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ASYMPTOTIC BEHAVIOR OF HARDY OPERATORS

BARRY BOOTON AND YORAM SAGHER

(Communicated by A. Kufner)

Abstract. We consider the asymptotic behavior of certain Hardy operators.

1. Introduction

We consider operators of the form
Ty f(x) / o (s

Ty f(x)

and its dual

f

where ¢ is a positive nondecreasing function on (O,a), and

X) = /qu)(s)ds

The L?-continuity of such operators have been studied extensively in the literature,
since the L”-continuity in the cases ¢y(s) = s, y > 0, are Hardy’s inequalities, two
of the most useful inequalities in Analysis. For two comprehensive recent books on
inequalitites of the Hardy type, see [3] and [4].

We have not been able to find in the literature any work on the interesting related
direction: under what condition are families of these operators approximations of the
identity. That is to say, under what conditions does one have

lim 75, /() = £

both in the L” sense and in the almost everywhere sense. It has been observed by A.
Erdélyiin [1], and several times since then, that when ¢ is a power function, the opera-
tors Ty and T} are convolution operators on the multiplicative group R, with its Haar
measure. As observed in [1], it follows that various versions of Hardy’s inequalities can
be viewed as special cases of Young’s inequalities for convolutions. In the same vein,
the approximation of the identity results we prove, when ¢ is a power function, can be
viewed as special cases of results for convolutions. The novelty in this paper is that it
applies to a much broader class of kernels.
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2. The operator Ty,

In the sequel, when we consider intervals of the form (0,a), we shall assume
that 0 < a < oo, unless otherwise specified. Also, 20 will denote the family of sets of
positive nondecreasing functions {¢, } indexed by y € R on (0,a). Assume that for all
sufficiently large y, ¢, € L!(I) for each bounded subinterval I of (0,a), and denoting

x) = /Ox Oy(s)ds

assume also that for u € (0,1), x € (0,qa),

. (])y(ux)
VIE’I‘}" Dy (x)

=0. (1)

THEOREM 1. Assume that {¢y} € 20. Assume also that there exists Yy € R such
that for all v > v

¢y (x)
by, (x)

is nondecreasing on (0,a).

Let f be a measurable function on (0,a) such that ¢y, f € L'(I) for each bounded
subinterval I of (0,a). Then at any Lebesgue point x € (0,a) of f,

ylggq) /q» JI£(s) — f(x)]ds =0

Proof. We can assume that for each y € R, ¢, is right-continuous.

1 X
B0, )~ ol as
x—&
=ﬁ [ 0@l — e ds + g / 0, () (s) — ()| ds.

Let € > 0 be given. There exists dy > 0 be such that for 0 < d < J,

5/ (x)|ds < €.
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For 0 < 6 < &y,
cpyl(x / Oy ()£ (s) — f(x)|ds
- GI>yl(x) / (q)” 3) +/ 4o )>|f(S)—f(x)|ds

- cpyl(x)/ vy (/ 1£(s) |ds>d¢y() %’;&f ) / :5 1f(s) = f(x)|ds
8( ) </ 5,x](x_t)d¢y(t)+5¢V(x—5)>
_ ﬁ/xia oy (1) di <.

Also, for v > v,

x—0
fimsup q)yl(x) [ o)l ) - rwlas
1m 0 ¢Y(S) S)—J X N
=timsup s [ LI~ fld
. Py(x—38) 1 9
Stimsup S E s ) W)+ s
By 0,(x—5)
lim =g 5 =°
and so

x—&
limsup 1( [ s - rwas =o.

g @y (x

Since € > 0 was arbitrary,

ylgroloq) /¢y Jf(s)— f()]ds =0. O

DEFINITION 1. For y € R, define the operator A, on functions, f, such that
sYf(s) € L'(I) for each bounded subinterval I of (0,a) by

At = L2 ") as

Also, for y € R, define the operator A, on functions, f, such that s~ ! f(s) € L! (x,a)
for each x € (0,a) by

Ayf@) =y [ ) ds.
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Applying Theorem 1 with ¢y(x) = x" proves:

COROLLARY 1. Let f be measurable on (0,a). Suppose there exists Yy > 0
such that X0 f(x) € L'(I) for each bounded subinterval I of (0,a). If x € (0,a) is
a Lebesgue point of f, then

lim A, f(x) = f(x).

y—oo

DEFINITION 2. Let E C R be measurable. For f measurableon E and @(x) >0
a.e. and measurable on E, for 0 < p < o, let

P

lhzie) = (@l ax)
and let
L(E) = {7 Wiy <)

We write L}, for Ly (E) when E is clear from the context. We write L? or LP(E) if
w=1ae.

Let us consider convergence in L% (0,a).
Since for 0 < p < e, a0 € R, continuous functions with compact support are dense
in L?,

X()t 9
THEOREM 2. If f € Lly, 0 < p <o, a €R, then
tim /() — £, =0.

THEOREM 3. Assume that {¢,} € 20. Assume also that there exist ¥y (u) so that
forue(0,1),

Xy (0x)
% < ‘PY("‘)

forall x € (0,a), and so that

limsup [[Wy[ 19,1y =C <o

y—soo
andforall B >0and 0 <0 <1,

Jim 1P () 1 ,0) = 0-
Then for f € Ll (0,a), 1 < p <o,  €R,

=0.
L)’:a (0,0)

lim

’y—>oo

l X
owe /0 0y (5)f(s)ds — £(x)
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Proof. Note that for y sufficiently large, for r € (0,a),

[ oo < (| r(xalf(X))”dx); (oo ax)

=~

and

1 1
7

</Orxap,¢)/(x) dx) = (/01 r(”r)fap,%(ur) du) i

I
\‘I
Q
N
h
:I
S
"g\
N
<
=
S
P
<%
<
~_

Thus, ¢,f € L'(0,r) forall r € (0,a).

For0< 6 <1,
1 X
o, Jp s =1

|
<</

-
(

P
an

o [ swjas) o)’

o+l p %
/ Oy (xu)| f (xu) — (x)|du> dx)

D, (

D, (

‘ (%q)y(ux)lf(ux —f(X)|>p )
(o

)
<o) — <x>|)pdx)‘l’ du

(

-(1 (5

<) ()

L 1
(f (22 et o) ar) "

0 y(
0 y(x
1
+/9 /0 d)y(x)

By Theorem 2, for every € > 0, there exists 0 < 6z < 1 such that for 6, <u <1,

(it e .

Al o
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and so
o (F (e —seor) o)
< [ ([ 61w - s ar)
< E/e& Wy (u)du < E/o Wy (u)du
and so L
lil;l_iljp 9: (/Oa (%xaﬂu}c) —f(x))p dx) " du <e.
Also,

< 11msup/ Wy (u (/Ou(xaf(ux) —f(x))de>% du

y—o0

< man [0 ([t %+ ([omrrwprar)’

1
< 1 =0.
< 1l s [ e ( #1) du=0

Therefore,
. 1 x
hryn_iljp GD—(x)/o Ooy(s)f(s)ds— f(x) .
s s oeg </0 (%xaf (1) —f(x)>p dx) " du
ey , </o (xiyy(gg) x| u) — f(x))p dx) ?
<e
and so
y_’°° q’y /q)y f(x) LPaZO. O

Taking ¢y (x) = x", we obtain:

COROLLARY 2. For f € LV,(0,a), 1 < p <es, a €R,

tim || Ay = D)fll.z, 0. = O

2
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DEFINITION 3. Let f > 0. Define for > 0
OMD(B) = {f : x P f(x) is nonincreasing}
and

oMD = | | oMD(B)

B=0

Theorem 4 in [2] states that for f € QMD(f3) on (0,a), B >0, for 0 < p < oo

>0, l
([ (e /0f<>d—)d_) < ([ d)
CCLs -l o

where g; ~ g» means that there exists a constant, C, so that

and

1
8! < g2 < (g

We will need an explicit constant for one of these inequalities:

</o (x_TAxf(s)i;)p%)% < ,l,f_%ﬁ%_l (/O () ‘ix> NG

The following lemma is essentially proved in [5]. See also Theorem 5 in [2].

LEMMA 1. Assume that f € QMD(B) on (0,a), and

/f )<< 5)

Sorall x € (0,a). Then f=g—Bh, where g,h > 0 are nonincreasing functions.
If fe(OMDNLY,)(0,a), Ot>—%,then(5)holds, and

Ilzz, ~ 71z,

and
llzz, ~ £l

Proof. Let

and
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We shall see that g(x) is a nondecreasing function. For 0 < u < 1, x P f(x) < (ux) 7P f (ux),
and so f(x) <u P f(ux). Thus, for 0 < xp < x1,

o) —g0) = flan) — S 0) =B [ 65
! du

= flx1) = f(x0) — B f(ux1)7

X0

1
< Sl = f(x0) =B [, u 1)

= f(x1) = f(xo) — f(x1) (1 ; (%>B>

—f@w+f@o(@)ﬁ<0

X1

Assume that f € L, (0,a). From Hardy’s inequality in the case p > 1, and from
its generalizationto 0 < p < 1 for f € OMD, (3), it follows that

)5 <

X N

for all x € (0,a), and furthermore
I, ~CNfls,

so that
1Lz, < gliz, <CUFz, +Il,2,) < CUf I,

and thus
lgllr, ~ £, O

THEOREM 4. Assume that f € (OMDNLE,)(0,a), with oo > —~. Then (2) also
holds for 0 < p < 1.

Proof. Let f > 0 be nonincreasing on (0,a). For 0 < 6 < 1,

=0l = [ (x )”dx

(ﬂ / ") — f(x))dt)p dx

L [stras—rw
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Let € > 0 be given. By Theorem 2, there exists 0 < 6 < 1 such that

1£(0ex) = FWI2,, <e.

Thus,

v [ (5 [ - renar) s
<t [ (3 [ e - ronar) an
< [ (0u) ~ i) <

Also,

p

ey [ (v [ e - sy as
< (y+1)”/0a (x"‘/()egtyf(tx)dt>pdx+(y+I)P/()a (x“/oegtyf(x)thdx.

But 0 »
ey [ (s [ irpooar) = el gy,

and since 0, < 1,

lim (v + 1)P/Oa <x°‘ /Oeg ﬂf@)dr)ﬁ dx = 0.

Y—oo

It remains to show that

1
a O¢ 14 P
lim (y+1) (/ (xa/ tyf(tx)dt) dx) =0.
Yoo 0 0
To estimate the integral, we use (4).
a O¢ p %
limsup(y+1) (/ (xa/ 7 f(tx) dt) dx)
Y—oo 0 0

= limsup(y+ 1) (/oa (xa+,',71 /Oeg(xt)”lf(tx)g)p @) ’

y—so0 t X

1

a Ocx d P d P

= limsup(y +1) (/ (xOH_Il’_y_l/ u”lf(u)—u) _x) 3
Yoo 0 0 u) x

1

—a-1 a Ocx du\? dx\ »

= limsup(y+1)8; 7 </ ((6&)“*”‘1 / uv+lf<u>—u) _x>p
0 0

y—oo u X
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1
_o—1 Ocsa 1, 4 [Z du\? dz\ 7
zlimsup(y—i-l)Q;/Jrl T (/ (z‘”rl’ Y 1/ uVHf(u)—u) —Z)p
y—o0 0 0 u Z
1
_1 a 4 P D
<timsup(y+ ol ([ (b i) )
y—soo 0 0 u Z

_1 o a
! o (Y“—l_“) Ty tele p(/ (xaf(x»”dx)p
y—oo )4 )4 0

< limsup
=0.

Thus, (2) holds if f is monotone nonincreasing. Now assume that f € QMD(f3)
n (0,a),and 0 < p < 1. By Lemma 1,

[rot<-

for all x € (0,a), so that there exist fi, f, > 0 nonincreasing such that f = f; — f2,
with
1£illr, <€A,

Then
timsup (4, —D)f 7, = limsup (4, ~1)(fi = £2) ],
y—roo pac] y—roo

Slimsup(ll(Ay—l)lef +11(Ay— I)lele)=0- O
y—o0

THEOREM 5. Assume that {¢y} € 20. Assume also that there exist ¥, (u) so that
forue(0,1),

x¢y (ux)

T)y(x) < Wy (u) (6)
Sorall x € (0,a), and

)}EEQ‘PV( u)=0. (7

Then for f uniformly continuous on (0,a), 0 < a < oo,

lim sup |—— /q» — fw)l=0.

Y= 0<x<a q)y

Proof. Let € > 0. Since f is uniformly continuous on (0,a), there exists 0 < § <
a such that |f(u) — f(v)| < € for u,v € (0,a) and |u—v| < &. By (7), there exists ¥
such that for y > vy,

a—29 €
¥ < .
! ( a ) 2sup0<t<u |f(2)]

/ 0, (5)£(s)ds — (5)|f(s) = f(x)| ds.
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For0<x<§6,

l X
&, ) HOO) s < 5o [onts)s = e

while for 6 < x < a,

o, ¢l = ol

) ﬁ(/o -5 0, (5)1(5) — )|ds+/xi5¢y(s)|f(s)—f(x)|ds)

1 X
< 2 — ) (x— 8 / d)
o (20 V06— 8)0,c-0) ¢ [ or(5)as
x¢y(x—0)
< (2 su t +E&
( 0<t1<)a|f( N q)}’(x)
(a—8)x
< (2 su t i t¢
(@ s 1))~ s
-0
< (2 sup [£(1)])Py (a—> +é.
0<t<a a
Thus,
a—3§
S / y (s) Fx)| < (2 sup If(f))‘f’y< >+8~
0<x<a y 0<t<a a
Therefore,
limsup sup / Oy (s) flx)| <2¢
Y=o 0<x<a q))/
and so
lim su / s)ds—f =0. O
y_’°°0<xI<)u q’y ¢Y )

REMARK 1. If f is not uniformly continuous on (0,a), the conclusion of Theo-
rem 5 may fail: take f(x) = |sin | and ¢y(x) = x" on (0,1). Then for k > 1,

wt (52) -1 () =47 () = 0+ Dy | S

- (y+1)(kn)’/+1/ u_y_2|sinu|du
kn

1
sin—| ds

N

2 (y 4+ 1)(kn) +12/ w2 du

7'E

(Y—H) (k7 V“Z 5 ((l—i—%) 7r>_y_2

I=k

NN
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\/E
vy y+1 y—2
PRI 1%11
\/E V2 ([ &k
~= v+l sV 2gs= Y2 =
g Uk /m 9= <k+1
and so for all v,
V2
sup (A, /(x) — () > 4=

x€(0,1)

3. The operator T,

THEOREM 6. Assume that {¢y} € 20. Assume also that for x € (0,a),

1 a—l d 1
Lim ¢y (x / o,

andforall 0 <6 <a-—x,

a 1
lim ¢, (x / ds =0.
Jim 0y w5 Dy(s)

Let f € L'(0,a). Then at any Lebesgue point x € (0,a) of f,

“ f(s)
lim 0y(x /xq)y(s) 5= f(x).

Proof.
o0 [ q{f) ds 1)
S |orlx / @, (s) ds or(x) / @, (s)
W[ q)y—sds—f(X)
|f )\ ‘
ds+ 5!
/ FE|0y(x / @, () "
Of course,

lim

y—o0

a 1
(Py /des—l’:o

and so we consider the first term.
Let € > 0 be given. There exists 8 > 0 such that for 0 < 6 < &,

5/ (x)|ds < €.

®)

)
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For 0 < 6 < &y,

oy (x) /x ’ 7f(sq))y—(£(x)| ds

_ O |f(s) = f(x)] “|f(s) = f)
— 9,(x) / Sy e / e R

For the first term,

0| £(s) — fx
oo [ U1,

o) [ (5o Sy @ () )6 - s0las
= oo [ )~ s ds

Dy(x+9)
o [ ([1r6-rwlas)a (G- ) .
Of course,
while

limsup

Y=o

(o9 M(/ ror-snles)a () 0)
<timsup (-o,09 M ”(cr%) )
S
(s

) x+6 ]
= hgf::p 85 + £y (x) i qu( )dt>
<1iryrlil:p €o —|— @y (x / q)y dt) =€
and so s
—flx
1iryn_)s::p oy (x) /x %ds <e€.

Also, using (9),

“|f(s) = f(x) Py(x) @
3513°¢7(X>A+s st<ylﬂq>y(x+5)/ f(s)lds

ds=0.

Hm o [ o
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Thus,

| “ f(s)
timsup y(+) / o LI

and so

: @ f(s)
1 ds = . O
tim 0,(0) [ 5 5 ds =79
Applying Theorem 6 with ¢y(x) = x" proves:

COROLLARY 3. Let f € L'(0,a). If x € (0,a) is a Lebesgue point of f, then

lim Ay f(x) = f(x).

y—oo

THEOREM 7. Assume that {¢y} € 20. Assume also:
1. There exist ¥y (u) so that for u € (0,1),

x¢y (ux)
ﬁ < ‘Py(”)

forall x € (0,a), and so that

111;15up H‘{’y(u)HLl(O,l) =C<e

andforall B >0and 0 <0 <1,

}E?o||u_ﬁ‘yy(u)“L'(O,9) =0.

2. There exists B(y) such that for all x € (0,a),

o) [ g 1] <B0)

and
lim B(y) = 0.

y—o0

Then for f € Ly (0,a), 1 < p <o,  €R,

=0.
Lfa (0,a)

lim

’y—>oo

orts) [ L ds— 1t

Proof.

or(s) [ 4k ds— 1

limsup

—s00 p
¥ L,



< limsup

y—o0

ASYMPTOTIC BEHAVIOR OF HARDY OPERATORS
+ limsup
LI’ Y—roo

]f(x) (000 - 1) X

oo [T

< limsupB(Y)”fHLfa +lil;foljp %TJ;(X)‘ZS

y—o0

P
Ll

By hypothesis, we need consider only the last term above. For 0 < 8 < 1,

dy (%) /x ’ fi(sg)y—(j;(x) ds

lim sup

y—o0

P
Lo

(Fl B0 )
<t (| (oo [ V) )
(f ([ e (210 -si2 ) dx)’l’
(e [ ) )
<timsup [y ([ (3|7 (5) = 0] ax) "5
[ H ([ (a (2) - 10]) )

st [ T8 ([" (1 (2) - 10 )

= limsup

’y—>oo

< limsup

y—o0

==

onte) [ LI

397

P
Ll

We consider the last term. By Theorem 2, for every € > 0, there exists 0 < 0, < 1

such that for 6, <u <1,

([ eetrte - reaprax)” < m

and so

(3)-r0])" )’

IS ua
lim sup Fylw) ( / (xa
y—oo  JOg u 0

timsup [ 47 W (u) ( /O (571 () — f(s)|)pds> " du

y—oo O¢

1 1
€ . _1
< ——— —limsup ut v Yy (u)du<e.

o= —s00 e
Cmax{1,6, "} 7 .
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For the first term,

P ) a

1

imsup [ Fr®) ( /O “ f(x))”dx) " du

y—oo 0 u

1
O¢ 1 a P
<limsup [ u® 7 ¥y (w) (/ <saf<s>>”ds>’ a
0

Yoo 0
1
0 Y a =
+limsup Fy(u) (/ (xaf(x)|)1’dx> " du
O o, 1 0: P
= || fllz, limsup (/0 u” p"I’y(u)ath/0 Vu(”) du> =0. O
x Y—oo

Taking ¢y (x) = x¥, we obtain:
COROLLARY 4. For f € L', (0,a), 1<p<e, a €R,

)}EIC}OH(AV _I)fHLfa(o,a) =0.

4. Appendix

It is easy to see that {x"} € 2. The question arises whether powers are the only
functions in 2. One can easily verify that

0,(x) x¥ forO0 <x <1
X)) =
4 L forx > 1

satisfies the conditions of all the theorems and so shows that all results apply to some
¢y (x) which are not powers of x. We shall construct additional functions in 20. Given
{oy} €20, let

=+ Joy(x)xlogs forO<x<1
Or(x) = {q)y(x) forx > 1.

We shall see that {¢,} € 20. Moreover, we shall see that should {¢,} satisfy the
hypothesis of any theorem in Section 2, then {(ﬁy} satisfies that same hypothesis.

We consider the case 1 < a < eo. The case 0 < a < 1 requires only trivial changes
in the argument. Let g(x) = xlog<. Then g'(x) = —logx > 0 for 0 < x < 1, and so
g(x) is nondecreasing on (0,1]. Since @y (x) = ¢y(x) for x > 1, ¢, is a nondecreasing

function on (0,a). Also, for 0 <x < 1, ¢y(x) = ¢y(x)xlog ¢ < ¢y (x).
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For 0 <x<1,ue(0,1),

X) :/qusy(s)ds:/oxq)y(s)slogfds
Z/:(I)y(s)“ogfds?ﬂ( )
_oux 2e\ (2—
= 7 (10ga) ur

2t

\Y%
| §
/‘\

while for x > 1,

e ds—/¢y pstog ds-+ [ oy(5)ds
lq»y(s)slog st [ oy(5)ds
(log2¢) / 0y (s ds+/ 0,(s)
(log2¢) / 0y (s ds+/ 0,(s)

(log2e) / Oy (s) ds_i(logZe)q)y()

WV
-lklv—‘-lklv— l\JI»—M_\ \

Thus, for u € (0,1),for 0 <x < 1,

4log <
limsup q)y(ux) < 02, 5.~ limsup 9y (1x) =0
e Dy(x) T logZ Ty Dy(x)
and if b0 ()
x¢y (ux
d)i,(x) <y (u)
then .
x(i)y(ux) o 4x¢y (ux)uxlog = < 4x ¢y (ux) < 4w (u).
Dy(x)  ux(log2) dy(x) Dy (x)
Also, for x > 1,
limsup < ¢y( ) < limsup 0y (1x) =0
and if (1)
x¢y (ux
— L <y (u)

Dy (x)
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then

xqsy(ux) o

B. BOOTON AND Y. SAGHER

Axy (ux)

4

@, (x)  (log2e)®y(x) ~ log2e

We were unable to prove that q;,, satisfies (8).
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