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Abstract. In this paper, we deals with isoperimetric-type inequalities for closed convex curves
in the Euclidean plane R

2 . We derive a family of parametric inequalities involving the fol-
lowing geometric functionals associated to a given convex curve with a simple Fourier series
proof: length, area of the region included by the curve, area of the domain enclosed by the lo-
cus of curvature centers and integral of the radius of curvature. By using our isoperimetric-type
inequalities, we also obtain some new geometric Bonnesen-type inequalities. Furthermore we
investigate stability properties of such inequalities (near equality implies curve nearly circular).

1. Introduction

The classical isoperimetric inequality in the Euclidean plane R
2 states that:

THEOREM 1.1. [Isoperimetric Inequality] If γ is a simple closed curve of length
L, enclosing a region of area A, then

L2 −4πA � 0, (1)

and the equality holds if and only if γ is a circle.

This fact was known to the ancient Greeks, and the first mathematical proof was
only given in the 19th century by Steiner. Since then, there have been many new proofs,
sharpened forms, generalizations, and applications of this famous inequality.

Suppose that γ is a C 2
+ closed and strictly convex curve in the Euclidean plane

R
2 with length L, area of the region included by the curve A, and area of the domain

enclosed by the locus of curvature centers Ã . Then there are also some interesting
reverse isoperimetric inequalities, such as the inequality

L2 � 4π
(
A+ |Ã|) , (2)

proved by S. L. Pan and H. Zhang in [1], and the inequality (3) proved by S. L. Pan and
J. N. Yang in [2]: ∫ 2π

0
ρ (θ )2dθ � L2 −2πA

π
, (3)

Mathematics subject classification (2010): Primary 52A38, Secondary 52A40.
Keywords and phrases: Isoperimetric inequality, Fourier series, stability.

c© � � , Zagreb
Paper JMI-05-33

371



372 XIANG GAO

where ρ is the radius of curvature and θ is the angle between x-axis and the outward
normal vector at the corresponding point p. Moreover the equalities in (2) and (3) hold
if and only if γ is a circle.

It is obvious that if γ is a circle, then the locus of its curvature centers is only a
point, and thus its area Ã = 0. Conversely, if Ã = 0, then from the classical isoperimet-
ric inequality (1) and the reverse isoperimetric inequality (2), it follows that the area A
and the length L of γ satisfy L2 = 4πA , which implies that γ is a circle, and therefore
the locus of curvature centers of γ is a point.

In this paper we deal with a family of parametric isoperimetric-type inequalities
for closed convex plane curves, which is actually an improved version of the reverse
isoperimetric inequalities (2) and (3), and one of the main results is as follows:

THEOREM 1.2. [Main Theorem] Let γ be a C 2
+ closed and strictly convex curve

in the Euclidean plane R
2 with length L and enclosing an area A, then for arbitrary

constants α,β ,λ ,δ satisfying ⎧⎨
⎩

2α + δ � 0
2α+4πβ +λ � 0
6α−λ +4δ � 0,

(4)

we have

α
∫ 2π

0
ρ (θ )2dθ +βL2 +λA+ δ |Ã| � 0, (5)

where ρ is the curvature radius of γ and Ã is the area of the domain enclosed by
the locus of curvature centers. The equality holds if γ is a circle and the parameters
α,β ,λ ,δ satisfy

2α +4πβ +λ = 0. (6)

Moreover if the equality in (5) holds and the parameters α,β ,λ ,δ satisfy⎧⎨
⎩

2α+ δ > 0
2α+4πβ +λ = 0
6α−λ +4δ = 0,

(7)

then the Minkowski support function of γ is of the form p(θ )= a0+a1 cosθ+b1 sinθ+
a2 cos2θ +b2 sin2θ .

REMARK 1. When α = 0, β =−1, λ = δ = 4π , (4) satisfies and the isoperimet-
ric inequality (5) turns into (2). When α = 1, β = − 1

π , λ = 2,δ = 0, (4) also satisfies
and we obtain (3). Hence (5) could also be regarded as a reverse isoperimetric inequal-
ity. Furthermore, if we select other values of the parameters α , β , λ , δ satisfying (4),
we can obtain some new geometric Bonnesen-type inequalities [3]:

COROLLARY 1.3. Let γ be a C 2
+ closed and strictly convex curve in the Eu-

clidean plane R
2 with length L and enclosing an area A, we have

L2 � 4πA+π |Ã|, (8)
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∫ 2π

0
ρ (θ )2dθ � L2

π
−2A+ |Ã|, (9)

and

max
θ∈[0,2π]

ρ (θ )2 � 1
2π

(
L2

π
−2A+ |Ã|

)
, (10)

where ρ is the curvature radius of γ and Ã is the area of the domain enclosed by
the locus of curvature centers. Furthermore, (8) and (9) are improved versions of (2)
and (3), and the equalities in (8), (9) and (10) hold if γ is a circle. Moreover if the
equalities in (8), (9) and (10) hold, then the Minkowski support function of γ is of the
form p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ .

The stability problem associated with isoperimetric inequality is also interesting
and significant.

Recently in [4], S. L. Pan and H. P. Xu obtained the following stability estimates
for the reverse isoperimetric inequality (2) by comparing a convex body K with its
Steiner disk.

h1 (K,S (K))2 =
(
max

u

∣∣pK (u)− pS(K) (u)
∣∣)2

� 4π2−33
96π2

(
4π
(
A(K)+ |Ã(K)|)−L2 (K)

)
,

h2 (K,S (K))2 =
∫ 2π

0

∣∣pK (θ )− pS(K) (θ )
∣∣2dθ

� 1
18π

(
4π
(
A(K)+ |Ã(K)|)−L2 (K)

)
,

where pK (θ ) denotes the Minkowski support function of a given convex body K, and
S (K) denotes the Steiner disc associated with K (see section 4 for the definition) which
satisfies

4π
(
A(S (K))+ |Ã(S (K))|)−L2 (S (K)) = 0. (11)

For arbitrary ε > 0 such that ϕ (K) = 4π
(
A(K)+ |Ã(K)|)−L2 (K) < ε , by the

stability estimates for inequality above and (11) it follows that

max
{

h1 (K,S (K))2 ,h2 (K,S (K))2
}

� C|ϕ (K)−ϕ (S (K))| < Cε,

which implies that the reverse isoperimetric inequality (2) does have a good stability
behaviour with respect to both Hausdorff distance and L2 -metric.

The paper is organized as follows. In section 2, we recall some basic facts about
plane convex geometry. In section 3, we provide a simpler proof of Theorem 1.2 by us-
ing Fourier series, which is different from the approach in [1] and [2]. In section 4, we
investigate stability properties of inequality (5) (near equality implies curve nearly cir-
cular). We believe that our trick could be used to derive more interesting isoperimetric
inequalities.
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2. Geometric quantities and their fourier series

In this section, we recall some basic facts about convex plane curve which will be
used later. In this paper we always assume that γ is a closed and convex plane curve
which is sufficiently regular, actually it should be a C 2

+ closed and strictly convex curve
in the plane R

2 , such that the radius of curvature can be defined and the Fourier series
needed in the proof convergent uniformly. The details can be found in the classical
literature [5].

Let p(θ ) denote the Minkowski support function of curve γ (θ ) , where θ is the
angle between x-axis and the outward normal vector at the corresponding point p. It
gives us the parametrization of γ (θ ) in terms of θ as follows:

γ (θ ) = (γ1 (θ ) ,γ2 (θ )) =
(
p(θ )cosθ − p′ (θ )sinθ , p(θ )sinθ + p′ (θ )cosθ

)
.

Therefore the curvature k (θ ) and the radius of curvature ρ (θ ) of γ (θ ) can be calcu-
lated by

k (θ ) =
dθ
ds

=
1

p(θ )+ p′′ (θ )
> 0

and

ρ (θ ) =
ds
dθ

= p(θ )+ p′′ (θ ) > 0.

The length L of γ (θ ) and the area A it bounds can be also calculated respectively by

L =
∫
γ
ds =

∫ 2π

0
p(θ )dθ

and

A =
1
2

∫
γ
p(θ )ds =

1
2

∫ 2π

0

(
p(θ )2 − p′ (θ )2

)
dθ .

At the same time, we could obtain the locus of centers of curvature of γ (θ ) as follow

β (θ )= γ (θ )+ρ (θ )N (θ )=
(−p′ (θ )sinθ − p′′ (θ )cosθ , p′ (θ )cosθ − p′′ (θ )sinθ

)
,

and the oriented area of the domain enclosed by β (θ ) is given by

Ã =
1
2

∫ 2π

0

(
p′ (θ )2− p′′ (θ )2

)
dθ .

Since the Minkowski support function of a given convex body K is always contin-
uous, bounded and 2π -periodic, it has a Fourier series of the form

p(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ). (12)

Differentiation of (12) with respect to θ gives us

p′ (θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ ) (13)
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and

p′′ (θ ) = −
∞

∑
n=1

n2 (an cosnθ +bn sinnθ ). (14)

Thus by (12), (13), (14) and the Parseval equality we could express these geometric
quantities in terms of the Fourier coefficients of p(θ )

ρ (θ ) = p(θ )+ p′′ (θ )

= a0 +
∞
∑

n=1
(an cosnθ +bn sinnθ)−

∞
∑

n=1
n2 (an cosnθ +bn sinnθ ), (15)

L(K) = 2πa0, (16)

A = πa2
0−

π
2

∞

∑
n=2

(
n2−1

)(
a2

n +b2
n

)
, (17)

|Ã| = π
2

∞

∑
n=2

n2 (n2−1
)(

a2
n +b2

n

)
. (18)

3. Proof of the main theorems

Proof of Theorem 1.2]. Firstly from (15), one can easily get

∫ 2π
0 ρ (θ )2dθ

= 2

(
πa2

0− π
2

∞
∑

n=2

(
n2−1

)(
a2

n +b2
n

)
+ π

2

∞
∑

n=2
n2
(
n2−1

)(
a2

n +b2
n

))

= 2π
(

a2
0 + 1

2

∞
∑

n=2

(
n2−1

)2 (
a2

n +b2
n

))
,

thus by using (16), (17) and (18) we have

α
∫ 2π
0 ρ (θ )2dθ +βL2 +λA+ δ |Ã|

= 2πα
(

a2
0 + 1

2

∞
∑

n=2

(
n2−1

)2 (
a2

n +b2
n

))
+β (2πa0)

2

+λ
(
πa2

0− π
2

∞
∑

n=2

(
n2−1

)(
a2

n +b2
n

))
+ π

2 δ
∞
∑

n=2
n2
(
n2−1

)(
a2

n +b2
n

)
= πa2

0 (2α+4πβ +λ)+ π
2

∞
∑

n=2

(
2α
(
n2−1

)−λ + δn2
)(

n2−1
)(

a2
n +b2

n

)
(19)

It follows from (4) that (19) is nonnegative, which completes the proof of inequality
(5).

Furthermore, if γ is a circle, by the equality conditions in (2) and (3) we have

L2 = 4π
(
A+ |Ã|)= 4πA
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and ∫ 2π

0
ρ (θ )2dθ =

L2 −2πA
π

= 2A.

Hence
α
∫ 2π
0 ρ (θ )2dθ +βL2 +λA+ δ |Ã|

= 2αA+4πβA+λA

= (2α+4πβ +λ)A

then for the parameters α,β ,λ ,δ satisfying (6) we have

α
∫ 2π

0
ρ (θ )2dθ +βL2 +λA+ δ |Ã| = 0

On the other hand, if equality holds in (5):

0 = α
∫ 2π

0
ρ (θ )2dθ +βL2 +λA+ δ |Ã|

= πa2
0 (2α+4πβ +λ)+

3π
2

(6α−λ +4δ)
(
a2

2 +b2
2

)
+
π
2

∞

∑
n=3

(
2α
(
n2−1

)−λ + δn2)(n2−1
)(

a2
n +b2

n

)
then by the condition (7): ⎧⎨

⎩
2α+ δ > 0

2α+4πβ +λ = 0
6α−λ +4δ = 0

we have

0 =
π
2

∞

∑
n=3

(
2α
(
n2−1

)−λ + δn2)(n2−1
)(

a2
n +b2

n

)
and (

2α
(
n2−1

)−λ + δn2)(n2−1
)

> 0

for n � 3. Thus an = bn = 0 for n � 3 and the Minkowski support function of γ is
of the form p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ . This completes the
proof of Theorem 1.2. �

Proof of Corollary 1.3. Let α = 0,β = −1,λ = 4π ,δ = π we obtain (8), and let
α = 1,β = − 1

π ,λ = 2,δ = −1, we can derive (9). Moreover the equality conditions in
(8) and (9) follows directly from the equality conditions in (5).

On the other hand, inequality (10) is an easy consequence of (9), and if γ is a
circle, the equality holds directly. Conversely, since

max
θ∈[0,2π]

ρ (θ )2 � 1
2π

∫ 2π

0
ρ (θ )2dθ � 1

2π

(
L2

π
−2A+ |Ã|

)
,
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if equality holds in (10), we have

∫ 2π

0
ρ (θ )2dθ =

L2

π
−2A+ |Ã|.

By the equality condition of (9), it follows that the Minkowski support function of γ is
of the form p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ . �

4. The stability property of the isoperimetric inequality

Let K and M be two convex bodies with respective Minkowski support functions
pK and pM . The most frequently used function to measure the deviation between K
and M is the Hausdorff distance:

h1 (K,M) = max
u

|pK (u)− pM (u)|.

Another distance is defined by means of the L2 -norm of the support functions, that is

h2 (K,M) =
(∫ 2π

0
|pK (θ )− pM (θ )|2dθ

) 1
2

,

where θ is the angle between x-axis and the outward normal vector at the corresponding
point p. It is obvious that h1 (K,M) = 0 or h2 (K,M) = 0 if and only if K = M.

We also recall the definition of Steiner disc S(K) of a planar convex body K.

DEFINITION 4.1. The Steiner disc of a convex body K, denoted by S(K) is the
circular disc with radius L(K)

2π and center at the Steiner point −→s (K) which can be
defined in terms of the Minkowski support function pK (θ ) :

−→s (K) =
1
π

∫ 2π

0

−→u (θ ) pK (θ )dθ ,

where −→u (θ ) is a unit tangent vector at the corresponding point p, and L(K) denotes
the perimeter of the domain K.

We now derive a stability version of (5) with respect to both Hausdorff distance h1

and h2 metric.

THEOREM 4.2. Let K be a domain enclosed by a C 2
+ closed and strictly convex

plane curve γ with area A(K) and perimeter L(K), and let Ã(K) denote the oriented
area of the domain enclosed by the locus of curvature centers of γ , S(K) denotes the
Steiner disc associated with K. Then for arbitrary constants α,β ,λ ,δ which satisfy⎧⎨

⎩
2α + δ � 0

2α+4πβ +λ � 0
6α−λ +4δ > 0,

(20)
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we have

h1 (K,S (K))2 � C (α,λ ,δ )
(
α
∫ 2π

0
ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|

)
,

(21)

where C (α,λ ,δ ) = max

{
1, 2

π
∞
∑

n=2

1
(2α(n2−1)−λ+δn2)(n2−1)

}
. The equality holds if γ

is a circle and the parameters α,β ,λ ,δ satisfy

2α +4πβ +λ = 0.

Proof. We may assume −→s (K) = 0, because of (12) and (16), the support func-
tions pK and pS(K) have the following Fourier series:

pK (θ ) =
L(K)
2π

+
∞

∑
n=2

(an cosnθ +bn sinnθ ) (22)

and

pS(K) (θ ) =
L(K)
2π

. (23)

One can observe that (22) and (23) yield an explicit expression (in terms of the Fourier
coefficients) for the quantity:

α
∫ 2π
0 ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|

= πa2
0 (2α +4πβ +λ)+ π

2

∞
∑

n=2

(
2α
(
n2−1

)−λ + δn2
)(

n2−1
)(

a2
n +b2

n

)
.

(24)

Since it is easily seen that

|an cosnθ +bn sinnθ | �
√

a2
n +b2

n,

it follows that

|pK (θ )− pS(K) (θ )| =
∣∣∣∣∣L(K)

2π
+

∞

∑
n=2

(an cosnθ +bn sinnθ)− L(K)
2π

∣∣∣∣∣
�

∞

∑
n=2

|an cosnθ +bn sinnθ |

�
∞

∑
n=2

√
a2

n +b2
n.



A NOTE ON THE ISOPERIMETRIC INEQUALITY AND ITS STABILITY 379

Using Holder’s inequality, together with (24) we have

h1 (K,S (K))2 �
(

∞

∑
n=2

√
a2

n +b2
n

)2

� πa2
0 (2α+4πβ +λ)+

(
2
π

∞

∑
n=2

1
(2α (n2−1)−λ + δn2)(n2−1)

)
(
π
2

∞

∑
n=2

(
2α
(
n2−1

)−λ + δn2)(n2−1
)(

a2
n +b2

n

))

� max

{
1,

2
π

∞

∑
n=2

1
(2α (n2−1)−λ + δn2)(n2−1)

}
(
α
∫ 2π

0
ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|

)
,

for arbitrary constants α,β ,λ ,δ satisfying (20).
Furthermore, if γ is a circle, as the proof of Theorem 1.2 we have

α
∫ 2π
0 ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K) |

= (2α+4πβ +λ)A

If the parameters α,β ,λ ,δ satisfy 2α+4πβ +λ = 0, then we have

α
∫ 2π

0
ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K) | = 0

It is obvious that h1 (K,S(K)) = 0, thus equality holds in (21). �

THEOREM 4.3. Under the same assumptions of Theorem 4.2, then for arbitrary
constants α,β ,λ ,δ which satisfy⎧⎨

⎩
2α + δ � 0

2α+4πβ +λ � 0
18α−3λ +12δ −2 � 0,

(25)

we have

h2 (K,S (K))2 � α
∫ 2π

0
ρ (θ )2dθ +βL2 +λA+ δ |Ã|. (26)

The equality holds if γ is a circle and the parameters α,β ,λ ,δ satisfy

2α +4πβ +λ = 0.

Moreover if the equality in (26) holds and the parameters α,β ,λ ,δ satisfy⎧⎨
⎩

2α+ δ > 0
2α+4πβ +λ = 0

18α−3λ +12δ −2 = 0,
(27)
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then the Minkowski support function of γ is of the form p(θ )= a0+a1 cosθ+b1 sinθ+
a2 cos2θ +b2 sin2θ .

Proof. As the proof of Theorem 4.2, we use Parseval’s equality, (22) and (23) to
deduce that

h2 (K,S (K))2 =
∫ 2π

0
|pK (θ )− pS(K) (θ )|2dθ = π

∞

∑
n=2

(
a2

n +b2
n

)
,

together with (24) one gets that(
α
∫ 2π
0 ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|

)
−h2 (K,S (K))2

= πa2
0 (2α +4πβ +λ)+ π

2

∞
∑

n=2

(
2α
(
n2−1

)−λ + δn2
)(

n2−1
)(

a2
n +b2

n

)
−π

∞
∑

n=2

(
a2

n +b2
n

)
= πa2

0 (2α +4πβ +λ)+ π
2

∞
∑

n=2

((
2α
(
n2−1

)−λ + δn2
)(

n2−1
)−2

)(
a2

n +b2
n

)
.

Hence for arbitrary constants α,β ,λ ,δ satisfying (25), we have(
α
∫ 2π

0
ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|

)
−h2 (K,S (K))2 � 0,

which implies the following stability result:

h2 (K,S (K))2 � α
∫ 2π

0
ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|.

Furthermore, if γ is a circle, as the proof of Theorem 4.2, we have equality in (26).
Conversely, if equality holds in (26):

0 =
(
α
∫ 2π

0
ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K) |

)
−h2 (K,S (K))2

= πa2
0 (2α+4πβ +λ)+

π
2

∞

∑
n=2

((
2α
(
n2−1

)−λ + δn2)(n2−1
)−2

)(
a2

n +b2
n

)
then by the condition (27), we have

0 =
π
2

∞

∑
n=3

((
2α
(
n2−1

)−λ + δn2)(n2−1
)−2

)(
a2

n +b2
n

)
and (

2α
(
n2−1

)−λ + δn2)(n2−1
)−2 > 0

for n � 3. Thus an = bn = 0 for n � 3 and the Minkowski support function of γ is
of the form p(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ . This completes the
proof of Theorem 4.3. �
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REMARK 2. The combination of Theorem 4.2 and 4.3 leads to

max
{

h1 (K,S (K))2 ,h2 (K,S (K))2
}

� C (α,λ ,δ )
(
α
∫ 2π
0 ρ (θ )2dθ +βL2 (K)+λA(K)+ δ |Ã(K)|

)
,

(30)

where C (α,λ ,δ ) = max

{
1, 2

π

∞
∑

n=2

1
(2α(n2−1)−λ+δn2)(n2−1)

}
, which states that the iso-

perimetric inequality (5) does have a good stability behaviour with respect to both Haus-
dorff distance and L2 -metric.
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