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ON NECESSARY AND SUFFICIENT CONDITIONS FOR

VALIDITY OF SOME CHEBYSHEV–TYPE INEQUALITIES

ANDRIY L. SHIDLICH

(Communicated by A. Čižmešija)

Abstract. We obtain necessary and sufficient conditions for validity of some Chebyshev-Type
inequalities.

1. Introduction

Let f , g : [a,b] → R be integrable functions, both increasing or both decreasing.
Further, let p : [a,b] → R

+
0 be an integrable function. Then (see, for example, [1,

Chap. IX])

b∫
a

p(x) f (x)g(x)dx �
b∫

a

p(x) f (x)dx

b∫
a

p(x)g(x)dx

( b∫
a

p(x)dx

)−1

. (1.1)

If one of the functions f or g is nonincreasing and the other nondecreasing the reversed
inequality is true, i.e.,

b∫
a

p(x) f (x)g(x)dx �
b∫

a

p(x) f (x)dx

b∫
a

p(x)g(x)dx

( b∫
a

p(x)dx

)−1

(1.2)

Inequalities (1.1) and (1.2) are known as Chebyshev’s inequalities. Inequality (1.1) was
formulated in 1882 by P. L. Chebyshev in the paper [2]. In [2] P. L. Chebyshev gives
without a proof some properties of remainder terms of certain infinite fractions. One of
these properties implies that if p , f , g are integrable functions and p(x) > 0 on [a,b]
and if

sgn
d f (x)

dx
= sgn

dg(x)
dx

then inequality (1.1) is valid. In 1883 in [3] P. L. Chebyshev published the proofs of
this result.
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Note that inequalities (1.1) and (1.2) attracted great interest of researchers. So,
there exists a number of proofs of these inequalities, given by other authors (see, for
example, [4–6]). A lot of analogues and generalizations of inequalities (1.1) and (1.2)
is also known. In particular, these results can be found in Chapter IX of the book [1] by
D.S. Mitrinović, J. E. Pečarić and A. M. Fink which trace completely the historical and
chronological developments of Chebyshev’s and related inequalities (see also [7, 8]).

In the paper, we study a question of what minimal conditions on functions p :
[a,b]→ R

+ and g : [a,b]→ R
+
0 one has to impose for the inequality

b∫
a

p(x) f (x)g(x)dx �
( b∫

a

pr(x) f r(x)dx

)1/r b∫
a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1/r

(1.3)

or the inequality

b∫
a

p(x) f (x)g(x)dx �
( b∫

a

pr(x) f r(x)dx

)1/r b∫
a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1/r

(1.4)

to be satisfied for any nonincreasing on [a,b] function f : [a,b]→ R
+
0 with r being an

arbitrary positive number.
Our investigations of this question were begun in the team-work [9] of A. I.

Stepanets and the author (see also [10]). In [9], the authors studied the quantities of
the best approximations of integrals of functions by integrals of finite rank. In fact, in-
equalities of the kind (1.4) were needed to get exact values of the upper bonds for theses
quantities on a certain class of functions. In [9], the function f was nonincreasing and
the functions p was nondecreasing but the function g was of special type and it was not
monotone as it demands above for validity of (1.2). The authors got weaker conditions
(than the monotonicity of the function g ) on functions p and g that guarantee validity
of inequality (1.4) (and, in particular, inequality (1.2)) for any nonincreasing on [a,b]
function f .

In this paper, we obtain necessary and sufficient conditions on arbitrary functions
p : [a,b] → R

+ and g : [a,b]→ R
+
0 such that inequality (1.4) or inequality (1.3) holds

for any nonincreasing on [a,b] function f .

2. Main results

We formulate here main theorems.

THEOREM 2.1. Let r ∈ (0,1] , and let g: [a,b] → R
+
0 and p: [a,b] → R

+ be
integrable functions. Then for any nonincreasing function f : [a,b] → R

+
0 , inequality

(1.3) is valid if and only if for all s ∈ (a,b) ,

s∫
a

p(x)g(x)dx

( s∫
a

pr(x)dx

)−1

�
b∫

a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1

. (2.1)

In the case where r ∈ (1,∞) , the following statement is true:



CONDITIONS FOR VALIDITY OF SOME CHEBYSHEV-TYPE INEQUALITIES 73

THEOREM 2.2. Let r ∈ (1,∞) , and let g: [a,b] → R
+
0 and p: [a,b] → R

+ be
integrable functions. Then for any nonincreasing function f : [a,b] → R

+
0 , inequality

(1.3) is valid if and only if for all s ∈ (a,b) ,

s∫
a

p(x)g(x)dx

( s∫
a

pr(x)dx

)−1/r

�
b∫

a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1/r

. (2.2)

Note that, in the case where r = 1 and where f is an increasing function on [a,b] ,
the validity of inequality (1.1) for similar conditions follows from J.F. Steffensen’s re-
sult (see [11], [1, Chap. IX]):

if F is an increasing function on [a,b] , and if F , G and H are integrable func-
tions on [a,b] such that for all s ∈ [a,b]

s∫
a

G(x)dx

( b∫
a

G(x)dx

)−1

�
s∫

a

H(x)dx

( b∫
a

H(x)dx

)−1

.

then
b∫

a

F(x)G(x)dx

( b∫
a

G(x)dx

)−1

�
b∫

a

F(x)H(x)dx

( b∫
a

H(x)dx

)−1

.

Putting F(x) = f (x) , H(x) = p(x) > 0, G(x) = p(x)g(x) in this statement, we
conclude that inequality (1.1) holds if p(x) > 0, if f is an increasing function on [a,b]
and if for all s ∈ [a,b] ,

s∫
a

p(x)g(x)dx

( s∫
a

p(x)dx

)−1

�
b∫

a

p(x)g(x)dx

( b∫
a

p(x)dx

)−1

. (2.3)

We also mention the paper of M. Biernacki [12]. It follows from results of M. Bier-
nacki that inequality (1.1) also holds in the case where both functions

f (x) and

x∫
a

p(t)g(t)dt

( x∫
a

p(t)dt

)−1

are increasing or decreasing. These conditions are similar to conditions (2.1)–(2.3) but
they are less general.

In the case where the product p1−r(x)g(x) is nonincreasing, for a given r > 0, the
derivative of the function

Φr(s) =
s∫

a

p(x)g(x)dx

( s∫
a

pr(x)dx

)−1

(2.4)

is nonpositive on (a,b] . Thus, the function Φr(s) is also nonincreasing and condition
(2.1) holds. Therefore, the following statement is true:
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COROLLARY 2.1. Let f , g: [a,b] → R
+
0 and p: [a,b] → R

+ be integrable
functions. If for a given r ∈ (0,1] , the product p1−r(x)g(x) is nonincreasing on [a,b] ,
and if the function f is also nonincreasing on [a,b] , then inequality (1.5) is valid.

Now we consider inequality (1.4).

THEOREM 2.3. Let r ∈ (0,1) , and let g: [a,b] → R
+
0 and p: [a,b] → R

+ be
integrable functions. Then for any nonincreasing function f : [a,b] → R

+
0 , inequality

(1.4) is valid if and only if for all s ∈ (a,b) ,

s∫
a

p(x)g(x)dx

( s∫
a

pr(x)dx

)−1/r

�
b∫

a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1/r

. (2.5)

In the case where r ∈ [1,∞) , the following theorem is true:

THEOREM 2.4. Let r ∈ [1,∞) , and let g: [a,b] → R
+
0 and p: [a,b] → R

+ be
integrable functions. Then for any nonincreasing function f : [a,b] → R

+
0 , inequality

(1.4) is valid if and only if for all s ∈ (a,b) ,

s∫
a

p(x)g(x)dx

( s∫
a

pr(x)dx

)−1

�
b∫

a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1

. (2.6)

Note that in the case where f : [a,b] → R
+
0 and p : [a,b] → R

+ are nonincreas-
ing functions and where for x ∈ [a,σ) , the function g(x) = 0 and for x ∈ [σ ,b] , the
function g(x) = 1/p(x) , a < σ < b , the sufficiency of conditions (2.5) and (2.6) (for
corresponding r ∈ (0,∞)) for validity of (1.4) follows from the proofs of Lemma 2 and
of Lemma 3 of the paper [9] (see also [10, Chapt. 4 and Chapt. 7]).

In the case where for a given r > 0, the product p1−r(x)g(x) is nondecreasing,
the derivative of the function Φr(s) defined by equality (2.4) is nonnegative on (a,b] .
Thus, the function Φr(s) is also nondecreasing and condition (2.6) holds. Therefore,
the following statement is true:

COROLLARY 2.2. Let f , g: [a,b] → R
+
0 and p: [a,b] → R

+ be integrable
functions. If for a given r ∈ [1,∞) , the product p1−r(x)g(x) is nondecreasing on [a,b] ,
and if the function f is nonincreasing on [a,b] , then inequality (1.4) is valid.

REMARK. Statements on necessary and sufficient conditions for inequalities (1.3)
and (1.4) to be valid for any nondecreasing function f are the same as in Theorems 1–4

but all integrals of the kind
s∫
a
(·)dx in conditions (2.1), (2.2), (2.5) and (2.6) should be

replaced by integrals of the kind
b∫
s
(·)dx .
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3. Proofs of the theorems

We mainly use the following discrete analogues of the theorems.

3.1. Discrete analogues of Theorems 2.1–2.4.

LEMMA 3.1. Let r ∈ (0,1] , and let b = {bk}n
k=1 and p = {pk}n

k=1 be nonnegative
number sequences, n ∈ N , pk > 0 . Then for any nonnegative nonincreasing sequence
a={ak}n

k=1 , the inequality

n

∑
k=1

pkakbk �
( n

∑
i=1

pr
i a

r
i

)1/r n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

(3.1)

is valid if and only if the following condition is satisfied:

min
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1

. (3.2)

Proof. Sufficiency. First, let us verify that condition (3.2) is sufficient for validity
of inequality (3.1) in the case where n = 2. For this purpose, set

c = (p1a1)r +(p2a2)r, x1 = (p1a1)r, αk = pkbk, βk = p−1
k , k = 1,2, (3.3)

and consider on the interval [0,c] the function

h(x) = α1β1x
1/r +α2β2(c− x)1/r. (3.4)

If r �= 1, α1 �= 0 and α2 �= 0 then the unique critical point of this function, namely

x∗ = c(α1β1)
r

r−1

(
(α1β1)

r
r−1 +(α2β2)

r
r−1

)−1

= c(α2β2)
r

1−r

(
(α1β1)

r
1−r +(α2β2)

r
1−r

)−1

,

(3.5)
is the minimum point. Consequently, for x ∈ [0,x∗] , the function h does not increase
and, for x ∈ [x∗,c] , it does not decrease. Hence, this function attains its minimum value
on any interval [x0,c] ⊂ [x∗,c] at the point x0 . Thus, ∀x ∈ [x0,c] ⊂ [x∗,c]

h(x) � h(x0). (3.6)

Setting
x0 = cβ−r

1 (β−r
1 +β−r

2 )−1, (3.7)

we see that [x0,c] = {x ∈ [0,c] : β1x
1
r � β2(c− x)

1
r } . Hence, if the sequence a does

not increase then, by virtue of (3.3), we get

β1x
1
r
1 = a1 � a2 = β2(c− x1)

1
r ,
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and, hence, x1 ∈ [x0,c] . Therefore, if we have x0 � x∗ then, according to (3.6), we get

h(x1) � h(x0), (3.8)

whence, taking into account notations in (3.3), (3.4) and (3.7), we obtain (3.1):

2

∑
k=1

pkakbk = h(x1) � h(x0) =
( 2

∑
i=1

pr
i a

r
i

)1/r 2

∑
k=1

pkbk

( 2

∑
k=1

pr
k

)−1/r

. (3.9)

So, let us show that x0 � x∗ . By (3.2), taking into account (3.3), we get

min
s∈[1,2]

s

∑
k=1

αk

( s

∑
k=1

β−r
k

)−1

=
2

∑
k=1

αk

( 2

∑
k=1

β−r
k

)−1

.

Then, by the relation

min
k=1,2

δkγr
k � δ1 + δ2

γ−r
1 + γ−r

2

� max
k=1,2

δkγr
k (3.10)

which holds for any numbers δk � 0, γk > 0 and r > 0, and which is equality if and
only if δ1γr

1 = δ2γr
2 , we have

α1β r
1 � α2β r

2 . (3.11)

By virtue of (3.11), (3.5) and (3.7), we get

x0− x∗ =
c
(
(α1β r

1)
r

1−r − (α2β r
2)

r
1−r

)
(
β−r

1 +β−r
2

)(
(α1β1)

r
r−1 +(α2β2)

r
r−1

) � 0.

Therefore, we see that indeed, x0 � x∗ and hence, relation (3.9) is true.
If r = 1 then by virue of (3.11) the function h is nondecreasing on any interval

[x0,c]⊂ [0,c] . If α2 = 0 and α1 �= 0 then the function h also does not decrease on any
interval [x0,c] ⊂ [0,c] . Therefore, in these cases, inequality (3.6) holds, and, hence,
relation (3.9) holds too.

By virtue of (3.11), only in the trivial case where α1 = α2 = 0, equality α1 = 0
holds.

Thus, for n = 2, the sufficiency of condition (3.2) for validity of inequality (3.1)
is proved.

In general case, we prove by induction on n the proposition about sufficiency of
condition (3.2) for validity of inequality (3.1).

The case n = 1 is obvious.
In the case where n = 2, it is proved above.
Assume that for n = m−1 � 1, this proposition is true.
Let us show that for n = m , it is also true.
First, let us verify that for a certain number s , s < m−1, the following equality is

true:

min
j=s,s+1

j
∑

k=s
pkbk

j
∑

k=s
pr

k

=
psbs + ps+1bs+1

pr
s + pr

s+1
. (3.12)
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Indeed, if for all s < m−1,

min
j=s,s+1

j

∑
k=s

pkbk

( j

∑
k=s

pr
k

)−1

= bsp
1−r
s <

s+1

∑
k=s

pkbk

( s+1

∑
k=s

pr
k

)−1

, (3.13)

then using (3.10) from (3.13), we get

b1p1−r
1 < b2p1−r

2 < .. . < bmp1−r
m .

By virtue of (3.10), it follows that

m

∑
k=1

pkbk

( m

∑
k=1

pr
k

)−1

> min
k∈[1,m]

bkp
1−r
k = b1p1−r

1 .

Hence, we obtain contradiction with (3.2). Therefore, there exist at least one number
s < m−1 such that relation (3.12) is satisfied.

Let, for example, relation (3.12) holds for s = 1. Then we apply the proposition

proved above for n = 2 to estimate the sum
2
∑

k=1
pkakbk . We get

m

∑
k=1

pkakbk �
(

pr
1a

r
1+ pr

2a
r
2

)1/r

(p1b1+ p2b2)
(

pr
1+ pr

2

)−1/r

+
m

∑
k=3

pkakbk =
m−1

∑
k=1

p′ka
′
kb

′
k,

(3.14)
where

p ′
k =

{
(pr

1 + pr
2)

1/r , k = 1,
pk+1, k = 2,m−1;

b′k =

⎧⎨⎩(p1b1 + p2b2)
(

pr
1 + pr

2

)−1/r

, k = 1,

bk+1, k = 2,m−1;
(3.15)

a′k =

⎧⎨⎩
(

pr
1a

r
1 + pr

2a
r
2

)1/r(
pr

1 + pr
2

)−1/r

, k = 1,

ak+1, k = 2,m−1.
(3.16)

The sum
m−1
∑

k=1
p′ka

′
kb

′
k contains m− 1 items. For any nonincreasing sequence a =

{ak}n
k=1 , the sequence a′ = {a′k}n

k=1 of the form as in (3.16) does not increase too.
Indeed, according to (3.16) for any k = 2,3, . . . ,m−2, we have

a′k = ak+1 � ak+2 = a′k+1.

The inequality a′1 � a′2 is equivalent to the inequality(
pr

1a
r
1 + pr

2a
r
2

pr
1 + pr

2

)1/r

� a3

which holds for any nonincreasing sequence a .
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By virtue of (3.2) and (3.15), we conclude

min
s∈[1,m−1]

s
∑

k=1
p ′

kb
′
k

s
∑

k=1
p ′

k
r

� min
s∈[1,m]

s
∑

k=1
pkbk

s
∑

k=1
pr

k

=

m
∑

k=1
pkbk

m
∑

k=1
pr

k

=

m−1
∑

k=1
p ′

kb
′
k

m−1
∑

k=1
p ′

k
r

.

Consequently, for numbers a′k , b ′
k and p ′

k , the induction assumption is satisfied. Hence,
according to (3.14), (3.15) and (3.16), we obtain

m

∑
k=1

pkakbk �
m−1

∑
k=1

p ′
ka

′
kb

′
k �

(m−1

∑
i=1

p ′
i
ra ′

i
r
)1/r m−1

∑
k=1

p ′
kb

′
k

(m−1

∑
j=1

p′j
r
)−1/r

=
( m

∑
i=1

pr
i a

r
i

)1/r m

∑
k=1

pkbk

( m

∑
j=1

pr
j

)−1/r

Therefore, in the case where condition (3.12) is satisfied for s = 1, inequality (3.1) is
true. In the same manner, one can prove that inequality (3.1) is true in the case where
condition (3.12) is satisfied for any 1 < s < m−1.

Necessity. Assume that

min
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1

=
s∗

∑
k=1

pkbk

( s∗

∑
k=1

pr
k

)−1

<
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1

. (3.17)

Set

α1 =
s∗

∑
i=1

pibi, α2 =
n

∑
i=s∗+1

pibi, β1 = (
s∗

∑
i=1

pr
i )
−1/r, β2 = (

n

∑
i=s∗+1

pr
i )
−1/r,

and for any c > 0, consider on the interval [0,c] the function h of the form as in (3.4).
Further, let us consider the sequence a′ = {a′i}n

i=1 such that

a′i =

{
β1x

1
r∗ , i = 1,2, . . . ,s∗,

β2(c− x∗)
1
r , i = s∗ +1, . . . ,n,

where x∗ is the point of the form as in (3.5).
According to the definition of a′ , we get

n

∑
k=1

pka
′
kbk = h(x∗) (3.18)

and ( n

∑
i=1

pr
i a

′
i
r
)1/r n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

= h(x0), (3.19)

where x0 is a point of the form as in (3.7).
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According to (3.10) from relation (3.17), we conclude that

α1β r
1 =

s∗

∑
k=1

pkbk

( s∗

∑
k=1

pr
k

)−1

<
n

∑
k=s∗+1

pkbk

( n

∑
k=s∗+1

pr
k

)−1

= α2β r
2 . (3.20)

Consequently,

x0− x∗ =
c
(
(α1β r

1)
r

1−r − (α2β r
2)

r
1−r

)
(
β−r

1 +β−r
2

)(
(α1β1)

r
r−1 +(α2β2)

r
r−1

) < 0,

and x0 < x∗ . In view of the relation [x0,c] = {x ∈ [0,c] : β1x
1
r � β2(c− x)

1
r } , we see

that β1x
1
r∗ � β2(c− x∗)

1
r and for any i = 1,2, . . . ,n−1, the inequality a′i � a′i+1 holds.

Furthermore, as stated above, for r �= 1, α1 �= 0 and α2 �= 0, the point x∗ of the
form as in (3.5) is the minimum point of the function h . Consequently, the following
inequality holds:

h(x∗) < h(x0). (3.21)

If r = 1 (by virtue of (3.20)) or if α1 = 0 and α2 �= 0, then the function h is nonin-
creasing on the interval [0,c] . Hence, in these cases, inequality (3.21) is also true. By
virtue of (3.20), the equality α2 = 0 is impossible.

Combining relations (3.18), (3.19) and (3.21), we conclude that for the sequence
a′ , inequality (3.1) does not hold. Thus, necessity of condition (3.2) is proved. �

LEMMA 3.2. Let r ∈ (1,∞) , and let b = {bk}n
k=1 and p = {pk}n

k=1 be nonneg-
ative number sequences, n ∈ N , pk > 0 . Then for any nonnegative nonincreasing
sequence a={ak}n

k=1 , inequality (3.1) is valid if and only if the following condition is
satisfied:

min
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1/r

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

. (3.22)

Proof. Necessity. Assume that

min
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1/r

=
s∗

∑
k=1

pkbk

( s∗

∑
k=1

pr
k

)−1/r

<
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

.

(3.23)
Consider nonincreasing sequence a′ = {a′i}n

i=1 of the form

a′i =
{

(∑s∗
k=1 pr

k)
−1/r, k = 1,2, . . . ,s∗,

0, k = s∗ +1, . . . ,n.

For this sequence, we have

n

∑
k=1

pka
′
kbk =

s∗

∑
k=1

pkbk

( s∗

∑
k=1

pr
k

)−1/r
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and ( n

∑
i=1

pr
i a

′
i
r
)1/r n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

.

Combining these relations and taking into account (3.23), we conclude that for the
sequence a′ , inequality (3.1) does not hold. Thus, necessity of condition (3.22) is
proved.

Sufficiency. We prove by induction on n the proposition about sufficiency of con-
dition (3.22) for inequality (3.1) to be valid.

The case n = 1 is obvious.
Assume that for n = m−1 � 1, this proposition is true.
Let us show that for n = m , it is also true.
For this, we use notation (3.3) and consider on the interval [0,c] the function h

defined by relation (3.4) where r ∈ (1,∞) .
Setting

x0 = cβ−r
1 (β−r

1 +β−r
2 )−1

and following the proof of Lemma 3.1, we conclude that [x0,c] = {x ∈ [0,c] : β1x
1
r �

β2(c−x)
1
r } . By virtue of (3.3) and monotonicity of the sequence a , we have x1 ∈

[x0,c] .
Further, we consider the following two cases:

1) h(x1) � h(x0) (3.24)

and

2) h(x1) < h(x0). (3.25)

In the first case, we use notation (3.15) and (3.16). Then by virtue of (3.24), we get

m

∑
k=1

pkakbk = h(x1)+
m

∑
k=3

pkakbk � h(x0)+
m

∑
k=3

pkakbk =
m−1

∑
k=1

p′ka
′
kb

′
k. (3.26)

The sum
m−1
∑

k=1
p′ka

′
kb

′
k contains m− 1 items. For any nonincreasing sequence a =

{ak}n
k=1 , the sequence a′ = {a′k}n

k=1 of the form as in (3.16) does not increase too.
Furthermore, in view of relations (3.22) and (3.15), we conclude that

min
s∈[1,m−1]

s
∑

k=1
p ′

kb
′
k(

s
∑

k=1
p ′

k
r
)1/r

� min
s∈[1,m]

s
∑

k=1
pkbk(

s
∑

k=1
pr

k

)1/r
=

m
∑

k=1
pkbk(

m
∑

k=1
pr

k

)1/r
=

m−1
∑

k=1
p ′

kb
′
k(

m−1
∑

k=1
p ′

k
r
)1/r

.

(3.27)
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Consequently, for the numbers a′k , b ′
k and p ′

k , the induction assumption is satisfied.
Hence, according to (3.26), (3.15) and (3.16), we get

m

∑
k=1

pkakbk �
m−1

∑
k=1

p ′
ka

′
kb

′
k �

(m−1

∑
i=1

p ′
i
ra ′

i
r
)1/r m−1

∑
k=1

p ′
kb

′
k

(m−1

∑
k=1

p ′
k
r
)−1/r

=
( m

∑
i=1

pr
i a

r
i

)1/r m

∑
k=1

pkbk

( m

∑
k=1

pr
k

)−1/r

.

(3.28)

Therefore, in the case where condition (3.24) is satisfied, inequality (3.1) is true.
Let us show that in the case where condition (3.25) is satisfied, this inequality is

also true. It is clear that by virtue of (3.25), the number α2 �= 0. For α1 �= 0, on [0, c]
the function h has the single critical point

x∗ =
c(α2β2)

r
1−r

(α1β1)
r

1−r +(α2β2)
r

1−r
,

which is a maximum point of the function. Consequently, for x∈[0,x∗] , the function h
does not decrease and, for x ∈ [x∗,c] , it does not increase. By virtue of (3.25) and the
inequality x1 > x0 , we conclude that, for x ∈ [x1,c] , the function h does not increase.
Hence, for any x̃ ∈ [x1,c] the following inequality is true:

h(x̃) < h(x1). (3.29)

If α1 = 0 then the function h does not increase on any interval [x0,c] . Thus,
relation (3.29) is also true.

Let x̃ is a number such that β2(c− x̃)
1
r = a3 . Then, taking into account accepted

notations and monotonicity of the sequence a , we conclude that x̃ ∈ [x1,c] and, hence,
inequality (3.29) is true.

Setting

p ′
k =

⎧⎨⎩
p1, k = 1,

(pr
2 + pr

3)
1/r , k = 2,

pk+1, k = 3,m−1;
b′k =

⎧⎪⎪⎨⎪⎪⎩
b1, k = 1,

(p2b2 + p3b3)
(

pr
2 + pr

3

)−1/r

, k = 2,

bk+1, k = 3,m−1;
(3.30)

a′k =

⎧⎪⎪⎨⎪⎪⎩
a1, k = 1,(
pr

2a
r
2 + pr

3a
r
3

)1/r(
pr

2 + pr
3

)−1/r

, k = 2,

ak+1, k = 3,m−1,

(3.31)

we obtain

m

∑
k=1

pkakbk = h(x1)+
m

∑
k=3

pkakbk � h(x̃)+
m

∑
k=3

pkakbk =
m−1

∑
k=1

p′ka
′
kb

′
k.
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The sum
m−1
∑

k=1
p′ka

′
kb

′
k contains m− 1 items. For any nonincreasing sequence a =

{ak}n
k=1 , the sequence a′ = {a′k}n

k=1 of the form as in (3.31) does not increase too.
Furthermore, by virtue of relations (3.22) and (3.30), relation (3.27) is true.

Consequently, for the numbers a′k , b ′
k and p ′

k , the induction assumption is satis-
fied. Hence, in this case, relation (3.28) also holds. Therefore, inequality (3.1) holds
too. Lemma is completed. �

LEMMA 3.3. Let r ∈ (0,1) , and let b = {bk}n
k=1 and p = {pk}n

k=1 be nonnegative
number sequences, n ∈ N , pk > 0 . Then for any nonnegative nonincreasing sequence
a={ak}n

k=1 , the inequality

n

∑
k=1

pkakbk �
( n

∑
i=1

pr
i a

r
i

)1/r n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

(3.32)

is valid, if and only if the following condition is satisfied:

max
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1/r

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1/r

. (3.33)

LEMMA 3.4. Let r ∈ [1,∞) , and let b = {bk}n
k=1 and p = {pk}n

k=1 be nonneg-
ative number sequences, n ∈ N , pk > 0 . Then, for any nonnegative nonincreasing
sequence a={ak}n

k=1 , inequality (3.32) is valid, if and only if the following condition
is satisfied:

max
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1

. (3.34)

The proof of Lemma 3.3 is similar to the proof of Lemma 3.2 and the proof of
Lemma 3.4 is similar to the proof of Lemma 3.1.

It follows from Proposition 3 of the paper [13] that condition (3.34) is sufficient
for inequality (3.32) to be true for any nonincreasing sequence a = {ak}n

k=1 and for any
r ∈ [1,∞) .

In the proof of Lemma 1 of the paper [14], in fact, it was shown that for any
nonincreasing sequence a = {ak}n

k=1 and for any r ∈ (0,1) , inequality (3.32) is valid
if condition (3.33) is satisfied.

3.2. Proofs of theorems

Necessity in Theorem 2.1 and Theorem 2.2 is proved by analogy with the proof of
necessity in Lemma 3.1 and Lemma 3.2 correspondingly.

Sufficiency. Let g : [a,b]→ R
+
0 and p : [a,b] → R

+ be integrable functions such
that for corresponding number r ∈ (0,∞) , condition (2.1) or (2.2) is satisfied.

First, let us prove the proposition that inequality (1.3) holds for any function f
such that for a certain n ∈ N , the following representation is true:

f (t) = ak, t ∈ (sk−1,sk), k = 1,2, . . . ,n, (3.35)
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where a1 > a2 > .. . > an � 0 and a = s0 < s1 < .. . < sn = b .
For any k = 1,2, . . . ,n , we set

pk =
( sk∫

sk−1

pr(x)dx

)1/r

, bk =

sk∫
sk−1

p(x)g(x)dx

( sk∫
sk−1

pr(x)dx

)−1/r

. (3.36)

If condition (2.1) or (2.2) is satisfied, then correspondingly, the following relation is
true:

min
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−1

= min
k=1,n

sk∫
a

p(x)g(x)dx

( sk∫
a

pr(x)dx

)−1

�
b∫

a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−1

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−1

or

min
s∈[1,n]

s

∑
k=1

pkbk

( s

∑
k=1

pr
k

)−r

= min
k=1,n

sk∫
a

p(x)g(x)dx

( sk∫
a

pr(x)dx

)−r

�
b∫

a

p(x)g(x)dx

( b∫
a

pr(x)dx

)−r

=
n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)−r

Consequently, for sequences a = {ak}n
k=1 , b = {bk}n

k=1 and p = {pk}n
k=1 , conditions

of Lemma 3.1 or Lemma 3.2 hold. Hence, inequality (3.1) is true. By virtue of (3.35)
and (3.36), we obtain necessary relation

b∫
a

p(x) f (x)g(x)dx =
n

∑
k=1

sk∫
sk−1

p(x) f (x)g(x)dx =
n

∑
k=1

pkakbk

�
( n

∑
i=1

pr
i a

r
i

) 1
r n

∑
k=1

pkbk

( n

∑
k=1

pr
k

)− 1
r

=
( b∫

a

pr(x) f r(x)dx

) 1
r

b∫
a

p(x)g(x)dx

( b∫
a

pr(x)dx

)− 1
r

.

To prove the sufficiency in general case let us consider the functions fn(t) , n ∈ N ,
such that

fn(t) =
k f (a)

n
, t :

(k−1) f (a)
n

< f (t) � k f (a)
n

, k = 1,2, . . . ,n. (3.37)



84 ANDRIY L. SHIDLICH

We see that the inequality f (t) � fn(t) holds for all n ∈ N and t ∈ [a,b] . By virtue of
the summability on [a,b] of the product p(t) f (t)g(t) , the values

b∫
a

p(t)g(t)( fn(t)− f (t))dt

converge to zero as n → ∞ . Furthermore, for any n ∈ N , the function fn(t) is non-
increasing and it takes finitely many values on [a,b] . Hence, this function satisfies
conditions of the proposition proved above. Thus, in view of (3.37), we conclude that
for any ε > 0 and for all sufficiently great n (n > n0(ε))

b∫
a

p(t) f (t)g(t)dt =
b∫

a

p(t)g(t) fn(t)dt−
b∫

a

p(t)g(t)( fn(t)− f (t))dt

�
( b∫

a

pr(t) f r
n(t)dt

)1/r ∫ b
a p(t)g(t)dt(∫ s
a pr(t)dt

)1/r
− ε

�
( b∫

a

pr(t) f r(t)dt

)1/r ∫ b
a p(t)g(t)dt(∫ b
a pr(t)dt

)1/r
− ε.

Therefore, inequality (1.3) is true. Theorems 2.1 and 2.2 are completed.
Theorems 2.3 and 2.4 are proved by analogy. �
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