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INTEGRAL, DISCRETE AND FUNCTIONAL

VARIANTS OF JENSEN’S INEQUALITY

Z. PAVIĆ, J. PEČARIĆ AND I. PERIĆ

Abstract. We deal with the convex functions on the bounded closed convex sets with common
barycenter. More precisely, the integral arithmetic means of convex function f are compared on
these two sets A and B with A ⊂ B . The paper shows that series of inequalities

1
μ(A)

∫
A

f (x)dμ(x) � 1
μ(B)

∫
B

f (x)dμ(x) � 1
μ(B\A)

∫
B\A

f (x)dμ(x)

hold for convex functions of one variable, but it doesn’t generally hold for convex functions
of several variables. The article also gives discrete and functional variants of the mentioned
inequality, and their applications to quasi-arithmetic and power means.

1. The integral variants of Jensen’s inequality

The notion of the arithmetic mean can be expanded on sets and functions with
help of measure and integral theory. This concept is barycenter for sets and integral
arithmetic mean for functions. Consequently, the barycenter of μ -measurable set S ⊂
R

n (barycenter with respect to measure μ ) is the n -tuple

sμ =
1

μ(S)

∫
S
sdμ(s)

with coordinates

(sμ)i =
1

μ(S)

∫
S
si dμ(s) for i = 1, . . . ,n.

The point sμ is called μ -barycenter. The integral arithmetic mean of μ -integrable
function g on set S (integral arithmetic mean with respect to measure μ ) is the real
number

gsμ =
1

μ(S)

∫
S
g(s)dμ(s).

The number gsμ is called μ -integral arithmetic mean. A basic connection between the
barycenter and the integral arithmetic mean is written in the integral form of Jensen’s
inequality.

Through this paper I ⊆ R will be an interval.
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The integral form of Jensen’s inequality. Let (S,S,μ) be a finite measure space. Let
g : S → I be a μ -integrable function. Then inequality

f

(
1

μ(S)

∫
S
g(s)dμ(s)

)
� 1

μ(S)

∫
S
( f ◦ g)(s)dμ(s)

holds for every convex function f : I → R provided that f ◦ g is μ -integrable.

This integral variant can be found in [8], and more general integral variant can be
found in [10].

This paper is animated with some ideas from [3]. We recall general known facts
from [2] and [3].

Through this paper μ will be a finite measure.

LEMMA 1. Let A and B be bounded closed sets from R
n such that A ⊂ B and

0 < μ(A) < μ(B) . If

1
μ(A)

∫
A
xdμ(x) =

1
μ(B)

∫
B
xdμ(x),

then
1

μ(A)

∫
A
xdμ(x) =

1
μ(B\A)

∫
B\A

xdμ(x).

Proof. Using the properties of integral and the assumption, it follows

1
μ(B\A)

∫
B\A

xdμ(x) =
1

μ(B\A)

(∫
B
xdμ(x)−

∫
A
xdμ(x)

)

=
1

μ(B\A)

(
μ(B)
μ(A)

∫
A
xdμ(x)−

∫
A
xdμ(x)

)

=
μ(B)− μ(A)
μ(B\A)μ(A)

∫
A
xdμ(x) =

1
μ(A)

∫
A
xdμ(x). �

Geometrical and mechanical meaning of Lemma 1: If λ is μ -barycenter of the
sets A and B with A ⊂ B , then λ is μ -barycenter of the set B\A also.

LEMMA 2. Let A and B be bounded closed sets from R
n such that A ⊂ B and

0 < μ(A) < μ(B) . If one of three equalities

1
μ(A)

∫
A
xdμ(x) =

1
μ(B)

∫
B
xdμ(x) =

1
μ(B\A)

∫
B\A

xdμ(x)

is valid, then equalities

1
μ(A)

∫
A
h(x)dμ(x) =

1
μ(B)

∫
B
h(x)dμ(x) =

1
μ(B\A)

∫
B\A

h(x)dμ(x)

hold for any affine function h(x) = h(x1, . . . ,xn) = ∑n
i=1 kixi + l .
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Proof. From
1

μ(A)

∫
A
xi dμ(x) = λi

follows

1
μ(A)

∫
A
h(x)dμ(x) =

n

∑
i=1

ki

μ(A)

∫
A
xi dμ(x)+

l
μ(A)

∫
A
dμ(x) =

n

∑
i=1

kiλi + l. �

In order to get a practical description of Lemma 2 let define measure ν on h(B)
by the rule

ν(h(A)) = |k|μ(A)

for all μ -measurable subsets A of B , excluding the case k = 0. Geometrical and
mechanical meaning of Lemma 2 is the following: If λ is μ -barycenter of the sets
A,B,B\A with A⊂ B ; then h(λ ) = kλ + l is ν -barycenter of the sets h(A),h(B),h(B\
A) .

PROPOSITION 1. Let A and B be bounded closed intervals from R such that
A ⊂ B and 0 < μ(A) < μ(B) . If one of three equalities

1
μ(A)

∫
A
xdμ(x) =

1
μ(B)

∫
B
xdμ(x) =

1
μ(B\A)

∫
B\A

xdμ(x)

is valid, then series of inequalities

1
μ(A)

∫
A

f (x)dμ(x) � 1
μ(B)

∫
B

f (x)dμ(x) � 1
μ(B\A)

∫
B\A

f (x)dμ(x)

hold for every convex function f : B → R .

Proof. If A = [a1,a2] , let y = hcho
A (x) be a chord line through points T1(a1, f (a1))

and T2(a2, f (a2)) . From the convexity of f and Lemma 2, it follows

1
μ(A)

∫
A

f (x)dμ(x) � 1
μ(A)

∫
A
hcho

A (x)dμ(x) =
1

μ(B\A)

∫
B\A

hcho
A (x)dμ(x)

� 1
μ(B\A)

∫
B\A

f (x)dμ(x).

Using this result we will prove the first inequality:

1
μ(A)

∫
A

f (x)dμ(x) =
μ(B)

μ(B)μ(A)

∫
A

f (x)dμ(x) =
μ(A)+ μ(B\A)

μ(B)μ(A)

∫
A

f (x)dμ(x)

=
1

μ(B)

(∫
A

f (x)dμ(x)+
μ(B\A)
μ(A)

∫
A

f (x)dμ(x)
)

� 1
μ(B)

(∫
A

f (x)dμ(x)+
∫

B\A
f (x)dμ(x)

)

=
1

μ(B)

∫
B

f (x)dμ(x)
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Let us prove the second inequality:

1
μ(B)

∫
B

f (x)dμ(x) =
1

μ(B)

(∫
A

f (x)dμ(x)+
∫

B\A
f (x)dμ(x)

)

� 1
μ(B)

(
μ(A)

μ(B\A)

∫
B\A

f (x)dμ(x)+
∫

B\A
f (x)dμ(x)

)

=
1

μ(B\A)

∫
B\A

f (x)dμ(x) �

Proposition 1 can be expressed in more general situation with measure space
(S,S,μ) and μ -integrable function g : S → R . However, it is assumed that μ -integral
arithmetic means of a function g are the same on a pair of measurable sets SA,SB ∈ S

with SA ⊆ SB .

THEOREM 1. Let (S,S,μ) be a finite measure space. Let g : S → I be a μ -
integrable function. Let A and B be bounded closed intervals from R so that A ⊂
B ⊆ I and 0 < μ(SA) < μ(SB) , where SA = g−1(A) and SB = g−1(B) . If one of three
equalities

1
μ(SA)

∫
SA

g(s)dμ(s) =
1

μ(SB)

∫
SB

g(s)dμ(s) =
1

μ(SB\A)

∫
SB\A

g(s)dμ(s)

is valid, then series of inequalities

1
μ(SA)

∫
SA

( f ◦ g)(s)dμ(s) � 1
μ(SB)

∫
SB

( f ◦ g)(s)dμ(s)

� 1
μ(SB\A)

∫
SB\A

( f ◦ g)(s)dμ(s)

hold for every convex function f : I → R .

Proof. Convex function f is continuous on IntB and bounded on B . Therefore,
the composition f ◦ g is μ -integrable on SB . Series of inequalities follow from the
proof of Proposition 1 by successively inserting

SA , SB , SB\A , g(s) , dμ(s)

instead of
A , B , B\A , x , dμ(x).

At deriving the inequalities, an obvious fact SB\A = SB \ SA also can be useful. �
These series of inequalities can be extended from the left side if we use the integral

Jensen inequality

f

(
1

μ(SA)

∫
SA

g(s)dμ(s)
)

� 1
μ(SA)

∫
SA

( f ◦ g)(s)dμ(s).
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So, in the short form, we have

f

(
1

μ(SA)

∫
SA

gdμ
)

� 1
μ(SA)

∫
SA

f ◦ gdμ

� 1
μ(SB)

∫
SB

f ◦ gdμ � 1
μ(SB\A)

∫
SB\A

f ◦ gdμ .

Stochastic meaning of Theorem 1 for probability space (S,S,μ) i.e. for μ(S) = 1 is
the following: If the expectations of random variable g are the same on sets A and B ,
and therefore on A\B also,

E[g|A] = E[g|B] = E[g|B\A],

then for the expectations of random variable f ◦ g on these sets hold

E[ f ◦ g|A] � E[ f ◦ g|B] � E[ f ◦ g|B\A].

If we allow contraction of closed interval A towards point

a = E[g|B],

that is if A = {a} , then from the left side of the above double inequality follows Jensen’s
inequality for expectation on set B :

f (E[g|B]) = f (a) = E[ f ◦ g|{a}] � E[ f ◦ g|B].

REMARK 1. If a function f is concave, then the reverse inequalities hold in Inte-
gral form of Jensen’s inequality, Proposition 1 and Theorem 1.

2. The counterexamples for convex functions of two and three variables on
polytopes with common barycenter

It is important to determine whether Proposition 1 is valid in the case when convex
sets A and B belong to Euclidean space R

n . Unfortunately, already for n = 2 the
nothing in Proposition 1 generally doesn’t hold. In the next two examples the reverse
inequalities hold for bounded closed convex sets, Lebesgue measure μ (dμ(x) = dx )
and convex functions of two or three variables.

EXAMPLE 1. For polytopes A(four vertices) and B(six vertices) with common
barycenter in origin,

A = co

{(
±1,±1

2

)}
and B = co

{(
±1,±1

2

)
,

(
0,±3

2

)}

where co denotes convex hull, and convex function

f (x) = f (x1,x2) =
{

x1 f or x1 � 0
0 f or x1 � 0
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the following holds:

1
μ(A)

∫
A

f (x)dμ(x) >
1

μ(B)

∫
B

f (x)dμ(x) >
1

μ(B\A)

∫
B\A

f (x)dμ(x) (1)

Proof. Evidently, it follows μ(A) = 2 , μ(B) = 4 and μ(B\A) = 2. We have:

1
μ(A)

∫
A

f (x)dx =
1
2

∫ 1

0
x1 dx1

∫ 1
2

− 1
2

dx2 =
1
4

1
μ(B)

∫
B

f (x)dx =
5
24

1
μ(B\A)

∫
B\A

f (x)dx =
1
6

and the serious of inequalities in (1) hold. �

EXAMPLE 2. For polytopes A(eight vertices) and B(ten vertices) with common
barycenter in origin,

A = co

{(
±1,±1

2
,±1

)}
and B = co

{(
±1,±1

2
,±1

)
,

(
0,±3

2
,0

)}

and convex function

f (x) = f (x1,x2,x3) =
{

x1 f or x1 � 0
0 f or x1 � 0

the following holds:

1
μ(A)

∫
A

f (x)dμ(x) >
1

μ(B)

∫
B

f (x)dμ(x) >
1

μ(B\A)

∫
B\A

f (x)dμ(x) (2)

Proof. Evidently, it follows μ(A) = 4 , μ(B) = 20
3 and μ(B\A) = 8

3 . We have:

1
μ(A)

∫
A

f (x)dx =
1
4

∫ 1

0
x1 dx1

∫ 1
2

− 1
2

dx2

∫ 1

−1
dx3 =

1
4

1
μ(B)

∫
B

f (x)dx =
9
40

1
μ(B\A)

∫
B\A

f (x)dx =
3
16

and so the serious of inequalities in (2) hold. �
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3. The discrete variants of Jensen’s inequality and applications to
quasi-arithmetic and power means

The theory of convex functions can be subordinated to the theory of convex sets,
since a convex function is the one whose epigraph is a convex set. However, the subject
of convexity gets the full meaning when we consider a convex function on a convex
set. The basic result on convex sets and convex functions is the well-known Jensen’s
inequality.

The discrete form of Jensen’s inequality. Let vectors x1, ...,xn belong to a convex set
C in a real vector space. Let scalars p1, ..., pn be non-negative and pn = ∑n

i=1 pi be
positive. Then inequality

f

(
1
pn

n

∑
i=1

pixi

)
� 1

pn

n

∑
i=1

pi f (xi)

holds for every convex function f : C → R .

In other words, the f -value of the convex combinations of vectors is less than or
equal to the convex combination of the f -values of vectors. This inequality can be used
as an alternative definition of convexity.

The mechanical interpretation of Jensen’s inequality can be proposed when we
consider a set of n point-particles Ti with masses qi , and so with total mass qn =
∑n

i=1 qi . If the particles Ti are located over a convex curve y = f (x) in plane at Ti(xi,yi) ,
then the following holds:

f

(
1
qn

n

∑
i=1

qixi

)
� 1

qn

n

∑
i=1

qiyi .

Now we suppose that a measure μ from Section 1 is discrete. Further, with respect
to our integral case where A ⊂ B and 0 < μ(A) < μ(B) , let:

A = {xi : i = 1, . . . ,m < n} , B = {xi : i = 1, . . . ,n}

μ(xi) = pi for i = 1, . . . ,n

0 < μ(A) =
m

∑
i=1

pi = pm < pn =
n

∑
i=1

pi = μ(B)

Consequently, it gives an idea for a discrete variant of Proposition 1:

PROPOSITION 2. Let numbers x1, . . . ,xn belong to an interval I ⊆ R so that xi /∈
co{x1, . . . ,xm} for i = m + 1, . . . ,n. Let numbers p1, . . . , pn be non-negative so that
0 < ∑m

i=1 pi = pm < pn = ∑n
i=1 pi . If one of three equalities

1
pm

m

∑
i=1

pi xi =
1
pn

n

∑
i=1

pi xi =
1

pn−pm

n

∑
i=m+1

pi xi
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is valid, then series of inequalities

f

(
1
pm

m

∑
i=1

pi xi

)
� 1

pm

m

∑
i=1

pi f (xi) � 1
pn

n

∑
i=1

pi f (xi) � 1
pn−pm

n

∑
i=m+1

pi f (xi)

hold for every convex function f : I → R .

REMARK 2. If a function f is concave, then the reverse inequalities hold in Dis-
crete form of Jensen’s inequality and Proposition 2.

Let x1, . . . ,xn be real numbers from an interval I and α1, . . . ,αn be non-negative
real numbers such that ∑n

i=1αi = 1. Let ϕ : I → R be a strictly monotone function.
The weighted quasi-arithmetic mean of {xi} with respect to a function ϕ is defined as

Mn(ϕ , αi , xi) = ϕ−1

(
n

∑
i=1

αiϕ(xi)

)
.

If all xi are positive, and by putting strictly monotone functions

ϕr(x) =
{

xr for r �= 0
lnx for r = 0

in an expression Mn(ϕr,αi,xi) , we obtain the weighted r -power means

M
[r]
n (αi , xi) =

{
(∑n

i=1αi xr
i )

1
r for r �= 0

exp(∑n
i=1αi lnxi) for r = 0

.

COROLLARY 1. Let numbers x1, . . . ,xn belong to an interval I ⊆ R so that xi /∈
co{x1, . . . ,xm} for i = m + 1, . . . ,n. Let numbers p1, . . . , pn be non-negative so that
0 < ∑m

i=1 pi = pm < pn = ∑n
i=1 pi . Let function ϕ : I → R be strictly monotone. If one

of three equalities

Mm

(
pi

pm
, ϕ(xi)

)
= Mn

(
pi

pn
, ϕ(xi)

)
= Mn−m

(
pm+i

pn −pm
, ϕ(xm+i)

)

is valid, then series of inequalities

Mm

(
f ,

pi

pm
, xi

)
� Mn

(
f ,

pi

pn
, xi

)
� Mn−m

(
f ,

pm+i

pn −pm
, xm+i

)

hold for every strictly increasing function f : I → R which is convex with respect to ϕ ,
i.e. f ◦ϕ−1 is convex.

Proof. If we use Proposition 2 with convex function f ◦ϕ−1 on assumption

1
pm

m

∑
i=1

piϕ(xi) =
1
pn

n

∑
i=1

piϕ(xi) =
1

pn−pm

n

∑
i=m+1

piϕ(xi),
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we get
1
pm

m

∑
i=1

pi f (xi) � 1
pn

n

∑
i=1

pi f (xi) � 1
pn −pm

n

∑
i=m+1

pi f (xi).

The wanted result follows after applying of an increasing function f−1 . �

REMARK 3. If f is strictly decreasing and concave with respect to ϕ , then series
of inequalities in Corollary 1 are also valid. If either f is strictly increasing and concave
with respect to ϕ or f is strictly decreasing and convex with respect to ϕ , then series
of inequalities in Corollary 1 are reversed.

Especially, when quasi-arithmetic mean becomes r -power mean we have the fol-
lowing result.

COROLLARY 2. Let numbers x1, . . . ,xn be positive so that xi /∈ co{x1, . . . ,xm} for
i = m+ 1, . . . ,n. Let numbers p1, . . . , pn be non-negative so that 0 < ∑m

i=1 pi = pm <
pn = ∑n

i=1 pi . If one of three equalities

1
pm

m

∑
i=1

pi xi =
1
pn

n

∑
i=1

pi xi =
1

pn−pm

n

∑
i=m+1

pi xi

is valid, then series of inequalities

M
[r]
m

(
pi

pm
, xi

)
� M

[r]
n

(
pi

pn
, xi

)
� M

[r]
n−m

(
pm+i

pn−pm
, xm+i

)
f or r � 1

M
[r]
m

(
pi

pm
, xi

)
� M

[r]
n

(
pi

pn
, xi

)
� M

[r]
n−m

(
pm+i

pn−pm
, xm+i

)
f or r � 1

hold.

4. The functional approach

The results constructed for integrals in the first section can be generalized on linear
functionals. In this section, we will mainly use Jessen’s generalization of Jensen’s
inequality for unital positive linear functionals. Let S be a non-empty set and S be a
vector space of real-valued functions g : S → R . The space S which contains a unit
function 1 , by definition 1(s) = 1 for every s ∈ S , we will denote with S1 . Linear
functional P : S1 → R is unital or normalized if P(1) = 1.

We will also use the basic property of a convex function which says that the graph
of a convex curve y = f (x) on the bounded closed interval [a,b] is located between a
support line y = hsup

x0 (x) taken in x0 ∈ (a,b) and a chord line y = hcho
[a,b](x) :

hsup
x0

(x) � f (x) � hcho
[a,b](x) for every x ∈ [a,b].
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The weighted functional form of Jensen’s inequality. Let w ∈ S1 be a positive
function, g : S → I be a function so that w · g ∈ S1 , and P : S1 → R be a positive
linear functional so that P(w) > 0 . Then inequality

f

(
1

P(w)
P(w ·g)

)
� 1

P(w)
P(w · ( f ◦ g))

holds for every continuous convex function f : I → R provided that w · ( f ◦ g) ∈ S1 .

COROLLARY 3. Let w ∈ S1 be a positive function, g : S → [a,b] be a function
so that w ·g ∈ S1 , and P : S1 → R be a positive linear functional so that P(w) > 0 .
Then series of inequalities

hsup
x0

(
P(w ·g)
P(w)

)
� f

(
P(w ·g)
P(w)

)
� P(w · ( f ◦ g))

P(w)
� hcho

[a,b]

(
P(w ·g)
P(w)

)
(3)

hold for every continuous convex function f : [a,b]→ R provided that w · ( f ◦g)∈S1 .

Now, we expose the functional variant of Theorem 1. Let χSA denotes the charac-
teristic function of the set SA = g−1(A) for function g : S → I and subset A ⊆ I .

THEOREM 2. Let g : S → I be a function and P : S → R be a positive linear
functional. Let A and B be bounded closed intervals so that A ⊂ B⊆ I, χSA , χSB , χSA ·
g , χSB ·g ∈ S and 0 < P(χSA) < P(χSB) . If one of three equalities

1
P(χSA)

P(χSA ·g) =
1

P(χSB)
P(χSB ·g) =

1
P(χSB\A)

P(χSB\A ·g)

is valid, then series of inequalities

1
P(χSA)

P(χSA · ( f ◦ g)) � 1
P(χSB)

P(χSB · ( f ◦ g)) � 1
P(χSB\A)

P(χSB\A · ( f ◦ g))

hold for every convex function f : I → R provided that χSA · ( f ◦ g) , χSB · ( f ◦ g) ∈ S .

Proof. We can prove the inequalities similarly as in Proposition 1 using a chord
line y = hcho

A (x) and the convexity of a curve y = f (x) . �
If a function f is continuous and convex, then the series of inequalities in Theorem

2 can be extended from the left side by using the weighted functional form of Jensen’s
inequality, and so we can get

f

(
P(χSA ·g)
P(χSA)

)
� P(χSA · ( f ◦ g))

P(χSA)
� P(χSB · ( f ◦ g))

P(χSB)
�

P(χSB\A · ( f ◦ g))

P(χSB\A)
.

We can also express Theorem 2 in terms of the generalized means. The generalized
mean of a function g ∈ S with respect to the positive linear functional P : S → R is
the number

M (P,g) = P(g).
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COROLLARY 4. Let g : S → I be a function and P : S → R be a positive linear
functional. Let A and B be bounded closed intervals so that A ⊂ B ⊆ I, χSA , χSB ∈ S
and 0 < P(χSA) < P(χSB) . Let ϕ : I → R be a strictly monotone function so that
χSA · (ϕ ◦ g) , χSB · (ϕ ◦ g) ∈ S . If one of three equalities

M

(
P,
χSA · (ϕ ◦ g)

P(χSA)

)
= M

(
P,
χSB · (ϕ ◦ g)

P(χSB)

)
= M

(
P,
χSB\A · (ϕ ◦ g)

P(χSB\A)

)

is valid, then series of inequalities

M

(
P,
χSA · ( f ◦ g)

P(χSA)

)
� M

(
P,
χSB · ( f ◦ g)

P(χSB)

)
� M

(
P,
χSB\A · ( f ◦ g)

P(χSB\A)

)

hold for every function f : I → R which is convex with respect to ϕ provided that
χSA · ( f ◦ g) , χSB · ( f ◦ g) ∈ S .

REMARK 4. Theorem 1 follows from Theorem 2 if we put

P(g) =
1∫

S dμ(s)

∫
S
g(s)dμ(s) =

1
μ(S)

∫
S
g(s)dμ(s).

Then, these special cases hold:

P(χSA) =
1∫

S dμ(s)

∫
SA

dμ(s) =
1

μ(S)
μ(SA)

P(χSA ·g) =
1∫

S dμ(s)

∫
SA

g(s)dμ(s) =
1

μ(S)

∫
SA

g(s)dμ(s)
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