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SCHUR-CONVEXITY OF THE WEIGHTED CEBISEV FUNCTIONAL

VERA CULJAK

Abstract. In this paper the weighted Cebisev functional T(p;f,g:a,b) is regarded as a function
of two variables

e R fg@ar  (p@)f@)de (S p@)g(t)de
T fexy) =525 ’( )i )( )i

where f, g and p > 0 are Lebesgue integrable functions. The property of Schur-covexity
(Schur-concavity) of this function is proved.
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1. Introduction

Let I be an interval with nonempty interior and x = (x;,x2,...,x,) and y = (y1,
¥2,-.-,¥n) in I" be two n-tuples such that x <y, i.e.
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where xj;) denotes the 7 th largest component in x.
DEFINITION 1. Function F : I" — R is Schur-convex on [" if

F(xi7x2,...,xn) < F(yi7y27"'7yn)

for each two n-tuples x and y such that it holds x <y on I".
Function F is Schur-concave on 7" if and only if —F is Schur-convex.

The next lemma gives us a necessery and sufficient condition for verifying the
Schur-convexity property of F when n =2 ([4, p. 333], [3, p. 57]).

LEMMA A 1. Let F : I> — R be a continuous function on I*> and differentiable
in interior of I?. Then F is Schur-convex (Schur-concave) if and only if it is symmetric

and IF OF
(a—y—g) (y—x)=0 (1)

holds (reverses) for all x,y €I, x # y.
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The authors in [2] were inspired by some inequalities concerning gamma and
digamma function and proved the following result for the integral arithmetic mean:

THEOREM A 1. Let f be a continuous function on I. Then
F(x,y) = { s L f)dn x#y
), x=y

is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I.

Also, in [2], applications to logarithmic mean are given.
The authors in [5] proved the Schur convexity of the weighted integral arithmetic
mean of function f :

THEOREM A 2. Let f be a continuous function on 1, let p be a positive contin-
uous weight on 1. Then

1
Fyley) = { i PO € e

is Schur-convex (Schur-concave) on I if and only if the inequality

Jip@)f(t)de < POSX) +p()fB)
[p@d = px)+p(y)

holds (reverses) for all x,y in I.

The Cebisev functional T(f,g;a,b) is defined for two Lebesgue integrable f and
g oninterval [a,b] € R as

rgan)= s [ rosoa- (1 [ rwa) (1, [ star).

Because the Cebiev functional can be express in the term of the integral arithmetic
mean, we were inspired by above results in Theorem Al and in [1] we generalized
these results by proving the Schur-convexity of function

T(f,g:%,y) = —/ F(0)g(t)di (y%x/xyf(z)dt) (y%x/xyg(z)dt),
(x,y) € [a,b] x [a,b].

THEOREM A 3. Let f and g be Lebesgue integrable functions on I = [a,b]. If
they are monotonic in the same sense (in the opposite sense) then T (x,y) :=T(f,g;x,y),
(x,y) € [a,b] x [a,b] € R? is Schur-convex (Schur-concave) on [a,b] x |a,b].

We used the well-known Cebiev inequality:
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THEOREM A 4. Let f and g be Lebesgue integrable on interval [a,b]. If f and
g are monotonic in the same sense (in the opposite sense) then

T(f,8:a,b) > 0(<0).
In this paper we will consider weighted Cebisev functional defined as
Jep@)f(@)g)dr — ( [Tp(e)f(t)de (J3 p(t)g(t)dt
ripisino) = RERERE - (00 ) (M)
(x,y) € [a;b] x [a,b],

for f and g Lebesgue integrable functions on I = [a,b] and p a positive continuous
weight on 7 such that pf and pg are also Lebesgue integrable functions on 1.

Let we use the following notations:

P(x,y) == [ p(t)dt

Fox,y) = oz K p(Of(0)dr and g, (x,y) := gz [i p(0)g(@)dr .
So, the T(p; f,g;x,y) can be rewritten as

S p(0)f(t)g(r)dt
P(x,y)

In this paper we obtain corresponding result to Theorem A2 for weighted Cebisev
functional and we will show the another proof of Theorem A3.

T(p:f,g:x,y) = — fp(x,y) -8, (x,¥), (x,y) € [a,b] x [a,b].

2. Results

THEOREM 2.1. Let f and g be Lebesgue integrable functions on 1 = [a,b] and
let p be a positive continuous weight on I such that pf and pg are also Lebesgue
integrable functions on I = |a,b]. Then T(p;x,y):=T(p;f,g;x,y), is Schur-convex
(Schur-concave) on I* = [a,b] x [a,b] if and only if the inequality

) (Fp (%,3) = ()) (€ (%,3) =8 () +P () (fp (6,3) = (1)) (Fs (x,¥) =8 ("))

T(p;x,y) < p(x)+p(y)

2)

holds (reverses) for all x,y in I.

Proof. To prove the Schur-convexity of T(p;x,y) by Lemma Al, using the in-
equality (1) it is sufficient to prove (aT(gy;W ) aT(p )Y (y—x) >0, forall x,y € [a,b],

since the function T (p;x,y) := T (p; f,g:;x,y) is eV1dently symmetric.
BT(g;&y) BT(p x.y) .
> :

Now, we calculate and
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Direct calculation yields that

<aT(p;x,y) - aT(p;x,y)> (v—x)

dy ox
_ [px) +pO)]
P(x,y)
. P (fp = f(%)(8p, —8()) + ) (= f ()G —8W) |,
{ T(pix,y) + 0 (y—x).
Since =—= > 0, then a necessary and sufficient condition for Schur-convexity of

P(x)
T(p;x,y) is that holds

pxX)(fp—fx)(E, — &) +p)(fr—f)(E, —&()) .

T(pix,y) < p(x)+p(y)

Similarly, we conclude the Schur-concavity of T'(p;x,y). O

For special choice p(t) =1, 1 € [a,b] and using the short notation for the integral
means: f(x,y) := y%xfxyg(t)dt and g(x,y) := y%x Y g(t)dt in Theorem 2.1 we can

obtain the following result:

COROLLARY 2.1. Let f and g be Lebesgue integrable functions on I = [a,b].
Then T(x,y):=T(f,g:x,y), is Schur-convex (Schur-concave) on I* = [a,b] x [a,b] if
and only if the inequality

T(x,y) < %(f(w) — f(x))(Z8(xy) —g(x)+ (f(x,y) = FO))(F(xy) —g(y) 3

holds (reverses) for all x,y in I.

REMARK 2.1. Using Theorem 2.1 for special choice p(t) =1, ¢ € [a,b], i.e. Cor-
rolary 2.1, we can obtain result in Theorem A3 according conditions that functions f
and g are monotonic in the same sense (in the opposite sense).

Another proof of Theorem A3:
There are three cases to be considered according monotonicity of functions.
Case 1. Let f and g be two increasing functions on [a,b] and x < y. So, we have

f(x) < f() < f(v) and g(x) < g(r) < g(y) and it yields

“4)
. (&)

>0
>0

In the proof in [1] we showed that then the inequality (3) holds.
Then, Corrolary 2.1 implies the property of Schur-convexity of T(f,g;x,y).
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We have to remark that for x >y the inequalities in (4) and (5) still are valid and
we can find that

TU&%@<g@ww—ﬂM@Wﬁ—%M+UW—ﬂ%M@@—ﬂMWL

As the T is symmetric, it is obvious that

T(f.g:x,y) <

Again, the inequality (3) holds and Corollary 2.1 implies Shour-convexity of T'(f,g;x,y).

Simillary as in [1] for Case 2, we suppose that f and g are both decreasing func-
tions on [a,b] and x < y. Since f(x) = f(t) = f(y) and g(x) > g(¢r) > g(y) the in-
equalities in (4) and (5) again are valid and the proof is the same as in Case 1.

Case 3. Let f be an increasing function and g decreasing function. Note that we
can consider Case 1. for function f and —g and in [1] we proved reverse inequality
in (3) for functions f and g. Similarly as in Case 1, according Corrolary 2.1 reverse
inequality (3) implies the Schur-concavity of T(f,g;x,y).
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