
Journal of
Mathematical

Inequalities
Volume 5, Number 3 (2011), 355–361

GROWTH OF POLYNOMIALS WITH PRESCRIBED ZEROS
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(Communicated by A. Horwitz)

Abstract. In this paper, we study the growth of polynomials of degree n having all its zeros
on |z| = k , k � 1 . Using the notation M(p,t) = max

|z|=t
|p(z)| , we measure the growth of p by

estimating

{
M(p,t)
M(p,1)

}s

from above for any t � 1 , s being an arbitrary positive integer.

1. Introduction and Statement of Results

For an arbitrary entire function f (z) , let M( f ,r) = max
|z|=r

| f (z)| and m( f ,k) =

min
|z|=k

| f (z)| . Then for a polynomial p(z) of degree n , it is a simple consequence of

maximum modulus principle (for reference see [4 , Vol. I, p. 137, Problem III, 269])
that

M(p,R) � RnM(p,1), for R � 1. (1.1)

The result is best possible and equality holds in (1.1) for p(z) = λ zn , where |λ | = 1.
If we restrict ourselves to the class of polynomials having no zero in |z| < 1, then

inequalities (1.1) can be sharpened. In fact, it was shown by Ankeny and Rivlin [1] that
if p(z) �= 0 in |z| < 1, then (1.1) can be replaced by

M(p,R) �
(

Rn +1
2

)
M(p,1), R � 1. (1.2)

The result is sharp and equality holds in (1.2) for p(z) = α +β zn , where |α| = |β | .
For the class of polynomials not vanishing in the disk |z| < k , k � 1 Shah [6]

proved that if p(z) is a polynomial of degree n having no zero in |z| < k , k � 1, then
for every real number R > k ,

M(p,R) �
(

Rn + k
1+ k

)
M(p,1)−

(
Rn−1
1+ k

)
m(p,k). (1.3)

The result is best possible in case k=1 and equality holds for the polynomial p(z) =
zn +1.

While trying to obtain inequality analogous to (1.2) for polynomials not vanishing
in |z| < k , k � 1, we have been able to prove the following results.
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THEOREM 1. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros

on |z| = k , k � 1 , then for every positive integer s

{M(p,R)}s �
(

kn−1(1+ k)+ (Rns−1)
kn−1 + kn

)
{M(p,1)}s, R � 1. (1.4)

If we take s = 1 in Theorem 1, we get the following result.

COROLLARY 1. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros

on |z| = k , k � 1 , then

M(p,R) �
(

kn−1(1+ k)+ (Rn−1)
kn−1 + kn

)
M(p,1), R � 1. (1.5)

The following corollary immediately follows from inequality (1.5) by taking k = 1 .

COROLLARY 2. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros

on |z| = 1 , then

M(p,R) �
(

Rn +1
2

)
M(p,1), R � 1. (1.6)

If we involve the coefficients of p(z) also, then we are able to obtain a bound which is
better than the bound of Theorem 1. More precisely, we prove

THEOREM 2. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros

on |z| = k , k � 1 , then for every positive integer s

{M(p,R)}s� 1
kn

(
n|cn|{kn(1+ k2)+ k2(Rns−1)}+|cn−1|{2kn+Rns−1}

2|cn−1|+n|cn|(1+ k2)

)

×{M(p,1)}s, R � 1. (1.7)

To prove that the bound obtained in the above theorem is, in general, better than the
bound obtained in Theorem 1, we show that

1
kn

(
n|cn|{kn(1+ k2)+ k2(Rns−1)}+ |cn−1|{2kn +Rns−1}

2|cn−1|+n|cn|(1+ k2)

)

� kn−1(1+ k)+ (Rns−1)
kn−1 + kn

which is equivalent to

n|cn|(kn−1 + kn)(kn + kn+2 + k2Rns− k2)+ |cn−1|(kn−1 + kn)(2kn +Rns−1)
� n|cn|(kn+2 + kn)(kn−1 + kn +Rns−1)+2kn|cn−1|(kn−1 + kn +Rns−1)
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which implies

n|cn|(k2n−1 + k2n+1 + kn+1Rns− kn+1 + k2n + k2n+2 + kn+2Rns− kn+2)
+|cn−1|(2k2n−1 + kn−1Rns− kn−1 +2k2n + knRns− kn)

� n|cn|(k2n−1 + k2n+1 + knRns− kn + k2n + k2n+2 + kn+2Rns− kn+2)
+ |cn−1|(2k2n−1 +2k2n +2knRns −2kn)

or

n|cn|{kn+1(Rns−1)}+|cn−1|{kn−1(Rns−1)} � n|cn|{kn(Rns−1)}+|cn−1|{kn(Rns−1)},
|cn−1|kn−1(1− k) � n|cn|kn(1− k),

|cn−1|
n|cn| � k,

which is always true (see Lemma 4).

We illustrate by means of following example that the bound obtained in Theorem 2
is better than the bound obtained in Theorem 1.

EXAMPLE 1. Let P(z) = z4− 1
50

z2 +
(

1
100

)2

and k = 1/10, R = 1.5 and s = 2.

Then by Theorem 1, we have

{M(P,R)}s � 22390.91477{M(P,1)}s,

while by Theorem 2, we get

{M(P,R)}s � 2439.505569{M(P,1)}s.

For s = 1 in Theorem 2, we get the following result.

COROLLARY 3. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros

on |z| = k , k � 1 , then

M(p,R)� 1
kn

(
n|cn|{kn(1+k2)+k2(Rn−1)}+|cn−1|{2kn+Rn−1}

2|cn−1|+n|cn|(1+ k2)

)
M(p,1), R � 1.

(1.8)

REMARK 1. If we take k = 1 in inequality (1.8), it reduces to Corollary 2.
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2. Lemmas

We need the following lemmas for the proof of these theorems. The first lemma is
due to Govil [3].

LEMMA 1. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros on

|z| = k , k � 1 , then

max
|z|=1

|p′(z)| � n
kn−1 + kn max

|z|=1
|p(z)|. (2.1)

LEMMA 2. If p(z) =
n
∑
j=0

c jz j is a polynomial of degree n having all its zeros on

|z| = k , k � 1 , then

max
|z|=1

|p′(z)| � n
kn

(
n|cn|k2 + |cn−1|

2|cn−1|+n|cn|(1+ k2)

)
max
|z|=1

|p(z). (2.2)

The above lemma is due to Dewan and Mir [2].

LEMMA 3. Let p(z) = c0 +
n
∑

υ=μ
cυzυ , 1 � μ � n, be a polynomial of degree n

having no zero in the disk |z| < k , k � 1 . Then

μ
n

∣∣∣∣cμc0

∣∣∣∣kμ � 1 . (2.3)

The above lemma was given by Qazi [5, Remark 1].

LEMMA 4. Let p(z) =
n
∑
υ=0

cυzυ be a polynomial of degree n having all its zeros

on |z| = k , k � 1 . Then

1
n

∣∣∣∣cn−1

cn

∣∣∣∣ � k . (2.4)

Proof of Lemma 4. If p(z) has all its zeros on |z| = k , k � 1, then q(z) =(
znp

(
1
z

))
has all its zeros on |z| = 1

k
,

1
k

� 1. Now applying Lemma 3 for μ = 1 to

the polynomial q(z) , Lemma 4 follows. �
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3. Proof of the Theorems

Proof of Theorem 1. Let M(p,1) = max
|z|=1

|p(z)| . Since p(z) is a polynomial of

degree n having all its zeros on |z| = k , k � 1, therefore, by Lemma 1, we have

|p′(z)| � n
kn−1 + kn M(p,1) for |z| = 1. (3.1)

Now applying inequality (1.1) to the polynomial p′(z) which is of degree n− 1 and
noting (3.1), it follows that for all r � 1 and 0 � θ < 2π

|p′(reiθ )| � nrn−1

kn−1 + kn M(p,1). (3.2)

Also for each θ , 0 � θ < 2π and R � 1, we obtain

{p(Reiθ )}s−{p(eiθ )}s =
∫ R

1

d
dt
{p(teiθ )}sdt,

=
∫ R

1
s{p(teiθ )}s−1p′(teiθ )eiθdt.

This implies

|{p(Reiθ )}s−{p(eiθ )}s| � s
∫ R

1
|p(teiθ )|s−1|p′(teiθ )|dt,

which on combining with inequalities (3.2) and (1.1), we get

|{p(Reiθ )}s−{p(eiθ )}s| � ns
kn−1 + kn {M(p,1)}s

∫ R

1
tns−1dt,

=
(

Rns−1
kn−1 + kn

)
{M(p,1)}s.

Which implies

|p(Reiθ )|s � |p(eiθ )|s +
(

Rns−1
kn−1 + kn

)
{M(p,1)}s,

� {M(p,1)}s +
(

Rns−1
kn−1 + kn

)
{M(p,1)}s. (3.3)

Hence, from (3.3), we conclude that

{M(p,R)}s �
(

kn−1 + kn +Rns−1
kn−1 + kn

)
{M(p,1)}s.

This completes the proof of Theorem 1. �
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Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of

Theorem 1 by using Lemma 2 instead of Lemma 1. But for the sake of completeness

we give a brief outline of the proof. Since p(z) is a polynomial of degree n having all

its zeros on |z| = k , k � 1, therefore, by Lemma 2, we have

|p′(z)| � n
kn

(
n|cn|k2 + |cn−1|

n|cn|(1+ k2)+2|cn−1|
)

M(p,1) for |z| = 1. (3.4)

Now p′(z) is a polynomial of degree n− 1, therefore, it follows by (1.1) that for all

r � 1 and 0 � θ < 2π

|p′(reiθ )| � nrn−1

kn

(
n|cn|k2 + |cn−1|

n|cn|(1+ k2)+2|cn−1|
)

M(p,1). (3.5)

Also for each θ ,0 � θ < 2π and R � 1, we have

|{p(Reiθ )}s−{p(eiθ )}s| � s
∫ R

1
|p(teiθ )|s−1|p′(teiθ )|dt,

which on combining with inequalities (1.1) and (3.5), we get

|{p(Reiθ )}s−{p(eiθ )}s| �
(

Rns−1
kn

)(
n|cn|k2 + |cn−1|

n|cn|(1+ k2)+2|cn−1|
)
{M(p,1)}s,

which implies

|p(Reiθ )|s � {M(p,1)}s +
(

Rns−1
kn

)(
n|cn|k2 + |cn−1|

n|cn|(1+ k2)+2|cn−1|
)
{M(p,1)}s,

from which the proof of Theorem 2 follows. �



GROWTH OF POLYNOMIALS WITH PRESCRIBED ZEROS 361

RE F ER EN C ES

[1] N. C. ANKENY AND T. J. RIVLIN, On a Theorem of S. Bernstein, Pacific J. Math., 5 (1955), 849–852.
[2] K. K. DEWAN AND A. MIR, Note on a Theorem of S. Bernstein, Southeast Asian Bulletin of Math.,

31 (2007), 691–695.
[3] N. K. GOVIL, On the Theorem of S. Bernstein, J. Math. and Phy. Sci., 14 (1980), 183–187.
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