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Abstract. For r ∈ R , the Lehmer mean of two positive numbers a and b is defined by

Lr(a,b) =
ar+1 +br+1

ar +br .

In this paper, we establish two sharp inequalities as follows: I(a,b) > L− 1
6
(a,b) and

L(a,b) > L− 1
3
(a,b) for all a,b > 0 with a �= b . Here I(a,b) = 1

e

(
bb

aa

) 1
b−a

and L(a,b) =
b−a

logb−loga denote the identric mean and logarithmic mean of two positive numbers a and b with
a �= b , respectively.

1. Introduction

For r ∈ R , the Lehmer mean of two positive numbers a and b is defined by

Lr(a,b) =
ar+1 +br+1

ar +br .

It is well-known that Lr(a,b) is continuous and strictly increasing with respect to
r ∈ R for fixed a and b with a �= b , and its properties can be found in [1–5]. If we

denote by A(a,b) = a+b
2 , I(a,b) = 1

e (
bb

aa )
1

b−a , L(a,b) = b−a
lnb−lna , G(a,b) =

√
ab and

H(a,b) = 2ab
a+b the arithmetic mean, identric mean, logarithmic mean, geometric mean

and harmonic mean of two positive numbers a and b with a �= b , respectively, then

min{a,b}< H(a,b) = L−1(a,b) < G(a,b) = L− 1
2
(a,b) < L(a,b)

< I(a,b) < A(a,b) = L0(a,b) < max{a,b}.
In the recent past, the logarithmic mean and identric mean have been the subject

intensive research. In particular, many remarkable inequalities for L and I can be found
in the literature [6–12], the following Theorem A and its proof can be found in [13].
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THEOREM A. For all positive numbers a and b with a �= b, we have

√
G(a,b)A(a,b) <

√
L(a,b)I(a,b) <

1
2
(L(a,b)+ I(a,b)) <

1
2
(G(a,b)+A(a,b)).

For p ∈ R , the p -th power mean Mp(a,b) of two positive numbers a and b is
defined by

Mp(a,b) =

⎧⎨
⎩

(
ap+bp

2

) 1
p
, p �= 0,√

ab, p = 0.

The properties of these means are given in [14]. Several authors discussed the
relationship of certain means to Mr . The following sharp bounds for L , I , (IL)

1
2 and

I+L
2 in terms of power means are proved in [13, 15–19].

THEOREM B. For all positive real numbers a and b with a �= b we have

M0(a,b) < L(a,b) < M 1
3
(a,b), M 2

3
(a,b) < I(a,b) < Mlog2(a,b),

M0(a,b) < I
1
2 (a,b)L

1
2 (a,b) < M 1

2
(a,b)

and
1
2
[I(a,b)+L(a,b)] < M 1

2
(a,b).

The main purpose of this paper is to answer the questions: What are the greatest
values α and β , such that I(a,b) > Lα (a,b) and L(a,b) > Lβ (a,b) for all a,b > 0
with a �= b .

2. Main Results

THEOREM 2.1. I(a,b) > L− 1
6
(a,b) for all a,b > 0 with a �= b, and L− 1

6
(a,b) is

the best possible lower Lehmer mean bound for the identric mean I(a,b) .

Proof. Without loss of generality, we assume that a > b . Let t = 6
√ a

b > 1, then
simple computation leads to

log I(a,b)− logL− 1
6
(a,b)

=
5t6 +1
t6−1

logt− log(t5 +1)+ log(t +1)−1.
(2.1)

Let f (t) = 5t6+1
t6−1

logt− log(t5 +1)+ log(t +1)−1, then

lim
t→1

f (t) = 0, (2.2)

f ′(t) =
t5

(t6−1)2 g(t), (2.3)
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where

g(t) = −36logt +
g1(t)

t6(t4− t3 + t2− t +1)
(2.4)

and
g1(t) = t16−2t15 +3t14−4t13 +5t12 +4t10−2t9 +2t7,

−4t6−5t4 +4t3−3t2 +2t−1.

Differentiating g(t) yields

g′(t) =
(t +1)2(t−1)4(t2 + t +1)(t2− t +1)g2(t)

t7(t4− t3 + t2− t +1)2 , (2.5)

where
g2(t) = 6t10−5t9 +22t8−18t7 +50t6−23t5

+50t4−18t3 +22t2−5t +6

= t(t−1)(5t8 +18t6 +23t4 +18t2 +5)
+t10 +4t8 +27t6 +32t4 +17t2 +6.

(2.6)

From (2.6) we clearly see that g2(t) > 0 for t > 1, then (2.4) and (2.5) imply that
g(t) > g(1) = 0 for t > 1. Therefore, I(a,b) > L− 1

6
(a,b) follows from (2.1)–(2.3) and

g(t) > 0 for t > 1.
Next, we prove that L− 1

6
(a,b) is the best possible lower Lehmer mean bound for

the identric mean I(a,b) .
For any ε ∈ (0, 1

6) and x > 0, one has

L− 1
6+ε(1,1+ x)− I(1,1+ x)

=
(x+1)

5
6 +ε +1

(x+1)−
1
6 +ε +1

− e
x+1
x log(1+x)−1

=
h(x)

(x+1)−
1
6 +ε +1

,

(2.7)

where h(x) = (x+1)
5
6 +ε +1− [(x+1)−

1
6 +ε +1]e

x+1
x log(1+x)−1.

Letting x → 0 and making use of Taylor expansion, we get

h(x) = 2+( 5
6 + ε)x+( 5

6 + ε)( ε2 − 1
12 )x2 +o(x2)− [2+(ε− 1

6 )x

+(ε− 1
6)( ε2 − 7

12 )x2 +o(x2)][1+ 1
2x− 1

24x2 +o(x2)]

= 2+( 5
6 + ε)x+( 5

6 + ε)( ε2 − 1
12 )x2 −2− x− (ε− 1

6 )x

−( ε2 − 1
12 )x2− (ε− 1

6 )( ε2 − 7
12)x2 + 1

12x2 +o(x2)

= 1
2εx

2 +o(x2).

(2.8)

Equations (2.7) and (2.8) imply that for any 0 < ε < 1
6 , there exists 0 < δ1 =

δ1(ε) < 1, such that L− 1
6+ε(1,1+ x) > I(1,1+ x) for x ∈ (0,δ1) . �
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REMARK 2.1. For ε > 0, one has

lim
t→+∞

I(1,t)
L−ε (1,t)

= lim
t→+∞

1
e t

t
t−1

1+t−ε+1

1+t−ε
= +∞. (2.9)

Therefore L0(a,b) = A(a,b) is the best possible upper Lehmer mean bound for
the identric mean I(a,b) . It follows from (2.9) and the well-known result L0(a,b) =
A(a,b) > I(a,b) for all a,b > 0 with a �= b .

THEOREM 2.2. L(a,b) > L− 1
3
(a,b) for all a,b > 0 with a �= b, and L− 1

3
(a,b) is

the best possible lower Lehmer mean bound for the logarithmic mean L(a,b) .

Proof. Without loss of generality, we assume that a > b . Let t = 3
√ a

b > 1, then

L(a,b)−L− 1
3
(a,b)

= b

[
t3−1
3logt

− t(t2 +1)
t +1

]

=
b

3(t +1) logt
[−3t(t2 +1) logt + t4 + t3− t−1].

(2.10)

Let f (t) = −3t(t2 +1) logt + t4 + t3− t−1, then simple computations lead to

f (1) = 0, (2.11)

f ′(t) = −3(1+3t2) logt +4t3−4, (2.12)

f ′(1) = 0, (2.13)

f ′′(t) =
3
t

f1(t), (2.14)

where
f1(t) = −6t2 logt +4t3−3t2−1, (2.15)

f1(1) = 0, (2.16)

f ′1(t) = 12t(t−1− logt). (2.17)

Let f2(t) = t −1− logt , then
f2(1) = 0, (2.18)

f ′2(t) =
t−1

t
> 0. (2.19)

Therefore the inequality L(a,b) > L− 1
3
(a,b) follows from (2.10)–(2.19).

Now we prove that L− 1
3
(a,b) is the best possible lower Lehmer mean bound for

the logarithmic mean L(a,b) .
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For any ε ∈ (0, 1
3) and x > 0, one has

L− 1
3 +ε(1,1+ x)−L(1,1+ x)

=
(1+ x)

2
3 +ε +1

(1+ x)−
1
3 +ε +1

− x
log(1+ x)

=
g(x)

[(1+ x)−
1
3 +ε +1] log(1+ x)

,

(2.20)

where g(x) = [1+(1+ x)
2
3 +ε] log(1+ x)− x[1+(1+ x)−

1
3+ε ] .

Letting x → 0 and making use of Taylor expansion, we get

g(x) =
[
2+

(
2
3

+ ε
)

x+
(

2
3

+ ε
)(

ε
2
− 1

6

)
x2 +o(x2)

][
x− 1

2
x2 +

1
3
x3 +o(x3)

]

−x

[
2+

(
ε− 1

3

)
x+

(
ε− 1

3

)(
ε
2
− 2

3

)
x2 +o(x2)

]

= x

[
2+

(
ε− 1

3

)
x−

(
1
3

+
ε
2

)
x2 +

2
3
x2 +

(
2
3

+ ε
)(

ε
2
− 1

6

)
x2

−2−
(
ε− 1

3

)
x−

(
ε− 1

3

)(
ε
2
− 2

3

)
x2 +o(x2)

]

=
1
2
εx3 +o(x3).

(2.21)

Equations (2.20) and (2.21) imply that for any 0 < ε < 1
3 , there exists 0 < δ2 =

δ2(ε) < 1, such that L− 1
3+ε(1,1+ x) > L(1,1+ x) for x ∈ (0,δ2) . �

REMARK 2.2. For ε > 0, one has

lim
t→+∞

L(1,t)
L−ε(1,t)

= lim
t→+∞

t + tε+1− tε −1
(tε + t) logt

= +∞. (2.22)

Therefore L0(a,b) = A(a,b) is the best possible upper Lehmer mean bound for the
logarithmic mean L(a,b) . It follows from (2.22) and the well-known result L(a,b) <
A(a,b) for all a,b > 0 with a �= b .
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