (vvvvi)−A( f (gggg))

k
. (4.11)

Proof. Since barycentric coordinates λ1, ...,λk+1 over k -simplex S in R
k are non-

negative linear polynomials, then A(λi(gggg)) = λi(Ã(gggg)) for all i = 1, ...,k+1.
Choosing xxxxi = vvvvi for all i = 1, ...,k+1 and p1 = p2 = ... = pk+1 = 1, the inequal-

ities in (4.11) easily follow from (4.2) and (4.7) . �
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[10] D. S. MITRINOVIĆ, J. PEČARIĆ AND A. M. FINK, Classical and new inequalities in analysis, Kluwer

Academic Publishers, The Netherlands, 1993.
[11] C. P. NICULESCU,The Hermite-Hadamard inequality for convex functions of a vector variable, Math.

Ineq. Appl., 5 (2002).
[12] C. P. NICULESCU, The Hermite-Hadamard inequality for convex functions on a global NPC space, J.

Math. Anal. Appl., 356 (2009).
[13] C. P. NICULESCU AND L.-E. PERSSON, Old and new on the Hermite-Hadamard inequality, Real

Analysis Exchange, 29, 2 (2003/2004), 663–685.
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[16] S. SIMIĆ, On a new converse of Jensen’s inequaity, Pub. De L’Instit. Mathem., 85, 99 (2009), 107–

110.
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