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GENERALIZATION OF K-DIVERGENCE AND RELATED MEANS

M. ANWAR, G. FARID AND J. PECARIC

Abstract. In this paper, we give a generalization of K -divergence measure and related results by
using some log-convexity criteria. Also we give related Cauchy means and prove monotonicity
of these means.

1. Introduction

For a given function ¢ defined on an interval / C R the ¢ entropy of x € I" is
defined by:

n

Hyp(x) = =Y 0 (x).

i=1

For two vectors x,y € I", the Jensen difference is defined by:

Sno(3) = (X5 ) = 3 o) + 3] m

Several divergence measures are defined in the statistical literature to reflect the fact that
some probability distributions are closer together than other and, consequently, that it
may be easier to distinguish between the distribution of one pair then between those
of the other. An important measure of divergence is J, ¢y defined in (1) also known as
J-divergence [3]. This divergence has some interesting properties, se for example [4],
p. 16. For applications of this divergence see [6, 8, 9]. Another important measure of
divergence is K -divergence introduced by Burbea and Rao [3]. This measure is defined

by:
- (M_ ¢(yi))7

Xi Vi

Kn,(l)(xvy) = Z('xi _yi)

i=1

)

where function ¢ is on an interval I not containing zero such that the function defined
by x — @ is increasing function and x,y € I".
In [3] we have an order relation between two divergence measures J and K defined

above that is the following result.
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THEOREM 1.1. Forany x,y € R’}
Ao (x,3) = Ki g (x,y) 3)

if and only if the function defined by x — @ is convex. The equality occurs if and
onlyifx=y.

In this paper without loss of generality we assume that J and K are n-dimensional
so we write Jy and Ky instead of J,, y and K, 4.
The special case of K -divergences for the function (cf. [3])

0o :RT - R, a >0, defined by

_ [ (a=D)7 0% —x), 0 # 1
Pa(x) = {xlogx, a=1, @
is denoted by K, o with respective forms
R (D T e e (L “
1,0 I -
X1 (xi —yi) (logxi —logyi), a=1

By using positivity of (2), the following results are given in [5].
THEOREM 1.2. R, defined by (5) is log-convex, that is,
[Rapx. )] < [Rns(xe,3)] P [Rur(x,y)]P 7 for —co<r<s<p<oo.  (6)

COROLLARY 1.3. For p,r,s,t € R such that r < s, p <t with r# p, s #t the
following inequality holds

1 1
(ﬁmp (xay) ) p=r < <ﬁn,t (x7y) ) =
R r(x,y) b Rns(x,)
In this paper we give extensions of results from [5] as well as some corresponding

mean value theorems. We also introduce corresponding Cauchy means and establish
monotonicity of the Cauchy means.

2. Results related to relation between J and K

In this section results related to difference of J and K divergence are discussed.
Firstly Mean value theorems and convexity after which the corresponding Cauchy
means are given.

LEMMA 2.1. Let f € C2(I), where I is compact interval in R does not containing
zero and m,M be such that

L ORES (ORET

<M. (7



GENERALIZATION OF K -DIVERGENCE AND RELATED MEANS 183

If the functions ¢y, ¢, are defined on I by:
3

01(x) =M= — f (),

3

X
02(0) = ()~ m’;
then the functions x — mT(X) and x — @ are convex.

is convex function.

¢IT<x>)” SV VO DR T

Similarly we have that ¢ZT(X)

Proof. Since <

is convex function too.

DEFINITION 2.2. Let [ be a real interval not containing zero and ¢ : / — R such
that the function defined by x — @ is convex. We define D-divergence D(X,y,¢)
by:

D(X7y7¢) :4J¢(X7y) _Kd)(xay) (8)

where x,y € I".

THEOREM 2.3. If f € C*(I), where I is a compact interval in R not containing
zero, then there exists & such that the following equality is valid

2 ¢ _ /
Dxy, f) = 2L E) 2?3‘ (£)+2£(2)

n

<[ od- e -een (2-2)]. o

i=1

X

Proof. Suppose min,cs <M> =m and max,es (f( )> =M. By using ¢; in-
stead of f in (3) we obtain

S a{ st ontm) —on (52 f - - (22 - 200 ) o

for x #y because d’lT(x)

o) S )

—(xi —yi) (%(xlz—ylz)—M_i_M) >0

Xi Vi

is strictly convex. Therefore we have

which implies the inequality

=

D(x,y,f>>M2[(x?+y?)—%(xi—yi>3 (i =) (;—”;)] (10)

i=1
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Similarly, using ¢, in (3) instead of f we get

S ! Xy
D(x,y,f) <mY, (o7 +57) — Z(xi —yi) = (xi— i) (3 5 (11)
i=1
By combining inequalities (10) and (11) and using intermediate value theorem,
2 ¢l !
that is for m < L (x)72i§ () +2/(x) <M there exist £ € I such that we get (9).

THEOREM 2.4. Let f,g € C*(I), where I is a compact interval in R not contain-
ing origin, then there exists & such that the following equality is valid

Dlxy.f) _ E2f'(€) = 26f1(8) +2f(¢) 1)

D(x.y,g) &2g"(&)—2Eg/(&)+2g(&)

provided the denominators are non zero.

Proof. The proof is similar to the proof of Theorem 3.3 in [2].

COROLLARY 2.5. Let the function K defined by:

Dl f) | E(E)—2EF(E) +2A(E)
K = Dly.g) ~ E97(E) —26g(8) +258) (%)

If K is invertible then

1 (DY, f)
5_K1<DW%9) (1

is a new mean provided that the denominator is non zero.

Proof. Since & € I and minx; < & < maxx; (14)implies

D
min)c,-gK_1 M < maxux; .
D(x,y,g)

LEMMA 2.6. Let the function y, defined by:

p+1
p)(cpfl) p#0.1

Wp(x) = ¢ x2logx p=I (15)
—xlogx p=0.

LZ15)]

=~ is convex for x > 0.

Then the function defined by x —

An important corollary of Theorem 2.4 is:
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COROLLARY 2.7. Let the function y, be as defined above and i‘; ul;" =Epr

for some & €1 and p # r such that D(x,y,y;) # 0, s = p,r. Then we have another

mean
1

5 — (D(xayﬂup))m
D(x.y, )
In the following results exponential convexity and log-convexity of this new diver-

gence measure D is discussed. First we give a definition and some results which will
be needed.

DEFINITION 2.8. A function f : (a,b) — R is exponentially convex if it is con-
tinuous and

2 aiajf(xi+x;) =0 (16)

i,j=1

for all n € N and all choices ¢; € R,i=1,..,n such that x; +x; € (a,b), 1 <i,j<n.

For exponentially convex function f : (a,b) — R, (16) is valid for all x; +x; €
(a,b), 1 <i,j <n anditis also valid for all % € (a,b), 1 <i,j<nthatis

Y aasf (x‘ ”’) >0, (17)

i,j=1

holds for every a; € R and every x; € (a,b),1 <i<n.
If f is exponentially convex then

det [f (’%ﬂ >0 (18)
ij=1

forevery n€ N, x; € (a,b),i=1,..,n.

THEOREM 2.9. Let D(x,y,y,) be as defined above. Then:

n
1. The matrix [D(x, Y, Woitp; )} is a positive semi definite matrix.
> L=
2. The function t — D(x,y, ;) is exponentially convex.

3. If D(x,y,y,) is positive then it is log-convex, that is

[D(x,y, wp)"™ < [Dx,y, wir) [P [D(x,y, ys)] P

Jor —oo <r < s < p<oo.
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Proof.

1. Consider the function f defined by:

k
X) = 2 uiujl[/t,.j(x) (A)
ij=1

fork=1,..,n,x>0,u; €R and t;; = p’;—pf Then

. V/t, x)
2 uiltj
i,j=1 *
FON"_ & no )
(—) =Y wupti 2= Yux2 | >0
X ij=1 i=1
that is the function defined by x — W%(x) is convex. Using f defined as in (8) we
obtain
n Xi+v; X; .
Sia{ 50t0-+700) = A}~ ) (L2 - L2 50
i=1 Xi Yi
Now by substituting f as defined in (A) we obtain
n
2 MiMjD(X7y7 llft,-_,-) =20 (19)

i,j=1
which implies positive semi definiteness.

2. We have lim,_oD(x,y, ¥,) = D(X,y, o), lim,_1 D(X,y,y,) = D(x,y,y1). This
implies D(X,y, ) is continuous for all p. Therefore by (17) we have exponen-
tial convexity of the function D(X,y, y,).

3. Now for n=2, D(p) :=D(X,y, y) is log-convex that is for —eo <r <s<p <o
the following is valid

Dy vp)]"* < Dy, yi) )7 [D(xy, y5)] 7

DEFINITION 2.10. For r,s € R we define generalized mean M, by

L

_ ( sy Ws) ;
M“"r_< (,y,u/r)) 7 e

where D(x,y,y,) # 0 for p =r,s.
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Other cases can be obtained by taking limits as:

1
Mm:( —z,’-;l{4(%1&'—2<x§“+yf“>+<x,—y,>< -} ) $2£0.1
B s(s—1) X {2(xi+yi) log '2y' —2(x;logx;+y;logy;)+(xi—yi)(logx;—logy;) }
My :< Y 1{(x,+y,>zlog(""§”> 203 21ogx,-+y%1ogy,->+(x,-—y,-><x,-mgx,-—y,-logy,-)})
2 {2(xi+yi) log ,2y, —2(x; logxj+y;logy;)+(xi—y:) (logx;—logy;)}

Xi+ Xi+yi ]
S {4 og (P2 ) 2 oga+y) T Hogyi)+ (i —yi) (i logxi—yilogyr)} 241

M =ex - — — e
p( B (AR () (1) (6 —y)) s(s—1

s#0,1
x.Jr .
Moo = exp (2;’1{2(Xi+yi)10g2( 520) —2(xilog? xi-+yilog? i)+ (x—yi) (log? x;—log? y1) } +1>
0,0 = pFRET
237 {2(xi+yi) log( ,2y, )—2(x;logx;+y;logy;)+(x;—y;) (logx; —logy;) }
Xi+Vi
My | = exp (z;—u{<x,-+y,->21og2( ) —2(x? log? xi+y? log? yi) + (xi—yi) (xilog xi—yi log? yi) } n 1)
1,1 = grEmn
237 {(xityi) Hlog(F52E) ~2 (2 logaxi+y7 log i)+ (xi—i) (i logxi—y; log ;) }

THEOREM 2.11. For p,r,s,t € R such that r < s and p <t the following in-
equality is valid
Mp,r g M[,S'

Proof. The proof is similar to the proof of Theorem 3.4 in [1].
3. Results related to K divergence
In this section we consider the following generalization of (2).

DEFINITION 3.1. For real valued functions %;, i = 1,..,n, f,h on some interval [
such that h;, i=1,..,n and % are strictly increasing functions, we define T-divergence

T(x,y,f) by:

rin) = Bt w0 (G- 465). e

where x,y € I" and p; are positive reals.

LEMMA 3.2. Let f,h € C'(I), where I is a compact interval in R does not con-
tain zero, be such that the function defined by x — %(x) is in C'(I) and & € I be such

that
(&) - (E)f(E)
h*(€)

Let the functions ¢y, ¢ defined by ¢1(x) = Mxh(x) — f(x), and ¢»(x) = f(x) —mxh(x),
then the function defined by x — %(x) for i=1,2 are increasing.

<M. (22)

m <
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/ ! /
Proof. Since (%—iﬁ?) =M- %M > 0 therefore % is increasing func-

tion. Similarly we have that d;l—z is increasing function too.
By using this lemma we have the following result.

THEOREM 3.3. If % € C\(I), where I is a compact interval in R and % hi,
i=1,...,n be strictly increasing functions then there exists & such that the following
equality is valid

f(EnE) —H(E)f(E) <
ey )= LEHEHEE $ ) - s - 23)
i=1
THEOREM 3.4. Let % £eCl(1) and % &, hi, i=1,..,n be strictly increasing.
Then for x # y there exists & € I such that the following equality is valid

T(x.y.f) _ f(EME)—H(E)f(E) (24)

T(x,y,g) &(&)n(&E)—n(&)sg(S)

provided the denominators are not zero.

Proof. The proof is similar to the proof of Theorem 2.4.

COROLLARY 3.5. Let the function K(&) defined by
Tley.f) _ £ (EME) ~HEE) 05

K(é) = T(x,y,g) o g’(é)h(é)—h/(é)g(é)
If K is invertible then
f et e (M) (26)
T(x,y,8)

is a new mean provided that the denominator is non zero.

Proof. Since & € I and minx; < & < maxx;, (26) implies

T
minx; < Kt (M) < maxyx; .

T(x,y,g)

LEMMA 3.6. Consider the function

xPh(x)
_ p#0
Vp(x) = {h(;) logx p=0. @7

Then the function defined by x — % (x) is strictly increasing for x > 0.
If we put p = — 1 and h;(x) = x and denote T'(X,y, y,) by ky(X,y;p) then we
have | X .
Losn e ) (% 0
ka(x,¥;p) = { g, 2Pl WO ) 7
sy pilxi —yi)(logx; —logy;), — a=1.
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REMARK 3.7. If we put p; =1, i = 1,..,n in above equation. Then we get
Ro(x,y) as defined above in (5).

Another corollary of Theorem 3.4 stated as.

: T(x%‘lfp)
COROLLARY 3.8. Let the function y, be as (27), and Tley.u)

E €l and p #r such that T (x,y,ys) #0, s = p,r and so we have another mean

é:(w);

= &P for some

T(x7y7Wr)

REMARK 3.9. If we put p=0a—1 and r = — 1 in Corollary 2.7 such that
ky(x,y;p) #0, for y = ¢, B then we have

1
5 = (kfx(X»Y;P)) a=p
kg(x,y:p)
In the next result exponential convexity and log-convexity of this new divergence
measure T is discussed.

THEOREM 3.10. Let T(x,y,y),) be as defined above. Then: have

n

1. The matrix [T(x, Y Wpitp; )] is a positive semi definite matrix.
ij=1

2. The function t — T (x,y, ) is exponentially convex.

3. If T(x,y,v,) is positive then it is log-convex, that is

(T(e,y, wp)l" < [T ey, wo) P [T (e,y, 95)]7

Jor —oo <r < s < p<oo.
Proof. The proof is similar to the proof of Theorem 2.9.

REMARK 3.11. If weput p=a—1,r=[F—1, s=y—1 in Theorem 3.14 (3)
we get
[, (%y3D)]P 77 < [k g (%5y30)]* 7 [k (x533D)]P

which is an extension of (6).

DEFINITION 3.12. For r,s € R we define generalized mean M, by

1

o T(Xay7WS) =
e G R @

where T (x,y,y,) # 0 for p =r,s.
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Other cases can be obtained by taking limits as:

Yy pilhi(xi) — hi(yi))[s(x logx; — yilogy;) — (x} — yi)] )
sYisy pilhi(xi) — hi(yi)) (x} — ;)

iy pilhi(x i)—h'(yz'))((logxz')z—(logyz')z))
230 pilhi(xi) — hi(yi))(logx; —logy:) )~

MS’S:exp< , s#0

My = exp (

REMARK 3.13. If weput s=o—1 and r=f —1 and h;(x) =x, i=1,..,n in

(28) we get
~ ko (X’y;p)) ap
Myg=M,_15_.1=|——=
a,B a—1,8-1 (kﬁ(x,y;p)

where a # 8 # 1. For o, € R we have

(kn.a(x,yfp)> i , o+ B

kn‘ﬁ(x9y7p)
M., a—= S pilhi(x) —hi(i)[(e—1) (&~ logx; =y~ 10gy1) (el _ )
@ ex"( (o 1) S, pilhix) O o T ) a=pAL

2:'1:1Pi(hi(xt)fhl()ﬁ))((logxl) 7(10gyi)2)
exp< 2301 pilhi(xi)—hi(yi))(logx;—logy;) )’

a=1;

THEOREM 3.14. For p,r,s,t € R such that r < s and p <t we have

Mp,r g M[,S'

Proof. The proof is similar to the proof of Theorem 2.11.

REMARK 3.15. If weput p=a—1,r=8—1,s=y—1,t=8—1 inthe above
theorem we get
My p < Ms,y
<

where o # B, y# 6 and x <5, B <y

REMARK 3.16. If in our results we substitute %;(x) = x and h;(y) =y then we
get results proved in [5].

REMARK 3.17. Integral version of generalized K -divergence can be defined as:

Kon= [0a(:60.9) 01500 (66D = 000 ) amts) - @)

where x,y are real valued functions such that £ is strictly increasing in the first variable
and % is strictly increasing. Similar results can also be obtained for integral version.
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