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NOTE ON AN INEQUALITY OF GAUSS

JOSIP PEČARIĆ AND KSENIJA SMOLJAK

Abstract. In this paper a functional defined as the difference between the left-hand and the right-
hand side of an extension of the Gauss inequality given in [H. Alzer, On an inequality of Gauss,
Rev. Mat. Complut. 4(2) (1991), 179–183.] is studied. Related analogous of the Lagrange and
the Cauchy mean value theorems are obtained. Furthermore, Gauss means are generated and
their monotonicity property is proven.

1. Introduction

Let us recall the inequality of Gauss (see, [8, p. 195]):
Let f : [0,∞) → R be a decreasing function, then, for all real numbers k > 0,

k2

∞∫
k

f (x)dx � 4
9

∞∫
0

x2 f (x)dx. (1.1)

H. Alzer proved in 1991 (see [1]) that an application of the following theorem
leads to a new proof and to a converse of inequality (1.1) :

THEOREM 1.1. Let g : [a,b]→R be strictly increasing, convex and differentiable,
and let f : I → R be decreasing. Then

b∫
a

f (s(x))g′(x)dx �
g(b)∫

g(a)

f (x)dx �
b∫

a

f (t(x))g′(x)dx, (1.2)

where

s(x) =
g(b)−g(a)

b−a
(x−a)+g(a) (1.3)

and
t(x) = g′(x0)(x− x0)+g(x0), x0 ∈ [a,b]. (1.4)

(I ⊆ R is an interval containing a,b,g(a),g(b),t(a) and t(b).)
If either g is convave (instead of convex) or f is increasing, then the reversed

inequalities hold.
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200 J. PEČARIĆ AND K. SMOLJAK

In this paper we study a functional defined as the difference between the left-hand
and the right-hand side of an extension of the Gauss inequality (given in [1]) and obtain
related analogous of the Lagrange and the Cauchy mean value theorems. Furthermore,
we define new Gauss means and prove their monotonicity property.

The paper is organized as follows. After this introduction, in Section 2 we prove
the Lagrange and the Cauchy-type mean value theorems and study exponential and
logarithmic convexity of the difference between the left-hand and the right-hand side
of the inequality (1.2) . In Section 3 we introduce new Gauss means and prove their
monotonicity property.

First, let us recall some notions; log denotes the natural logarithm function, an
interval in R is any convex subset of R and by dx we denote the Lebesgue measure on
R .

Now, we introduce some necessary notation and recall some basic facts about con-
vex, log-convex functions (see e.g. [3], [7]) as well as exponentially convex functions
(see e.g [2], [5], [6]).

LEMMA 1.1. Let h : (a,b) → R . The following statements are equivalent:

(i) h is exponentially convex,

(ii) h is continuous and
n

∑
i, j=1

tit jh

(
xi + x j

2

)
� 0,

for every n ∈ N , ti ∈ R and every xi ∈ (a,b) , 1 � i � n.

Condition from Lemma 1.1, part (ii) is equivalent with positive semi-definitness
of matrices [

h

(
xi + x j

2

)]n

i, j=1
, for all n ∈ N.

Let us recall two useful lemmas from the convexity and the log-convexity theory.

LEMMA 1.2. A function Φ is log-convex on an interval I , if and only if for all
a,b,c ∈ I , a < b < c, it holds

[Φ(b)]c−a � [Φ(a)]c−b[Φ(c)]b−a.

LEMMA 1.3. Let f be log-convex on I ⊆ R and let a1,a2,b1,b2 ∈ I be such that
a1 � b1 , a2 � b2 and a1 �= a2 , b1 �= b2 . Then the following inequality is valid

[
f (a2)
f (a1)

] 1
a2−a1 �

[
f (b2)
f (b1)

] 1
b2−b1

.
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2. Mean value theorems

First, let us define linear functionals L1,L2 : C1(I) → R by

L1( f ) =
b∫

a

f (s(x))g′(x)dx−
g(b)∫

g(a)

f (x)dx, (2.1)

L2( f ) =

g(b)∫
g(a)

f (x)dx−
b∫

a

f (t(x))g′(x)dx, (2.2)

where g : [a,b] → R is strictly increasing, convex and differentiable function, s is de-
fined by (1.3) , t is defined by (1.4) , and a,b,g(a),g(b), t(a),t(b) ∈ I .

Moreover, L1( f ) � 0, L2( f ) � 0 for all increasing functions f and L1( f ) � 0,
L2( f ) � 0 for all decreasing functions f .

Furthermore, we state and prove the Lagrange-type mean value theorems related
to L1 and L2 .

THEOREM 2.1. Let g : [a,b]→R be strictly increasing, convex and differentiable,
and s be defined by (1.3) . Let I be compact interval such that a,b,g(a) , g(b) ∈ I ,
h2 : I → R be increasing and continuous, J = h2(I) , and h1 ∈C1(J) . Then there exists
ξ ∈ J such that

b∫
a

h1(h2(s(x)))g′(x)dx−
g(b)∫

g(a)

h1(h2(x))dx = h′1(ξ )

⎡
⎢⎣

b∫
a

h2(s(x))g′(x)dx−
g(b)∫

g(a)

h2(x)dx

⎤
⎥⎦

(2.3)
holds, that is,

L1(h1 ◦ h2) = h′1(ξ )L1(h2),

where L1 is defined by (2.1) .

Proof. Since h′1 is continuous on compact interval J there exist m = min
x∈J

h′1(x)

and M = max
x∈J

h′1(x) both real numbers. Now we consider functions Φ1,Φ2 : J → R

defined by
Φ1(x) = Mx−h1(x) and Φ2(x) = h1(x)−mx.

Since Φ1,Φ2 ∈ C1(J) , we have Φ′
1(x) = M− h′1(x) � 0 and Φ′

2(x) = h′1(x)−m � 0.
Hence, functions Φ1 and Φ2 are increasing. Applying Theorem 1.1 on an increasing
function Φ1 ◦ h2 , we obtain

b∫
a

h1(h2(s(x)))g′(x)dx−
g(b)∫

g(a)

h1(h2(x))dx � M

⎡
⎢⎣

b∫
a

h2(s(x))g′(x)dx−
g(b)∫

g(a)

h2(x)dx

⎤
⎥⎦ ,
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that is, L1(h1 ◦h2) � ML1(h2) . Similarly, if we consider an increasing function Φ2 ◦h2

we obtain

m

⎡
⎢⎣

b∫
a

h2(s(x))g′(x)dx−
g(b)∫

g(a)

h2(x)dx

⎤
⎥⎦�

b∫
a

h1(h2(s(x)))g′(x)dx−
g(b)∫

g(a)

h1(h2(x))dx,

that is, L1(h1 ◦ h2) � mL1(h2). Combining those two results we obtain

mL1(h2) � L1(h1 ◦ h2) � ML1(h2).

If L1(h2) = 0, then L1(h1 ◦ h2) = 0, so (2.3) holds for all ξ ∈ J . Otherwise,

min
x∈J

h′1(x) = m � L1(h1 ◦ h2)
L1(h2)

� M = max
x∈J

h′1(x), so
L1(h1 ◦ h2)

L1(h2)
∈ h′1(J).

Since h′1 is continuous there exists ξ ∈ J such that L1(h1◦h2)
L1(h2)

= h′1(ξ ) , so the proof is
completed. �

COROLLARY 2.1. Let g : [a,b] → R be strictly increasing, convex and differ-
entiable, and s be defined by (1.3) . Let I be compact interval such that a,b,g(a) ,
g(b) ∈ I , and h1 ∈C1(I) . Then there exists ξ ∈ I such that

b∫
a

h1(s(x))g′(x)dx−
g(b)∫

g(a)

h1(x)dx = h′1(ξ )

⎡
⎣ b∫

a

s(x)g′(x)dx− g2(b)−g2(a)
2

⎤
⎦

holds.

Proof. Apply Theorem 2.1 for h2(x) = x . �

THEOREM 2.2. Let g : [a,b]→R be strictly increasing, convex and differentiable,
and t be defined by (1.4) . Let I be compact interval such that a,b,g(a),g(b),t(a) ,
t(b) ∈ I , h2 : I → R be increasing and continuous, J = h2(I) , and h1 ∈ C1(J) . Then
there exists ξ ∈ J such that

L2(h1 ◦ h2) = h′1(ξ )L2(h2),

where L2 is defined by (2.2) .

Proof. Similar to the proof of Theorem 2.1. �

COROLLARY 2.2. Let g : [a,b] → R be strictly increasing, convex and differen-
tiable, and t be defined by (1.4) . Let I be compact interval such that a,b,g(a),g(b) ,
t(a) , t(b) ∈ I , and h1 ∈C1(I) . Then there exists ξ ∈ I such that

g(b)∫
g(a)

h1(x)dx−
b∫

a

h1(t(x))g′(x)dx = h′1(ξ )

⎡
⎣g2(b)−g2(a)

2
−

b∫
a

t(x)g′(x)dx

⎤
⎦

holds.
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Proof. Apply Theorem 2.2 for h2(x) = x . �
We continue with the Cauchy-type mean value theorems related to L1 and L2 .

THEOREM 2.3. Let g : [a,b]→R be strictly increasing, convex and differentiable
function, and s be defined by (1.3) . Let I be compact interval such that a,b,g(a) ,
g(b) ∈ I , h2 : I → R be increasing and continuous, and J = h2(I) . Let F,H ∈C1(J) ,
H ′(x) �= 0 for every x ∈ J . Then there exists ξ ∈ J such that

b∫
a

F(h2(s(x)))g′(x)dx−
g(b)∫
g(a)

F(h2(x))dx

b∫
a

H(h2(s(x)))g′(x)dx−
g(b)∫
g(a)

H(h2(x))dx

=
F ′(ξ )
H ′(ξ )

, (2.4)

that is,
L1(F ◦ h2)
L1(H ◦ h2)

=
F ′(ξ )
H ′(ξ )

holds, where L1 is defined by (2.1) .

Proof. Set Φ(t)= F(t)L1(H ◦h2)−H(t)L1(F ◦h2) . Note that Φ′(t)= F ′(t)L1(H ◦
h2)−H ′(t)L1(F ◦ h2) . Obviously, L1(Φ◦ h2) = 0. On the other hand, by Theorem 2.1
there exists ξ ∈ J such that

L1(Φ◦ h2) = Φ′(ξ )

⎡
⎢⎣

b∫
a

h2(s(x))g′(x)dx−
g(b)∫

g(a)

h2(x)dx

⎤
⎥⎦ .

Since L1(h2) �= 0, we have that

Φ′(ξ ) = F ′(ξ )L1(H ◦ h2)−H ′(ξ )L1(F ◦ h2) = 0.

By assumption H ′(ξ ) �= 0, so Theorem 2.1 assures that L1(H ◦ h2) �= 0. Hence (2.4)
follows. �

COROLLARY 2.3. Let g : [a,b] → R be strictly increasing, convex and differ-
entiable function, and s be defined by (1.3) . Let I be compact interval such that
a,b,g(a) , g(b) ∈ I . Let F,H ∈ C1(I) , H ′(x) �= 0 for every x ∈ I . Then there exists
ξ ∈ I such that

b∫
a

F(s(x))g′(x)dx−
g(b)∫
g(a)

F(x)dx

b∫
a

H(s(x))g′(x)dx−
g(b)∫
g(a)

H(x)dx

=
F ′(ξ )
H ′(ξ )

. (2.5)

Proof. Apply Theorem 2.3 for h2(x) = x . �
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THEOREM 2.4. Let g : [a,b]→R be strictly increasing, convex and differentiable
function, and t be defined by (1.4) . Let I be compact interval such that a,b,g(a),g(b) ,
t(a) , t(b) ∈ I , h2 : I → R be increasing and continuous, and J = h2(I) . Let F,H ∈
C1(J) , H ′(x) �= 0 for every x ∈ J . Then there exists ξ ∈ J such that

g(b)∫
g(a)

F(h2(x))dx−
b∫
a

F(h2(t(x)))g′(x)dx

g(b)∫
g(a)

H(h2(x))dx−
b∫
a

H(h2(t(x)))g′(x)dx

=
F ′(ξ )
H ′(ξ )

, (2.6)

that is,
L2(F ◦ h2)
L2(H ◦ h2)

=
F ′(ξ )
H ′(ξ )

holds, where L2 is defined by (2.2) .

Proof. Similar to the proof of Theorem 2.3. �

COROLLARY 2.4. Let g : [a,b] → R be strictly increasing, convex and differ-
entiable function, and t be defined by (1.4) . Let I be compact interval such that
a,b,g(a),g(b), t(a) , t(b) ∈ I . Let F,H ∈C1(I) , H ′(x) �= 0 for every x ∈ I . Then there
exists ξ ∈ I such that

g(b)∫
g(a)

F(x)dx−
b∫
a

F(t(x))g′(x)dx

g(b)∫
g(a)

H(x)dx−
b∫
a

H(t(x))g′(x)dx

=
F ′(ξ )
H ′(ξ )

. (2.7)

Proof. Apply Theorem 2.4 for h2(x) = x . �

COROLLARY 2.5. Let k > 0 , F,H ∈C1(R+) , H ′(x) �= 0 for every x ∈ R
+ . Then

there exists ξ ∈ R
+ such that

3
k∫
0

x2F(x+ k)dx− k2
2k∫
k

F(x)dx

3
k∫
0

x2H(x+ k)dx− k2
2k∫
k

H(x)dx

=
F ′(ξ )
H ′(ξ )

. (2.8)

Proof. To prove (2.8) apply Theorem 2.3 with a= 0, b = k , g(x)= 1
k2 x3+k. �
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COROLLARY 2.6. Let k > 0 , F,H ∈C1(R+) , H ′(x) �= 0 for every x ∈ R
+ . Then

there exists ξ ∈ R
+ such that

k2
∞∫
k

F(x)dx− 4
9

∞∫
0

x2F(x)dx

k2
∞∫
k

H(x)dx− 4
9

∞∫
0

x2H(x)dx
=

F ′(ξ )
H ′(ξ )

. (2.9)

Proof. To prove (2.9) apply Theorem 2.4 with a = 0, x0 = k
21/3 , g(x) = 1

k2 x3 +k,
b → ∞ and g(b) → ∞ . �

REMARK 2.1. Corollary 2.6 was also obtained in [4] but from different Cauchy-
type mean value theorem.

For u ∈ R , let the function ϕu : R
+ → R be defined by

ϕu(x) =

{
xu

u , u �= 0;

logx, u = 0.
(2.10)

Then ϕ ′
u(x) = xu−1 for all u ∈ R , that is, ϕu is an increasing function on R

+ . If
we consider Li(ϕu ◦ h2) with Li as in (2.1) or (2.2) and h2 increasing, we have that
Li(ϕu ◦ h2) � 0 for i = 1,2 and for all u ∈ R .

Properties of the mapping u �→ Li(ϕu ◦ h2) , i = 1,2 are given in the following
theorem:

THEOREM 2.5. For Li as in (2.1) and (2.2) , h2 increasing, and ϕu as in (2.10)
we have the following:

(i) the mapping u �→ Li(ϕu ◦ h2) is continuous on R ,

(ii) for every n ∈ N and ui ∈ R,ui j = ui+u j
2 , i, j = 1,2, ...,n, the matrix [Li(ϕui j ◦

h2)]ni, j=1 is positive semi-definite, that is

det[Li(ϕui j ◦ h2)]ni, j=1 � 0,

(iii) the mapping u �→ Li(ϕu ◦ h2) is exponentially convex,

(iv) the mapping u �→ Li(ϕu ◦ h2) is log-convex,

(v) for ui ∈ R, i = 1,2,3, u1 < u2 < u3 ,

[Li(ϕu2 ◦ h2)]u3−u1 � [Li(ϕu1 ◦ h2)]u3−u2 [Li(ϕu3 ◦ h2)]u2−u1 .
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Proof.

(i) Notice that

L1(ϕu ◦ h2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
u

[
b∫
a

hu
2(s(x))g

′(x)dx−
g(b)∫
g(a)

hu
2(x)dx

]
, u �= 0;

b∫
a

log(h2(s(x)))g′(x)dx−
g(b)∫
g(a)

log(h2(x))dx, u = 0.

It is obviously continuous on R\ {0} . Suppose u → 0 :

lim
u→0

L1(ϕu ◦ h2) = lim
u→0

1
u

⎡
⎢⎣

b∫
a

hu
2(s(x))g

′(x)dx−
g(b)∫

g(a)

hu
2(x)dx

⎤
⎥⎦ (2.11)

from L’Hospital rule limit (2.11) is equal to L1(ϕ0 ◦ h2) . Hence, the mapping
u �→ L1(ϕu ◦ h2) is continuous.

Similarly, the mapping u �→ L2(ϕu ◦ h2) is continuous.

(ii) Let n∈N and ti ∈R , i = 1,2, . . . ,n , be arbitrary. Define the function h : R
+ →R

by

h(x) =
n

∑
i, j=1

tit jϕui j (x).

Then

h′(x) =
n

∑
i, j=1

tit jx
ui j−1 =

(
n

∑
i=1

tix
ui−1

2

)2

� 0,

so h is an increasing function on R
+ . We can apply (1.2) on an increasing

function h ◦ h2 and obtain

b∫
a

h(h2(s(x)))g′(x)dx �
g(b)∫

g(a)

h(h2(x))dx,

that is,
n

∑
i, j=1

tit jL1(ϕui j ◦ h2) � 0.

So the matrix [L1(ϕui j ◦ h2)]ni, j=1 is positive semi-definite.

(iii) , (iv) and (v) are consequences of (i) , (ii) and definition of exponentially convex
and log-convex functions. �
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3. Gauss means

Theorem 2.3 enables us to define various types of means, because if F ′/H ′ has
an inverse, from (2.4) we have

ξ =
(

F ′

H ′

)−1

⎛
⎜⎜⎜⎜⎝

b∫
a

F(h2(s(x)))g′(x)dx−
g(b)∫
g(a)

F(h2(x))dx

b∫
a

H(h2(s(x)))g′(x)dx−
g(b)∫
g(a)

H(h2(x))dx

⎞
⎟⎟⎟⎟⎠ .

Specially, if we take substitutions F(t) = t p−1, H(t) = tq−1 in (2.4) we consider
the following expression

M(h2,g,s;a,b; p,q) =

⎛
⎜⎜⎜⎜⎝

q−1
p−1

·

b∫
a

hp−1
2 (s(x))g′(x)dx−

g(b)∫
g(a)

hp−1
2 (x)dx

b∫
a

hq−1
2 (s(x))g′(x)dx−

g(b)∫
g(a)

hq−1
2 (x)dx

⎞
⎟⎟⎟⎟⎠

1
p−q

, (3.1)

where (p−q)(p−1)(q−1) �= 0.
Notice that, (3.1) can be written as

M(h2,g,s;a,b; p,q) =
(

L1(ϕp−1 ◦ h2)
L1(ϕq−1 ◦ h2)

) 1
p−q

.

Moreover, we can extend these means to excluded cases. Taking a limit we can
define

M(h2,g,s;a,b; p,1) =

⎛
⎜⎜⎜⎜⎝

1
p−1

·

b∫
a

hp−1
2 (s(x))g′(x)dx−

g(b)∫
g(a)

hp−1
2 (x)dx

b∫
a

logh2(s(x))g′(x)dx−
g(b)∫
g(a)

logh2(x)dx

⎞
⎟⎟⎟⎟⎠

1
p−1

= M(h2,g,s;a,b;1, p), p �= 1

for p �= 1 M(h2,g,s;a,b; p, p) =

exp

⎛
⎜⎜⎜⎜⎝

b∫
a

hp−1
2 (s(x)) logh2(s(x))g′(x)dx−

g(b)∫
g(a)

hp−1
2 (x) logh2(x)dx

b∫
a

hp−1
2 (s(x))g′(x)dx−

g(b)∫
g(a)

hp−1
2 (x)dx

− 1
p−1

⎞
⎟⎟⎟⎟⎠
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M(h2,g,s;a,b;1,1) = exp

⎛
⎜⎜⎜⎜⎝

b∫
a

log2 h2(s(x))g′(x)dx−
g(b)∫
g(a)

log2 h2(x)dx

2

(
b∫
a

logh2(s(x))g′(x)dx−
g(b)∫
g(a)

logh2(x)dx

)
⎞
⎟⎟⎟⎟⎠

We continue with the following result.

THEOREM 3.1. M(h2,g,s;a,b; p,q) is monotonous in each argument, that is

M(h2,g,s;a,b; p,q) � M(h2,g,s;a,b;r,t) (3.2)

holds for p,q,r, t ∈ R , p � r, q � t.

Proof. From Theorem 2.5 we have that L1 is log-convex, so we can apply Lemma
1.3 for f = L1 , p � r, q � t , p �= q,r �= t to deduce that

(
L1(ϕp−1 ◦ h2)
L1(ϕq−1 ◦ h2)

) 1
p−q

�
(

L1(ϕr−1 ◦ h2)
L1(ϕt−1 ◦ h2)

) 1
r−t

.

Since (p,q) �→ M(h2,g,s;a,b; p,q) is continuous we have (3.2) for p � r, q � t . �
Corollary 2.3 enables us to define various types of means, because if F ′/H ′ has

an inverse, from (2.5) we have

ξ =
(

F ′

H ′

)−1

⎛
⎜⎜⎜⎜⎝

b∫
a

F(s(x))g′(x)dx−
g(b)∫
g(a)

F(x)dx

b∫
a

H(s(x))g′(x)dx−
g(b)∫
g(a)

H(x)dx

⎞
⎟⎟⎟⎟⎠ .

Specially, if we take substitutions F(t) = t p−1, H(t) = tq−1 in (2.5) we consider
the following expression

M(g,s;a,b; p,q) =

⎛
⎜⎜⎜⎝ q−1

p−1
·

b∫
a

sp−1(x)g′(x)dx− gp(b)−gp(a)
p

b∫
a

sq−1(x)g′(x)dx− gq(b)−gq(a)
q

⎞
⎟⎟⎟⎠

1
p−q

, (3.3)

where (p−q)(p−1)(q−1)pq �= 0.
Notice that, (3.3) can be written as

M(g,s;a,b; p,q) =
(

L1(ϕp−1)
L1(ϕq−1)

) 1
p−q

.
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Moreover, we can extend these means to excluded cases. Taking a limit we can
define

M(g,s;a,b; p,1) =
(

L1(ϕp−1)
L1(ϕ0)

) 1
p−1

= M(g,s;a,b;1, p), p �= 1

M(g,s;a,b; p,0) =
(

L1(ϕp−1)
L1(ϕ−1)

) 1
p

= M(g,s;a,b;0, p), p �= 0

for p �= 0,1 M(g,s;a,b; p, p) =

exp

⎛
⎜⎜⎜⎜⎝

b∫
a

sp−1(x) logs(x)g′(x)dx− pgp(b) logg(b)−pgp(a) logg(a)−gp(b)+gp(a)
p2

b∫
a

hp−1
2 (s(x))g′(x)dx−

g(b)∫
g(a)

hp−1
2 (x)dx

− 1
p−1

⎞
⎟⎟⎟⎟⎠

M(g,s;a,b;1,1) =

exp

⎛
⎜⎜⎜⎝

1
2

[
b∫
a

log2 s(x)g′(x)dx−g(b) log2 g(b)+g(a) log2 g(a)
]

b∫
a

logs(x)g′(x)dx−g(b) logg(b)+g(a) logg(a)+g(b)−g(a)

⎞
⎟⎟⎟⎠

× exp

⎛
⎜⎜⎜⎝ g(b) logg(b)−g(a) logg(a)−g(b)+g(a)

b∫
a

logs(x)g′(x)dx−g(b) logg(b)+g(a) logg(a)+g(b)−g(a)

⎞
⎟⎟⎟⎠

M(g,s;a,b;0,0) = exp

⎛
⎜⎜⎜⎝1+

log2 g(b)− log2 g(a)−
b∫
a

g′(x) logs(x)
s(x) dx

log g(b)
g(a) −

b∫
a

g′(x)
s(x) dx

⎞
⎟⎟⎟⎠

THEOREM 3.2. M(g,s;a,b; p,q) is monotonous in each argument, that is

M(g,s;a,b; p,q) � M(g,s;a,b;r, t)

holds for p,q,r, t ∈ R , p � r, q � t.

Proof. Similar to the proof of Theorem 3.1. �
Corollary 2.5 enables us to define various types of means, because if F ′/H ′ has

an inverse, from (2.8) we have
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ξ =
(

F ′

H ′

)−1

⎛
⎜⎜⎜⎝

3
k∫
0

x2F(x+ k)dx− k2
2k∫
k

F(x)dx

3
k∫
0

x2H(x+ k)dx− k2
2k∫
k

H(x)dx

⎞
⎟⎟⎟⎠ .

Specially, if we take substitutions F(t) = t p−1, H(t) = tq−1 in (2.8) we consider
the following expression

M(a,b; p,q) =
(

q(q+1)(q+2)
p(p+1)(p+2)

· kp+2(2p−1p+ p−2p+2+4)
kq+2(2q−1q+q−2q+2+4)

) 1
p−q

, (3.4)

where (p−q)(p+1)(p+2)(q+1)(q+2)pq �= 0.

REMARK 3.1. Theorem 2.4, Corollary 2.4 and Corollary 2.6 enable us to define
various types of means, but here we omit the details.
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10000 Zagreb, Croatia
e-mail: ksmoljak@ttf.hr

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


