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ON AN INEQUALITY FOR CONVEX FUNCTIONS

WITH SOME APPLICATIONS ON FRACTIONAL

DERIVATIVES AND FRACTIONAL INTEGRALS

SAJID IQBAL, KRISTINA KRULIĆ AND JOSIP PEČARIĆ

Abstract. The main goal of the paper is to state and prove the new general inequality for convex
and increasing functions. We introduce some new inequalities by involving some fractional inte-
grals and fractional derivatives of Riemman-Liouville, Canavati, Hadamard and Erdelyi-Kóber
type and apply our result to multidimensional setting to obtain new results involving mixed
Riemman-Liouville fractional integrals.

1. Introduction

Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive σ−finite mea-
sures, k : Ω1 ×Ω2 → R be a non-negative function. Let U( f ) denotes the class of
functions g :Ω1 → R with the representation

g(x) =
∫
Ω2

k(x,y) f (y)dμ2(y), x ∈Ω1

where f is a measurable function on Ω2 and

K(x) =
∫
Ω2

k(x,y)dμ2(y). (1.1)

We suppose K(x) > 0 a.e. on Ω1. Our first approach is to prove the general
inequality for convex functions and increasing functions. Such type of results have
been proved in [11]. Now, we will generalize results for convex function and also
prove new inequalities by involving some fractional integrals and fractional deriva-
tives of Riemman-Liouville, Canavati, Hadamard, Erdelyi-Kóber and mixed Riemman-
Liouville type.

In [7] the following result is given.
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THEOREM 1.1. Let u be a weight function on Ω1 , k be a non-negative measur-
able function on Ω1×Ω2 , and K be defined on Ω1 by (1.1). Assume that the function

x �→ u(x) k(x,y)
K(x) is integrable on Ω1 for each fixed y ∈Ω2. Define v on Ω2 by

v(y) :=
∫
Ω1

u(x)k(x,y)
K(x)

dμ1(x) < ∞.

If φ : (0,∞) → R is convex and increasing function, then the inequality

∫
Ω1

u(x)φ
(∣∣∣∣ g(x)

K(x)

∣∣∣∣
)

dμ1(x) �
∫
Ω2

v(y)φ (| f (y)|)dμ2(y),

holds for all measurable functions f : Ω2 → R and for all functions g ∈U( f ) .

If we substitute k(x,y) by k(x,y) f2(y) and f by
f1
f2

, where fi :Ω2 → R,(i = 1,2)

are measurable functions in Theorem 1.1 we obtain the following result.

THEOREM 1.2. Let fi :Ω2 → R be measurable functions, gi ∈U( fi) , (i = 1,2) ,
where g2(x) > 0 for every x ∈ Ω1 . Let u be a weight function on Ω1 , k be a non-

negative measurable function on Ω1×Ω2 . Assume that the function x �→ u(x) f2(y)k(x,y)
g2(x)

is integrable on Ω1 for each fixed y ∈Ω2. Define v on Ω2 by

v(y) := f2(y)
∫
Ω1

u(x)k(x,y)
g2(x)

dμ1(x) < ∞. (1.2)

If φ : (0,∞) → R is convex and increasing function, then the inequality

∫
Ω1

u(x)φ
(∣∣∣∣g1(x)

g2(x)

∣∣∣∣
)

dμ1(x) �
∫
Ω2

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣
)

dμ2(y),

holds.

REMARK 1.1. If φ is strictly convex and f1(x)
f2(x)

is non-constant, then in Theorem
1.2 the inequality is strict.

REMARK 1.2. As a special case of Theorem1.2 for Ω1 =Ω2 = [a,b] and dμ1(x)=
dx, dμ1(y) = dy we obtain the result in[10] (see also [11, p. 236]).

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable and expressions of the form 0 ·∞, ∞∞ and 0

0 are
taken to be equal to zero. Moreover, by a weight u = u(x) we mean a non-negative
measurable function on the actual interval or more general set.
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This paper is organized in this way:
After introduction, in Section 2, we give the new general inequality for convex and
increasing functions and we give some new inequalities involving Riemann-Liouville
fractional integrals, Canavati-type fractional derivative, Caputo fractional derivative
and other fractional derivatives. We also apply our general result in multidimensional
settings and conclude this paper with a generalization of Theorem 1.2 for convex func-
tions of several variables.

2. New inequalities involving fractional integrals and derivatives

First, let us recall some facts about fractional derivatives needed in the sequel, for
more details see e.g. [1], [6], [12] and [13].

Let 0 < a < b � ∞ . By Cm([a,b]) we denote the space of all functions on [a,b]
which have continuous derivatives up to order m , and AC([a,b]) is the space of all
absolutely continuous functions on [a,b] . By ACm([a,b]) we denote the space of all
functions g ∈Cm−1([a,b]) with g(m−1) ∈ AC([a,b]) . For any α ∈ R we denote by [α]
the integral part of α (the integer k satisfying k � α < k+1) and �α� is the ceiling of
α (min{n∈ N,n � α} ). By L1(a,b) we denote the space of all functions integrable on
the interval (a,b) , and by L∞(a,b) the set of all functions measurable and essentially
bounded on (a,b) . Clearly, L∞(a,b) ⊂ L1(a,b) .

Let us recall the well known definitions of the Riemann-Liouville fractional inte-
grals, see [9].

Let [a,b] be a finite interval on real axis R. The Riemann-Liouville fractional
integrals Iαa+ f and Iαb− f of order α > 0 are defined by

Iαa+ f (x) =
1

Γ(α)

x∫
a

f (y)(x− y)α−1dy, (x > a)

and

Iαb− f (x) =
1

Γ(α)

b∫
x

f (y)(y− x)α−1dy, (x < b)

respectively. Here Γ(α) is the Gamma function. These integrals are called the left-
sided and the right-sided fractional integrals.
Some recent results involving Riemann-Liouville fractional integrals can be seen in e.g
[7] and [8].

As a special case of Theorem 1.2 we obtain the following result.

COROLLARY 2.1. Let u be a weight function on (a,b) and α > 0 . Iαb−g denotes
the right-sided Riemann-Liouville fractional integral of g . Define v on (a,b) by

v(y) =
f2(y)
Γ(α)

y∫
a

u(x)(y− x)α−1

Iαb− f2(x)
dx < ∞.
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If φ : (0,∞) → R is convex and increasing function, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣
Iαb− f1(x)

Iαb− f2(x)

∣∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣
)

dy. (2.1)

holds.

Proof. Similar to the proof of Corollary 2.4 in [8].

REMARK 2.1. The result involving the left-sided Riemann-Liouville fractional
integral is given in Corollary 2.4 in [8].

Next we give results with respect to the generalized Riemann–Liouville fractional
derivative. Let us recall the definition, for details see [2].

Let ν > 0 and n = [ν] + 1 where [·] is the integral part and the generalized
Riemann-Liouville fractional derivative of f of order ν by

Dν f (s) =
dn

dsn In−ν f (s) =
1

Γ(n−ν)
dn

dsn

∫ s

0
(s− t)n−ν−1 f (t)dt .

In addition, we stipulate

D0 f := f =: I0 f , I−ν f := Dν f if ν > 0.

If ν ∈ N then Dν f = dν f
dsν , the ordinary ν -order derivative.

The space Iν(L(0,x)) is defined as the set of all functions f on [0,x] of the form
f = Iνϕ for some ϕ ∈ L(0,x) , [12, Chapter 1, Definition 2.3]. According to Theorem
2.3 in [12, p. 43], the latter characterization is equivalent to the condition

In−ν f ∈ ACn[0,x] , (2.2)

d j

ds j I
n−ν f (0) = 0 , j = 0,1, . . . ,n−1 .

A function f ∈ L(0,x) satisfying (2.2) is said to have an integrable fractional derivative
Dν f , [12, Chapter 1, Definition 2.4].

The following lemma help us to prove the next result. For details see [2].

LEMMA 2.1. Let ν > γ � 0 , n = [ν]+1 , m = [γ]+1 . Identity

Dγ f (s) =
1

Γ(ν− γ)

∫ s

0
(s− t)ν−γ−1 Dν f (t)dt , s ∈ [0,x] . (2.3)

is valid if one of the following conditions holds:

(i) f ∈ Iν (L(0,x)) .
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(ii) In−ν f ∈ ACn[0,x] and Dν−k f (0) = 0 for k = 1, . . .n.

(iii) Dν−k f ∈C[0,x] for k = 1, . . . ,n, Dν−1 f ∈ AC[0,x] and Dν−k f (0) = 0 for k =
1, . . .n.

(iv) f ∈ ACn[0,x] , Dν f ∈ L(0,x) , Dγ f ∈ L(0,x) , ν − γ /∈ N , Dν−k f (0) = 0 for
k = 1, . . . ,n and Dγ−k f (0) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[0,x] , Dν f ∈ L(0,x) , Dγ f ∈ L(0,x) , ν− γ = l ∈ N , Dν−k f (0) = 0 for
k = 1, . . . , l .

(vi) f ∈ACn[0,x] , Dν f ∈L(0,x) , Dγ f ∈L(0,x) and f (0)= f ′(0)= · · ·= f (n−2)(0)=
0 .

(vii) f ∈ ACn[0,x] , Dν f ∈ L(0,x) , Dγ f ∈ L(0,x) , ν /∈ N and Dν−1 f is bounded in a
neighbourhood of t = 0 .

COROLLARY 2.2. Let u be a weight function on (a,b) and let the assumptions
in Lemma 2.1 be satisfied. Define v on (a,b) by

v(y) =
Dν f2(y)
Γ(ν− γ)

b∫
y

u(x)(x− y)ν−γ−1

Dγ f2(x)
dx < ∞

If φ : (0,∞) → R is convex and increasing function, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dγ f1(x)

Dγ f2(x)

∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣Dν f1(y)

Dν f2(y)

∣∣∣∣
)

dy, (2.4)

holds.

Proof. Similar to the proof of Corollary 2.7 in [8].

The definition of Canavati-type fractional derivative is given in [1] but we will use
the Canavati-type fractional derivative given in [3] with some new conditions. Now we
define Canavati-type fractional derivative (ν− fractional derivative of f ), for details
see [3]. We consider

Cν([0,1]) = { f ∈Cn([0,1]) : I1−ν f (n) ∈C1([0,1])},

ν > 0, n = [ν], [.] is the integral part, and ν = ν−n,0 � ν < 1.
For f ∈Cν([0,1]), the Canavati-ν fractional derivative of f is defined by

Dν f = DI1−ν f (n),

where D = d/dx .
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LEMMA 2.2. Let ν > γ > 0 , n = [ν], m = [γ]. Let f ∈ Cν([0,1]), be such that
f (i)(0) = 0, i = m,m+1, ...,n−1. Then

(i) f ∈Cγ([0,1])

(ii) (Dγ f )(x) = 1
Γ(ν−γ)

x∫
0
(x− t)ν−γ−1(Dν f )(t)dt,

for every x ∈ [a,b].

COROLLARY 2.3. Let u be a weight function on (a,b) and let assumptions in
Lemma 2.2 be satisfied. Define v(y) on (a,b) by

v(y) =
Dν f2(y)
Γ(ν− γ)

b∫
y

u(x)(x− y)ν−γ−1

Dγ f2(x)
dx < ∞

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ
(∣∣∣∣Dγ f1(x)

Dγ f2(x)

∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣Dν f1(y)

Dν f2(y)

∣∣∣∣
)

dy (2.5)

holds.

Proof. Applying Theorem 1.2 with Ω1 =Ω2 = (a,b), dμ1(x) = dx, dμ1(y) = dy ,

k(x,y) =

{
(x−y)ν−γ−1

Γ(ν−γ) , a � y � x ;
0, x < y � b.

and replacing fi by Dν fi , i = 1,2 we obtain (2.5) .

Next, we define Caputo fractional derivative, for details see [1, p. 449]. The Ca-
puto fractional derivative is defined as:

Let α � 0, n = �α� , g∈ ACn([a,b]) . The Caputo fractional derivative is given by

Dα
∗ag(t) =

1
Γ(n−α)

x∫
a

g(n)(y)
(x− y)α−n+1dy,

for all x ∈ [a,b] . The above function exists almost everywhere for x ∈ [a,b] .

COROLLARY 2.4. Let u be a weight function on (a,b) and α � 0. Dα∗a f denotes
the Caputo fractional derivative of f . Define v(y) on (a,b) by

v(y) =
f (n)
2 (y)

Γ(n−α)

b∫
y

u(x)(x− y)n−α−1

Dα∗a f2(x)
dx < ∞
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If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ
(∣∣∣∣ Dα∗a f1(x)

Dα∗a f2(x)

∣∣∣∣
)

dx �
b∫

a

v(y)φ

(∣∣∣∣∣ f
(n)
1 (y)

f (n)
2 (y)

∣∣∣∣∣
)

dy (2.6)

holds.

Proof. Similar to the proof of Corollary 2.3.

We continue with the following lemma that is given in [4].

LEMMA 2.3. Let ν > γ � 0, n = [ν]+1 , m = [γ]+1 and f ∈ ACn([a,b]). Sup-
pose that one of the following conditions hold:

(a) ν,γ 
∈ N0 and f i(0) = 0 for i = m, ...,n−1.
(b) ν ∈ N0,γ 
∈ N0 and f i(0) = 0 for i = m, ...,n−2.
(c) ν 
∈ N0,γ ∈ N0 and f i(0) = 0 for i = m−1, ...,n−1.
(d) ν ∈ N0,γ ∈ N0 and f i(0) = 0 for i = m−1, ...,n−2.
Then

Dγ
∗a f (x) =

1
Γ(ν− γ)

x∫
a

(x− y)ν−γ−1Dν
∗a f (y)dy

for all a � x � b.

COROLLARY 2.5. Let u be a weight function on (a,b) and let assumptions in
Lemma 2.3 be satisfied. Define v(y) on (a,b) by

v(y) =
Dν∗a f2(y)
Γ(ν− γ)

b∫
y

u(x)(x− y)ν−γ−1

Dγ
∗a f2(x)

dx < ∞

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ
(∣∣∣∣D

γ
∗a f1(x)

Dγ
∗a f2(x)

∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣Dν∗a f1(y)

Dν∗a f2(y)

∣∣∣∣
)

dy (2.7)

holds.

Proof. Similar to the proof of Corollary 2.3.

Now we continue with the definition of Hadamard-type fractional integrals.
Let [a,b] be finite or infinite interval of R+ and α > 0. The left and right-sided
Hadamard-type fractional integrals of order α > 0 are given by

(Jαa+ f )(x) =
1

Γ(α)

x∫
a

(
log

x
y

)α−1 f (y)dy
y

, x > a
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and

(Jαb− f )(x) =
1

Γ(α)

b∫
x

(
log

y
x

)α−1 f (y)dy
y

, x < b

respectively.

COROLLARY 2.6. Let u be a weight function and α > 0. Jαa+ f denotes the left-
sided Hadamard-type fractional integral. Define

v(y) =
f2(y)

yΓ(α)

b∫
y

u(x)
(

log
x
y

)α−1 1
(Jαa+ f2)(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣J
α
a+ f1(x)

Jαa+ f2(x)

∣∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣
)

dy, (2.8)

holds.

Proof. Similar to the proof of Corollary 2.3.

Similarly we obtain the following Corollary.

COROLLARY 2.7. Let u be a weight function and α > 0. Jαb− f denotes the right-
sided Hadamard-type fractional integral. Define

v(y) =
f2(y)

yΓ(α)

b∫
y

u(x)
(
log

y
x

)α−1 1
(Jαb− f2)(x)

dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣
Jαb− f1(x)

Jαb− f2(x)

∣∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣
)

dy.

holds.

Proof. Similar to the proof of Corollary 2.3.

Now will give the definition of Erdelyi-Kóber type fractional integrals. For details
see [12] (also see [5, p, 154]).
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Let (a,b),(0 � a < b � ∞) be finite or infinite interval of R
+. Let α > 0,σ > 0,

and η ∈ R. The left and right-sided Erdelyi-Kóber type fractional integral of order
α > 0 are defined by

(Iαa+;σ ;η f )(x) =
σx−σ(α+η)

Γ(α)

x∫
a

tση+σ−1 f (t)dt
(xσ − tσ )1−α , (x > a)

and

(Iαb−;σ ;η f )(x) =
σxση

Γ(α)

∫ b

x

tσ(1−η−α)−1 f (t)dt
(tσ − xσ )1−α , (x < b)

respectively.

COROLLARY 2.8. Let u be a weight function, Iαa+;σ ;η f denotes the left-sided
Erdelyi-Kóber type fractional integral of function f of order α > 0. Define v on (a,b)
by

v(y) =
f2(y)
Γ(α)

b∫
y

u(x)σx−σ(α+η)yση+σ−1

(xσ − yσ )1−α(Iαa+;σ ;η f2)(x)
dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣ I
α
a+;σ ;η f1(x)
Iαa+;σ ;η f2(x)

∣∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣
)

dy, (2.9)

holds.

Proof. Similar to the proof of Corollary 2.3.

Similarly we obtain the following Corollary.

COROLLARY 2.9. Let u be a weight function, Iαb−;σ ;η f denotes the right-sided
Erdelyi-Kóber type fractional integral of function f . Define v on (a,b) by

v(y) =
f2(y)
Γ(α)

y∫
a

u(x)σxσηyσ(1−α−η)−1

(yσ − xσ )1−α(Iαb−;σ ;η f2)(x)
dx < ∞.

If φ : (0,∞) → R be convex and increasing, then the inequality

b∫
a

u(x)φ

(∣∣∣∣∣
Iαb−;σ ;η f1(x)

Iαb−;σ ;η f2(x)

∣∣∣∣∣
)

dx �
b∫

a

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣
)

dy,

holds.
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Proof. Similar to the proof of Corollary 2.3.

In the previous corollaries we derived only inequalities over some subsets of R .
However, Theorem 1.2 covers much more general situations. We conclude this paper
with multidimensional fractional integrals. Such type of fractional integrals are usually
generalization of the corresponding one-dimensional fractional integral and fractional
derivative.
For x = (x1, ...,xn) ∈ R

n and α = (α1, ...,αn) , we use the following notations:

Γ(α) = (Γ(α1) · · ·Γ(αn)), [a,b] = [a1,b1]×·· ·× [an,bn],

and by x > a we mean x1 > a1, ...,xn > an .
We define the mixed Riemann-Liouville fractional integrals of order α > 0 as

(Iαa+ f )(x) =
1

Γ(α)

x1∫
a1

· · ·
xn∫

an

f (t)(x− t)α−1dt, (x > a)

and

(Iαb− f )(x) =
1

Γ(α)

b1∫
x1

· · ·
bn∫

xn

f (t)(t−x)α−1dt, (x < b).

COROLLARY 2.10. Let u be a weight function on (a,b) and α > 0 . Iαa+ f de-
notes the mixed Riemann-Liouville fractional integral of f . Define v on (a,b) by

v(y) :=
f2(y)
Γ(α)

∫ b1

y1

· · ·
∫ bn

yn

u(x)
(x−y)α−1

(Iαa+ f2)(x)
dx < ∞.

If φ : (0,∞) → R is convex and increasing, then the inequality

b1∫
a1

...

b1∫
a1

u(x)φ

(∣∣∣∣∣ I
α
a+ f1(x)
Iαa+ f2(x)

∣∣∣∣∣
)

dx �
b1∫

a1

...

b1∫
a1

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣
)

dy, (2.10)

holds.

Proof. Similar to the proof of Corollary 2.3.

Similarly we obtain the following result.

COROLLARY 2.11. Let u be a weight function on (a,b) and α > 0 . Iαb− f de-
notes the mixed Riemann-Liouville fractional integral of f . Define v on (a,b) by

v(y) :=
f2(y)
Γ(α)

∫ y1

a1

· · ·
∫ yn

an

u(x)
(y−x)α−1

(Iαb− f2)(x)
dx < ∞.
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If φ : (0,∞) → R is convex and increasing, then the inequality

b1∫
a1

...

b1∫
a1

u(x)φ

(∣∣∣∣∣
Iαb− f1(x)

Iαb− f2(x)

∣∣∣∣∣
)

dx �
b1∫

a1

...

b1∫
a1

v(y)φ
(∣∣∣∣ f1(y)

f2(y)

∣∣∣∣
)

dy,

holds.

Note that Theorem 1.2 can be generalized for convex functions of several vari-
ables. We conclude this paper with the following result.

THEOREM 2.1. Let gi ∈U( fi) , (i = 1,2,3) , where g2(x) > 0 for every x ∈ Ω1 .
Let u be a weight function on Ω1 , k be a non-negative measurable function on Ω1 ×
Ω2 . Let v be defined by (1.2) . If φ : (0,∞) → R is convex and increasing function,
then the inequality

∫
Ω1

u(x)φ
(∣∣∣∣g1(x)

g2(x)

∣∣∣∣ ,
∣∣∣∣g3(x)
g2(x)

∣∣∣∣
)

dμ1(x) �
∫
Ω2

v(y)φ
(∣∣∣∣ f1(y)f2(y)

∣∣∣∣ ,
∣∣∣∣ f3(y)f2(y)

∣∣∣∣
)

dμ2(y), (2.11)

holds.

REMARK 2.2. Apply Theorem 2.1 with Ω1 = Ω2 = [a,b] and dμ1(x) = dx ,
dμ1(y) = dy . Then

v(y) = f2(y)
∫ b

a

u(x)k(x,y)
g2(x)

dx

and (2.11) reduces to

∫ b

a
u(x)φ

(∣∣∣∣g1(x)
g2(x)

∣∣∣∣ ,
∣∣∣∣g3(x)
g2(x)

∣∣∣∣
)

dx �
∫ b

a
v(y)φ

(∣∣∣∣ f1(y)f2(y)

∣∣∣∣ ,
∣∣∣∣ f3(y)f2(y)

∣∣∣∣
)

dy

This result is given in [10] (see also [11, p. 236]).
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Faculty of Textile Technology

University of Zagreb
Prilaz baruna Filipovića 28a
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