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GENERALIZATION OF K –DIVERGENCE AND RELATED MEANS

M. ANWAR, G. FARID AND J. PEČARIĆ

Abstract. In this paper, we give a generalization of K -divergence measure and related results by
using some log-convexity criteria. Also we give related Cauchy means and prove monotonicity
of these means.

1. Introduction

For a given function φ defined on an interval I ⊆ R the φ entropy of x ∈ In is
defined by:

Hn,φ (x) = −
n

∑
i=1

φ(xi).

For two vectors x,y ∈ In, the Jensen difference is defined by:

Jn,φ (x,y) = Hn,φ

(
x+y

2

)
− 1

2

[
Hn,φ (x)+Hn,φ(y)

]
. (1)

Several divergencemeasures are defined in the statistical literature to reflect the fact that
some probability distributions are closer together than other and, consequently, that it
may be easier to distinguish between the distribution of one pair then between those
of the other. An important measure of divergence is Jn,φ defined in (1) also known as
J -divergence [3]. This divergence has some interesting properties, se for example [4],
p. 16. For applications of this divergence see [6, 8, 9]. Another important measure of
divergence is K -divergence introduced by Burbea and Rao [3]. This measure is defined
by:

Kn,φ (x,y) =
n

∑
i=1

(xi− yi)
(
φ(xi)

xi
− φ(yi)

yi

)
, (2)

where function φ is on an interval I not containing zero such that the function defined
by x → φ(x)

x is increasing function and x,y ∈ In .
In [3] we have an order relation between two divergencemeasures J and K defined

above that is the following result.
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THEOREM 1.1. For any x,y ∈ Rn
+

4Jn,φ (x,y) � Kn,φ (x,y) (3)

if and only if the function defined by x → φ(x)
x is convex. The equality occurs if and

only if x = y.

In this paper without loss of generality we assume that J and K are n -dimensional
so we write Jφ and Kφ instead of Jn,φ and Kn,φ .

The special case of K -divergences for the function (cf. [3])

φα : R
+ → R, α > 0 , defined by

φα(x) =
{

(α−1)−1(xα − x), α �= 1;
x logx, α = 1,

(4)

is denoted by Kn,α with respective forms

Kn,α(x,y) =

{
(α−1)−1∑n

i=1(xi − yi)(xα−1
i − yα−1

i ), α �= 1;

∑n
i=1(xi − yi)(logxi − logyi), α = 1.

(5)

By using positivity of (2), the following results are given in [5].

THEOREM 1.2. Kn,p defined by (5) is log-convex, that is,

[Kn,p(x,y)]r−s � [Kn,s(x,y)]r−p[Kn,r(x,y)]p−s for −∞< r < s < p < ∞. (6)

COROLLARY 1.3. For p,r,s,t ∈ R such that r � s, p � t with r �= p, s �= t the
following inequality holds

(
Kn,p(x,y)
Kn,r(x,y)

) 1
p−r

�
(

Kn,t(x,y)
Kn,s(x,y)

) 1
t−s

.

In this paper we give extensions of results from [5] as well as some corresponding
mean value theorems. We also introduce corresponding Cauchy means and establish
monotonicity of the Cauchy means.

2. Results related to relation between J and K

In this section results related to difference of J and K divergence are discussed.
Firstly Mean value theorems and convexity after which the corresponding Cauchy
means are given.

LEMMA 2.1. Let f ∈C2(I) , where I is compact interval in R does not containing
zero and m,M be such that

m � x2 f ′′(x)−2x f ′(x)+2 f (x)
x3 � M. (7)
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If the functions φ1 , φ2 are defined on I by:

φ1(x) = M
x3

2
− f (x),

φ2(x) = f (x)−m
x3

2

then the functions x → φ1(x)
x and x → φ2(x)

x are convex.

Proof. Since
(
φ1(x)

x

)′′
= M− x2 f ′′(x)−2x f ′(x)+2 f (x)

x3 � 0, φ1(x)
x is convex function.

Similarly we have that φ2(x)
x is convex function too.

DEFINITION 2.2. Let I be a real interval not containing zero and φ : I → R such
that the function defined by x → φ(x)

x is convex. We define D-divergence D(x,y,φ)
by:

D(x,y,φ) = 4Jφ (x,y)−Kφ (x,y) (8)

where x,y ∈ In .

THEOREM 2.3. If f ∈C2(I), where I is a compact interval in R not containing
zero, then there exists ξ such that the following equality is valid

D(x,y, f ) =
ξ 2 f ′′(ξ )−2ξ f ′(ξ )+2 f (ξ )

ξ 3

×
n

∑
i=1

[
(x3

i + y3
i )−

1
4
(xi− yi)3− (xi− yi)

(
x2
i

2
− y2

i

2

)]
. (9)

Proof. Suppose minx∈I

(
f (x)
x

)′′
= m and maxx∈I

(
f (x)
x

)′′
= M . By using φ1 in-

stead of f in (3) we obtain

n

∑
i=1

4

{
1
2
(φ1(xi)+φ1(yi))−φ1

(
xi + yi

2

)}
− (xi− yi)

(
φ1(xi)

xi
− φ1(yi)

yi

)
> 0

for x �= y because φ1(x)
x is strictly convex. Therefore we have

n

∑
i=1

4

{
1
2

(
M

x3
i

2
+M

y3
i

2
− f (xi)− f (yi)

)
− M

2

(
xi + yi

2

)3

f

(
xi + yi

2

)}

−(xi− yi)
(

M
2

(x2
i − y2

i )−
f (xi)
xi

+
f (yi)
yi

)
> 0

which implies the inequality

D(x,y, f ) � M
n

∑
i=1

[
(x3

i + y3
i )−

1
4
(xi − yi)3 − (xi− yi)

(
x2
i

2
− y2

i

2

)]
. (10)
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Similarly, using φ2 in (3) instead of f we get

D(x,y, f ) � m
n

∑
i=1

[
(x3

i + y3
i )−

1
4
(xi − yi)3− (xi− yi)

(
x2
i

2
− y2

i

2

)]
. (11)

By combining inequalities (10) and (11) and using intermediate value theorem,

that is for m� x2 f ′′(x)−2x f ′(x)+2 f (x)
x3 �M there exist ξ ∈ I such that we get (9).

THEOREM 2.4. Let f ,g ∈C2(I) , where I is a compact interval in R not contain-
ing origin, then there exists ξ such that the following equality is valid

D(x,y, f )
D(x,y,g)

=
ξ 2 f ′′(ξ )−2ξ f ′(ξ )+2 f (ξ )
ξ 2g′′(ξ )−2ξg′(ξ )+2g(ξ )

(12)

provided the denominators are non zero.

Proof. The proof is similar to the proof of Theorem 3.3 in [2].

COROLLARY 2.5. Let the function K defined by:

K(ξ ) =
D(x,y, f )
D(x,y,g)

=
ξ 2 f ′′(ξ )−2ξ f ′(ξ )+2 f (ξ )
ξ 2g′′(ξ )−2ξg′(ξ )+2g(ξ )

(13)

If K is invertible then

ξ = K−1
(

D(x,y, f )
D(x,y,g)

)
(14)

is a new mean provided that the denominator is non zero.

Proof. Since ξ ∈ I and minxi � ξ � maxxi (14)implies

minxi � K−1
(

D(x,y, f )
D(x,y,g)

)
� maxxi .

LEMMA 2.6. Let the function ψp defined by:

ψp(x) =

⎧⎪⎨
⎪⎩

xp+1

p(p−1) p �=0,1

x2 logx p=1
−x logx p=0.

(15)

Then the function defined by x → ψp(x)
x is convex for x > 0 .

An important corollary of Theorem 2.4 is:
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COROLLARY 2.7. Let the function ψp be as defined above and
D(x,y,ψp)
D(x,y,ψr)

= ξ p−r

for some ξ ∈ I and p �= r such that D(x,y,ψs) �= 0, s = p,r . Then we have another
mean

ξ =
(

D(x,y,ψp)
D(x,y,ψr)

) 1
p−r

.

In the following results exponential convexity and log-convexity of this new diver-
gence measure D is discussed. First we give a definition and some results which will
be needed.

DEFINITION 2.8. A function f : (a,b) → R is exponentially convex if it is con-
tinuous and

n

∑
i, j=1

aia j f (xi + x j) � 0 (16)

for all n ∈ N and all choices ai ∈ R, i = 1, ..,n such that xi + x j ∈ (a,b) , 1 � i, j � n.

For exponentially convex function f : (a,b) → R, (16) is valid for all xi + x j ∈
(a,b) , 1 � i, j � n and it is also valid for all

xi+x j
2 ∈ (a,b) , 1 � i, j � n that is

n

∑
i, j=1

aia j f

(
xi + x j

2

)
� 0, (17)

holds for every ai ∈ R and every xi ∈ (a,b),1 � i � n.
If f is exponentially convex then

det

[
f

(
xi + x j

2

)]n

i, j=1
� 0 (18)

for every n ∈ N , xi ∈ (a,b), i = 1, ..,n.

THEOREM 2.9. Let D(x,y,ψp) be as defined above. Then:

1. The matrix

[
D(x,y,ψ pi+p j

2
)
]n

i, j=1
is a positive semi definite matrix.

2. The function t �→ D(x,y,ψt) is exponentially convex.

3. If D(x,y,ψp) is positive then it is log-convex, that is

[D(x,y,ψp)]r−s � [D(x,y,ψr)]p−s[D(x,y,ψs)]r−p

for −∞< r < s < p < ∞.
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Proof.

1. Consider the function f defined by:

f (x) =
k

∑
i, j=1

uiu jψti j (x) (A)

for k = 1, ..,n,x > 0,ui ∈ R and ti j = pi+p j
2 . Then

f (x)
x

=
k

∑
i, j=1

uiu j
ψti j (x)

x

(
f (x)
x

)′′
=

k

∑
i, j=1

uiu jx
ti j−2 =

(
n

∑
i=1

uix
pi−1

2

)2

� 0

that is the function defined by x→ ψp(x)
x is convex. Using f defined as in (8) we

obtain

n

∑
i=1

4

{
1
2
( f (xi)+ f (yi))− f (

xi + yi

2
)
}
− (xi− yi)

(
f (xi)
xi

− f (yi)
yi

)
� 0.

Now by substituting f as defined in (A) we obtain

n

∑
i, j=1

uiu jD(x,y,ψti j ) � 0 (19)

which implies positive semi definiteness.

2. We have limp→0 D(x,y,ψp)= D(x,y,ψ0), limp→1 D(x,y,ψp)= D(x,y,ψ1). This
implies D(x,y,ψp) is continuous for all p . Therefore by (17) we have exponen-
tial convexity of the function D(x,y,ψp).

3. Now for n = 2, D(p) := D(x,y,ψp) is log-convex that is for −∞< r < s < p <∞
the following is valid

[D(x,y,ψp)]r−s � [D(x,y,ψr)]p−s[D(x,y,ψs)]r−p.

DEFINITION 2.10. For r,s ∈ R we define generalized mean Ms,r by

Ms,r =
(

D(x,y,ψs)
D(x,y,ψr)

) 1
s−r

s �= r (20)

where D(x,y,ψp) �= 0 for p = r,s.
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Other cases can be obtained by taking limits as:

Ms,0 =
(

−∑n
i=1{4(

xi+yi
2 )s+1−2(xs+1

i +ys+1
i )+(xi−yi)(xs

i−ys
i )}

s(s−1)∑n
i=1{2(xi+yi) log

xi+yi
2 −2(xi logxi+yi logyi)+(xi−yi)(logxi−logyi)}

) 1
s

, s �= 0,1

M1,0 =
(

−∑n
i=1{(xi+yi)2 log(

xi+yi
2 )−2(x2

i logxi+y2
i logyi)+(xi−yi)(xi logxi−yi logyi)}

∑n
i=1{2(xi+yi) log

xi+yi
2 −2(xi logxi+yi logyi)+(xi−yi)(logxi−logyi)}

)
,

Ms,s = exp

(
∑n

i=1{4(
xi+yi

2 )s+1 log(
xi+yi

2 )−2(xs+1
i logxi+ys+1

i logyi)+(xi−yi)(xs
i logxi−ys

i logyi)}
∑n

i=1{4(
xi+yi

2 )s+1−2(xs+1
i +ys+1

i )+(xi−yi)(xs
i−ys

i )}
− 2s−1

s(s−1)

)
,

s �= 0,1

M0,0 = exp

(
∑n

i=1{2(xi+yi) log2(
xi+yi

2 )−2(xi log2 xi+yi log2 yi)+(xi−yi)(log2 xi−log2 yi)}
2∑n

i=1{2(xi+yi) log(
xi+yi

2 )−2(xi logxi+yi logyi)+(xi−yi)(logxi−logyi)}
+1

)

M1,1 = exp

(
∑n

i=1{(xi+yi)2 log2(
xi+yi

2 )−2(x2
i log2 xi+y2

i log2 yi)+(xi−yi)(xi log2 xi−yi log2 yi)}
2∑n

i=1{(xi+yi)2 log(
xi+yi

2 )−2(x2
i logxi+y2

i logyi)+(xi−yi)(xi logxi−yi logyi)}
+1

)

THEOREM 2.11. For p,r,s,t ∈ R such that r � s and p � t the following in-
equality is valid

Mp,r � Mt,s.

Proof. The proof is similar to the proof of Theorem 3.4 in [1].

3. Results related to K divergence

In this section we consider the following generalization of (2).

DEFINITION 3.1. For real valued functions hi , i = 1, ..,n, f ,h on some interval I
such that hi, i = 1, ..,n and f

h are strictly increasing functions, we define T-divergence
T (x,y, f ) by:

T (x,y, f ) =
n

∑
i=1

pi(hi(xi)−hi(yi))
(

f (xi)
h(xi)

− f (yi)
h(yi)

)
, (21)

where x,y ∈ In and pi are positive reals.

LEMMA 3.2. Let f ,h ∈C1(I) , where I is a compact interval in R does not con-
tain zero, be such that the function defined by x → f

h (x) is in C1(I) and ξ ∈ I be such
that

m � f ′(ξ )h(ξ )−h′(ξ ) f (ξ )
h2(ξ )

� M. (22)

Let the functions φ1 , φ2 defined by φ1(x) = Mxh(x)− f (x), and φ2(x) = f (x)−mxh(x),
then the function defined by x → φi

h (x) for i = 1,2 are increasing.
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Proof. Since
(
φ1(x)
h(x)

)′
= M− f ′(x)h(x)−h′(x) f (x)

h2(x) � 0 therefore φ1
h is increasing func-

tion. Similarly we have that φ2
h is increasing function too.

By using this lemma we have the following result.

THEOREM 3.3. If f
h ∈ C1(I), where I is a compact interval in R and f

h , hi ,
i = 1, ...,n be strictly increasing functions then there exists ξ such that the following
equality is valid

T (x,y, f ) =
f ′(ξ )h(ξ )−h′(ξ ) f (ξ )

h2(ξ )

n

∑
i=1

pi(hi(xi)−hi(yi))(xi − yi). (23)

THEOREM 3.4. Let f
h , g

h ∈C1(I) and f
h , g

h , hi , i = 1, ..,n be strictly increasing.
Then for x �= y there exists ξ ∈ I such that the following equality is valid

T (x,y, f )
T (x,y,g)

=
f ′(ξ )h(ξ )−h′(ξ ) f (ξ )
g′(ξ )h(ξ )−h′(ξ )g(ξ )

(24)

provided the denominators are not zero.

Proof. The proof is similar to the proof of Theorem 2.4.

COROLLARY 3.5. Let the function K(ξ ) defined by

K(ξ ) =
T (x,y, f )
T (x,y,g)

=
f ′(ξ )h(ξ )−h′(ξ ) f (ξ )
g′(ξ )h(ξ )−h′(ξ )g(ξ )

(25)

If K is invertible then

ξ = K−1
(

T (x,y, f )
T (x,y,g)

)
(26)

is a new mean provided that the denominator is non zero.

Proof. Since ξ ∈ I and minxi � ξ � maxxi, (26) implies

minxi � K−1
(

T (x,y, f )
T (x,y,g)

)
� maxxi .

LEMMA 3.6. Consider the function

ψp(x) =

{
xph(x)

p p �=0
h(x) logx p=0.

(27)

Then the function defined by x → ψp
h (x) is strictly increasing for x > 0 .

If we put p = α−1 and hi(x) = x and denote T (x,y,ψp) by kα(x,y;p) then we
have

kα(x,y;p) =
{

1
α−1 ∑

n
i=1 pi(xi − yi)(xα−1

i − yα−1
i ), α �= 1,

∑n
i=1 pi(xi − yi)(logxi− logyi), α = 1.
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REMARK 3.7. If we put pi = 1, i = 1, ..,n in above equation. Then we get
Kα(x,y) as defined above in (5) .

Another corollary of Theorem 3.4 stated as.

COROLLARY 3.8. Let the function ψp be as (27), and T (x,y,ψp)
T (x,y,ψr)

= ξ p−r for some

ξ ∈ I and p �= r such that T (x,y,ψs) �= 0, s = p,r and so we have another mean

ξ =
(

T (x,y,ψp)
T (x,y,ψr)

) 1
p−r

.

REMARK 3.9. If we put p = α − 1 and r = β − 1 in Corollary 2.7 such that
kγ(x,y;p) �= 0, for γ = α,β then we have

ξ =
(

kα(x,y;p)
kβ (x,y;p)

) 1
α−β

.

In the next result exponential convexity and log-convexity of this new divergence
measure T is discussed.

THEOREM 3.10. Let T (x,y,ψp) be as defined above. Then: have

1. The matrix

[
T (x,y,ψ pi+p j

2
)
]n

i, j=1
is a positive semi definite matrix.

2. The function t �→ T (x,y,ψt) is exponentially convex.

3. If T (x,y,ψp) is positive then it is log-convex, that is

[T (x,y,ψp)]r−s � [T (x,y,ψr)]p−s[T (x,y,ψs)]r−p

for −∞< r < s < p < ∞.

Proof. The proof is similar to the proof of Theorem 2.9.

REMARK 3.11. If we put p = α−1, r = β −1, s = γ−1 in Theorem 3.14 (3)
we get

[kn,α(x,y;p)]β−γ � [kn,β (x,y;p)]α−γ [kn,γ(x,y;p)]β−α

which is an extension of (6).

DEFINITION 3.12. For r,s ∈ R we define generalized mean Ms,r by

Ms,r =
(

T (x,y,ψs)
T (x,y,ψr)

) 1
s−r

s �= r (28)

where T (x,y,ψp) �= 0 for p = r,s.
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Other cases can be obtained by taking limits as:

Ms,s = exp

(
∑n

i=1 pi(hi(xi)−hi(yi))[s(xs
i logxi − ys

i logyi)− (xs
i − ys

i )]
s∑n

i=1 pi(hi(xi)−hi(yi))(xs
i − ys

i )

)
, s �= 0

M0,0 = exp

(
∑n

i=1 pi(hi(xi)−hi(yi))((logxi)2 − (logyi)2)
2∑n

i=1 pi(hi(xi)−hi(yi))(logxi− logyi)

)
.

REMARK 3.13. If we put s = α − 1 and r = β − 1 and hi(x) = x , i = 1, ..,n in
(28) we get

M̃α ,β =: Mα−1,β−1 =
(

kα(x,y;p)
kβ (x,y;p)

) 1
α−β

where α �= β �= 1. For α,β ∈ R we have

M̃α ,β =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
kn,α (x,y;p)
kn,β (x,y;p)

) 1
α−β

, α �= β ;

exp

(
∑n

i=1 pi(hi(xi)−hi(yi))[(α−1)(xα−1
i logxi−yα−1

i logyi)−(xα−1
i −yα−1

i )]
(α−1)∑n

i=1 pi(hi(xi)−hi(yi))(xα−1
i −yα−1

i )

)
, α = β �= 1;

exp
(
∑n

i=1 pi(hi(xi)−hi(yi))((logxi)2−(logyi)2)
2∑n

i=1 pi(hi(xi)−hi(yi))(logxi−logyi)

)
, α = 1;

THEOREM 3.14. For p,r,s,t ∈ R such that r � s and p � t we have

Mp,r � Mt,s.

Proof. The proof is similar to the proof of Theorem 2.11.

REMARK 3.15. If we put p = α−1, r = β−1, s = γ−1, t = δ −1 in the above
theorem we get

M̃α ,β � M̃δ ,γ

where α �= β , γ �= δ and α � δ , β � γ

REMARK 3.16. If in our results we substitute hi(x) = x and hi(y) = y then we
get results proved in [5].

REMARK 3.17. Integral version of generalized K -divergence can be defined as:

Kφ ,n =
∫

(h1(x(s),s)−h1(y(s),s))
(

f
h
(x(s))− f

h
(y(s)

)
dμ(s) (29)

where x,y are real valued functions such that h1 is strictly increasing in the first variable
and f

h is strictly increasing. Similar results can also be obtained for integral version.
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