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Abstract. Let 0 < α < 1 , and let

Cα := lim
n→∞

(
1+

1
2α

+ · · ·+ 1
nα

− n1−α

1−α

)
.

It is proved that there exists a unique sequence (ωn) such that

1+
1
2α

+ · · ·+ 1
nα

= Cα +
(n+ωn)1−α

1−α
.

Moreover, the sequence (ωn) is decreasing and satisfies 1
2 � ωn � 1

4

[
1+
(
1+ 1

n

)α]
, whence

limn→∞ωn = 1
2 . This is only a special case of the more general results established in this paper.

These results concern some sequences derived from generalized Euler–Mascheroni constants
involving convex functions and complement similar ones obtained by V. Timofte [Integral esti-
mates for convergent positive series. J. Math. Anal. Appl. 303 (2005), 90–102].

1. Introduction

Let f : [1,∞) → (0,∞) be a continuous function such that

S :=
∞

∑
n=1

f (n) < ∞. (1)

V. Timofte [7, Proposition 1] proved that if the restriction of f to [3/2,∞) is convex,
then for every n ∈ N (the set of all positive integers) there exists a unique real number
θn such that

f (1)+ f (2)+ · · ·+ f (n)+
∫ ∞

n+θn

f (t)dt = S (2)

and
1
2

� θn � 1
4

[
1+

f (n)
f (n+1)

]
. (3)

In particular, we have limn→∞ θn = 1
2 if limn→∞

f (n)
f (n+1) = 1.
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In the present paper we are concerned with the case when the series ∑∞
n=1 f (n)

diverges, i.e., (1) is not satisfied. In this case, for the asymptotic behavior of the sum
f (1) + f (2) + · · ·+ f (n) the reader is referred to the paper by J. Sándor [6]. Let be
given a continuous decreasing function f : [1,∞) → (0,∞) , and let (an) and (bn) be
the sequences defined by

an := f (1)+ f (2)+ · · ·+ f (n)−
∫ n+1

1
f (t)dt,

bn := f (1)+ f (2)+ · · ·+ f (n)−
∫ n

1
f (t)dt.

Then the chain of inequalities

an � an+1 < bn+1 � bn (4)

holds for every positive integer n , whence the sequences (an) and (bn) are both con-
vergent. Under the additional assumption that

lim
x→∞

f (x) = 0, (5)

the two sequences have the same limit, say γ f (see [6, Theorem 1]). Moreover, due to
(4) one has

an � γ f � bn for every n ∈ N.

Under the above assumptions ( f is a continuous positive decreasing function de-
fined on [1,∞) which satisfies (5)) let n be any positive integer, and let Fn : [0,∞)→ R

be the function defined by

Fn(x) := f (1)+ f (2)+ · · ·+ f (n)−
∫ n+x

1
f (t)dt − γ f . (6)

Note that Fn is continuous and strictly decreasing on [0,∞) . Since

Fn(0) = bn− γ f � 0 and Fn(1) = an− γ f � 0,

it follows that there exists a unique real number ωn ∈ [0,1] such that Fn(ωn) = 0, i.e.,

f (1)+ f (2)+ · · ·+ f (n)−
∫ n+ωn

1
f (t)dt = γ f . (7)

The main purpose of the present paper is to investigate the sequence (ωn) , defined
by (7). In section 2 we prove that although the equations (2) and (7) defining the se-
quences (θn) and (ωn) , respectively, are of completely different nature, in the presence
of the convexity of f the estimates provided for θn by (3) are valid for ωn , too. In sec-
tion 3 we prove that also the monotonicity of the two sequences is the same under the
additional assumption that f is twice differentiable and f ′′/ f ′ is monotone.
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2. Convergence of the sequence (ωn)

In order to prove that the estimates (3) are valid also for (ωn) , we are lead to
consider (besides the sequences (an) and (bn) introduced in section 1) the sequence
(cn) , defined by

cn := f (1)+ f (2)+ · · ·+ f (n)−
∫ n+ 1

2

1
f (t)dt. (8)

In the special case when f (x) := 1
x it is known that (cn) converges faster than (an)

and (bn) . In this case we have

bn := 1+
1
2

+ · · ·+ 1
n
− lnn,

cn := 1+
1
2

+ · · ·+ 1
n
− ln

(
n+

1
2

)
,

and γ f = γ , the classical Euler–Mascheroni constant. It is known that

1

2n+ 2
5

< bn− γ <
1

2n+ 1
3

for all n ∈ N (see [8, 9])

and that
1

24(n+1)2 < cn − γ <
1

24n2 for all n ∈ N (see [2]). (9)

On the other hand, in the general setting from section 1, J. Sándor [6, Theorem 2]
proved that if f : [1,∞) → (0,∞) is a continuous decreasing convex function satisfying
(5) and such that the function defined by g(x) := x f (x) is concave, then

n
2n+1

f (n) � bn− γ f � f (n)
2

for all n ∈ N,

whence

lim
n→∞

1
f (n)

(bn− γ f ) =
1
2
.

In what follows we prove that the sequence (cn) , defined for an arbitrary function
f by (8), possesses similar properties with the particular sequence (cn) obtained by
specializing f (x) := 1

x . More precisely, we prove that (cn) is decreasing and converges
to γ f whenever f is convex and satisfies (5). Moreover, (cn) converges faster than
(an) and (bn) if, in addition, f satisfies

lim
n→∞

f (n+1)
f (n)

= 1. (10)

THEOREM 1. Let f : [1,∞) → (0,∞) be a continuous convex function. Then the
inequalities

cn+1 � cn (11)
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and
an < cn < bn (12)

hold for all n∈N . If, in addition, f is decreasing and satisfies (5), then (cn) converges
to γ f , the common limit of (an) and (bn) .

Proof. Let n be any positive integer. Since f takes only positive values, (12) is
obvious. The inequality (11) is equivalent to

f (n+1) �
∫ n+ 3

2

n+ 1
2

f (t)dt,

which holds by virtue of the famous Hermite–Hadamard inequality (see, for instance,
[3, pp. 150–152], [5, p. 15], [4, Section 1.9] or [1, Section 3.7])

(b−a) f

(
a+b

2

)
�
∫ b

a
f (t)dt � (b−a)

f (a)+ f (b)
2

,

valid for every convex function f : [a,b] → R .
If, in addition, f is decreasing and satisfies (5), then (an) and (bn) are both con-

vergent and have the same limit γ f . By (12) we deduce that (cn) converges to γ f ,
too. �

THEOREM 2. Let f : [1,∞) → (0,∞) be a continuous decreasing convex function
satisfying (5), and let ωn be the unique real number in [0,1] defined by (7). Then

1
2

� ωn � 1
4

[
1+

f (n)
f (n+1)

]
for all n ∈ N. (13)

In particular, we have limn→∞ωn = 1
2 if f satisfies (10).

Proof. Let (cn) be the sequence defined by (8). By Theorem 1 it follows that

γ f � cn for every n ∈ N.

Further, let Fn : [0,∞) → R be the strictly decreasing function defined by (6). Since
Fn(ωn) = 0 and

Fn

(
1
2

)
= cn − γ f � 0,

it follows that ωn � 1
2 .

In order to derive the upper estimate for ωn in (13), note first that

Fn

(
1
2

)
= Fn

(
1
2

)
−Fn(ωn) =

∫ n+ωn

n+ 1
2

f (t)dt.

Since f is convex and decreasing, by the Hermite–Hadamard inequality we deduce that

Fn

(
1
2

)
�
(
ωn− 1

2

)
f

(
n+

2ωn +1
4

)
�
(
ωn− 1

2

)
f (n+1). (14)



ON CERTAIN SEQUENCES DERIVED FROM EULER-MASCHERONI CONSTANTS 111

Next we claim that
f (n)− f (n+1)

4
� Fn

(
1
2

)
. (15)

Indeed, taking into account that Fn
(

1
2

)
= cn− γ f , inequality (15) is equivalent to

cn − f (n)− f (n+1)
4

� γ f . (16)

Let (c′n) be the sequence defined by

c′n := cn − f (n)− f (n+1)
4

.

Since f satisfies (5) and (cn) converges to γ f , it follows that (c′n) converges to γ f ,
too. So, in order to establish (16) it suffices to prove that (c′n) is increasing. Note that

c′n+1− c′n =
f (n+2)+2 f (n+1)+ f (n)

4
−
∫ n+ 3

2

n+ 1
2

f (t)dt

� f (n+2)+2 f (n+1)+ f (n)
4

− f
(
n+ 3

2

)
+ f

(
n+ 1

2

)
2

by virtue of the Hermite–Hadamard inequality. Thus, in order to complete the proof of
(15) it remains to show that

f (n+2)+2 f (n+1)+ f (n)� 2 f

(
n+

3
2

)
+2 f

(
n+

1
2

)
. (17)

But inequality (17) is an immediate consequence of the celebrated Hardy–Littlewood-
Pólya majorization inequality (see, for instance, [3, pp. 89–91], [5, p. 259, Theorem
B], [4, Theorem 1.5.4] or [1, Section 3.4]): given a nonempty interval I ⊆ R , a convex
function f : I → R , and a positive integer m , let x1, . . . ,xm,y1, . . . ,ym ∈ I be such that

(i) x1 � · · · � xm and y1 � · · · � ym ;

(ii) x1 + · · · + xk � y1 + · · · + yk for 1 � k � m−1;

(iii) x1 + · · · + xm = y1 + · · · + ym .

Then the following inequality holds:

f (x1)+ · · ·+ f (xm) � f (y1)+ · · ·+ f (ym). (18)

Let m = 4 and consider the numbers

x1 := n+2, x2 := x3 := n+1, x4 := n;

y1 := y2 := n+
3
2

, y3 := y4 := n+
1
2

.

A simple computation shows that
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• x1 � · · · � x4 and y1 � · · · � y4 ;

• x1 + · · · + xk � y1 + · · · + yk for all k ∈ {1,2,3} ;

• x1 + · · · + x4 = y1 + · · · + y4 .

Thus (18) ensures the validity of (17). Therefore (15) holds, as claimed.
By (14) and (15) it follows that(

ωn− 1
2

)
f (n+1) � f (n)− f (n+1)

4
,

and this inequality implies the upper estimate in (13). �

REMARK 1. Let 0 < α < 1, and let f (x) := 1
xα for all x ∈ [1,∞) . Then we have

bn = 1+
1
2α

+ · · ·+ 1
nα

− n1−α

1−α
+

1
1−α

.

Let γ f be the limit of (bn) , and let

Cα := γ f − 1
1−α

= lim
n→∞

(
1+

1
2α

+ · · ·+ 1
nα

− n1−α

1−α

)
.

Further, let ωn ∈ [0,1] be the unique real number satisfying

1+
1
2α

+ · · ·+ 1
nα

− (n+ωn)1−α

1−α
+

1
1−α

= γ f ,

i.e.,

1+
1
2α

+ · · ·+ 1
nα

= Cα +
(n+ωn)1−α

1−α
.

By Theorem 2 it follows that 1
2 � ωn � 1

4

[
1+
(
1+ 1

n

)α]
, for every n ∈ N , hence

limn→∞ωn = 1
2 .

REMARK 2. In the special case when f (x) := 1
x , the number ωn satisfying (7) is

given by

ωn := exp

(
1+

1
2

+ · · ·+ 1
n
− γ
)
−n. (19)

Theorem 2 provides the estimate

1
2

� exp

(
1+

1
2

+ · · ·+ 1
n
− γ
)
−n � 1

2
+

1
4n

,
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i.e.,

0 � cn − γ � ln

(
n+

1
2

+
1
4n

)
− ln

(
n+

1
2

)

= ln

(
1+

1

4n
(
n+ 1

2

)
)

<
1

4n
(
n+ 1

2

) <
1

4n2 .

Although this estimate is not so accurate as (9), it has the advantage that it does not
appear as an isolated fact, but was derived as a special case of a more general result.

REMARK 3. By (15) it follows that under the assumptions of Theorem 2 one has

0 � cn − γ f � Fn

(
1
2

)
� f (n)− f (n+1)

4
,

whence

0 � 1
f (n)

(cn − γ f ) � 1
4

[
1− f (n+1)

f (n)

]
.

If, in addition, f satisfies (10), then

lim
n→∞

1
f (n)

(cn − γ f ) = 0,

i.e., (cn) converges faster to γ f than (bn) .

If f does not satisfy (10), then the limit of the sequence (ωn) is no longer 1
2 . In

this case we have the following result concerning the convergence of (ωn) .

THEOREM 3. Let f : [1,∞) → (0,∞) be a continuous decreasing convex func-
tion satisfying (5), and let ωn ∈ [ 1

2 ,1
]

be the unique real number defined by (7). If

limx→∞
f (x+t)
f (x) exists in R for every t ∈ [0,1] , then

lim
n→∞

ωn = L(a), (20)

where a := limx→∞
f (x+1)
f (x) and L : [0,1] → [ 1

2 ,1
]

is the function defined by

L(x) :=

⎧⎨
⎩

1 if x = 0
ln
(

x lnx
x−1

)
/ lnx if 0 < x < 1

1/2 if x = 1.

Proof. If a = 1, then the conclusion follows by Theorem 2.
Next consider the case 0 < a < 1. It is easily seen (see also [7, proof of Theo-

rem 3]) that

lim
x→∞

f (x+ t)
f (x)

= at for all t ∈ [0,∞). (21)
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Following V. Timofte [7] in his proof of Theorem 3, let ω := L(a) , and let (un) be the
sequence defined by

un := f (1)+ f (2)+ · · ·+ f (n)−
∫ n+ω

1
f (t)dt− γ f .

Then we have ω ∈ [ 1
2 ,1
]
. Taking into account (7) we deduce that

un =
∫ n+ωn

n+ω
f (t)dt,

whence un = (ωn−ω) f (n+λn) with λn ∈
[ 1

2 ,1
]
, by virtue of the mean value theorem

for integrals. Therefore we have

|ωn −ω |= |un|
f (n+λn)

� |un|
f (n+1)

.

By using (21) and the Cesáro-Stolz theorem it can be proved that

lim
n→∞

un

f (n+1)
= 0,

whence limn→∞ωn = ω = L(a) (we omit the details because they are the same as in [7,
pp. 94–95]).

Finally, suppose that a = 0. In order to prove that limn→∞ωn = 1, let ε ∈ (0,1)
be arbitrarily chosen, and let (dn) be the sequence defined by

dn := f (1)+ f (2)+ · · ·+ f (n)−
∫ n+1−ε

1
f (t)dt.

By virtue of (21) we have

lim
x→∞

f (x+ t)
f (x)

= 0 for all t ∈ [0,∞),

whence

lim
n→∞

f (n+1)
f
(
n+1− ε

2

) = 0.

Choose n0 ∈ N such that

f (n+1)
f
(
n+1− ε

2

) <
ε
2

for all n � n0.

Then for all n � n0 we have

dn+1−dn = f (n+1)−
∫ n+2−ε

n+1−ε
f (t)dt

� f (n+1)−
∫ n+1− ε

2

n+1−ε
f (t)dt

� f (n+1)− ε
2

f
(
n+1− ε

2

)
< 0.
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Consequently, the sequence (dn)n�n0 is strictly decreasing. On the other hand, this
sequence converges to γ f because of (5), whence dn > γ f for all n � n0 . This means
that Fn(1− ε) > 0 for all n � n0 , Fn being the function defined by (6). Taking into
account that Fn is strictly decreasing on [0,∞) and that Fn(ωn) = 0, it follows that

1− ε < ωn � 1 for all n � n0.

Since ε ∈ (0,1) was arbitrarily chosen, we conclude that limn→∞ωn = 1. �

3. Monotonicity of the sequence (ωn)

Surprisingly, also the monotonicity of the sequence (ωn) defined by (7) is the
same as that of the sequence (θn) defined by (2).

THEOREM 4. Let f : [1,∞) → (0,∞) be a twice differentiable decreasing convex
function satisfying (5), and let ωn ∈

[
1
2 ,1
]

be the unique real number defined by (7). If
the function f ′′/ f ′ is monotone, then the sequence (ωn) has the opposite monotonicity.

Moreover, limx→∞
f (x+t)
f (x) exists in R for every t ∈ [0,1] , whence (20) holds.

Proof. Since the proof is similar to that of Theorem 6 in [7] we only sketch it by
pointing out the differences. Assume, for instance, that f ′′/ f ′ is increasing on [1,∞) .
Let F : [1,∞) → [0,∞) be the strictly increasing function defined by

F(x) :=
∫ x

1
f (t)dt.

By (7) it follows that

F(n+ωn)−F(n−1+ωn−1) = f (n) for all n � 2.

Further, let ϕ : [1,∞)× [ 1
2 ,1
]→ R be the function defined by

ϕ(x,y) := F(x+ y)−F(x+ y−1)− f (x).

For any fixed x ∈ [1,∞) the partial function ϕ(x, ·) is decreasing and satisfies the in-
equality ϕ

(
x, 1

2

)
>0 �ϕ(x,1), whence there is a unique y∈[ 1

2 ,1
]

such that ϕ(x,y)=0.
In other words, there is a unique function Θ : [1,∞)→ [ 1

2 ,1
]

such that ϕ(x,Θ(x)) = 0,
i.e.,

F(x+Θ(x))−F(x+Θ(x)−1) = f (x) for all x ∈ [1,∞). (22)

Furthermore, Θ is decreasing on [1,∞) (see [7, pp. 97–98] for details).
Next set

en := f (1)+ f (2)+ · · ·+ f (n)−F(n+Θ(n))

for every n ∈ N . Taking into account that F is strictly increasing, by (22) it follows
that

en − en+1 = F(n+1+Θ(n+1))− f (n+1)−F(n+Θ(n))
= F(n+Θ(n+1))−F(n+Θ(n)) � 0
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because Θ(n + 1) � Θ(n) . Therefore, the sequence (en) is increasing. On the other
hand, (en) converges to γ f because of (5), whence en � γ f for all n ∈ N . Taking into
account (7) and the definition of en , this inequality is equivalent to

f (1)+ · · ·+ f (n)−F(n+Θ(n)) � f (1)+ · · ·+ f (n−1)−F(n−1+ωn−1),

i.e., to
F(n−1+ωn−1) � F(n+Θ(n))− f (n) = F(n−1+Θ(n)),

by virtue of (22). Since F is increasing and ϕ(n, ·) is decreasing, we deduce that
ωn−1 � Θ(n) , whence

ϕ(n,ωn−1) � ϕ(n,Θ(n)) = 0.

This inequality implies that

0 � F(n+ωn−1)−F(n−1+ωn−1)− f (n)
= F(n+ωn−1)−F(n+ωn),

whence ωn−1 � ωn . Thus the sequence (ωn) is decreasing.
The last statement of the theorem follows easily by l’Hôpital’s rule (see [7]). �

REMARK 4. If f (x) = 1
x for all x ∈ [1,∞) , then by Theorem 4 it follows that the

sequence (ωn) , defined by (19), is decreasing (this monotonicity of (ωn) seems to be
new).
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