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REMARKS ON SOME WENDROFF TYPE INEQUALITIES

SZILÁRD ANDRÁS AND ALPÁR MÉSZÁROS

(Communicated by P. Gurka)

Abstract. In this paper we give new proofs for some recent generalizations of Wendroff inequal-
ity (see [1]) and we obtain a representation for the best upper bound in the Wendroff inequality.
Moreover we point out that the proofs of theorem 2.1 and 2.2 from [1] contain some errors, hence
a new proof is necessary. Our method can be applied to a wide class of Gronwall type inequalities
and gives elegant and powerful proofs for most of the known Gronwall type inequalities.

1. Introduction

The Wendroff inequality is a generalization of the Gronwall inequality for 2 inde-
pendent variables, has its origin in the theory of partial differential equations and can
be found in many monographs on inequalities ([4], [3], [9], [8]). Recently the authors
in [1] gave a sharpened version for a Wendroff type inequality proved by Pachpatte
(see [9]) but unfortunately their proof contains some errors. In this paper we prove
the inequality given in [1] (theorem 2.2) and we use the abstract comparison Gronwall
lemma to obtain new proofs for well known generalizations of the Wendroff inequality.
Our method uses an operatorial point of view and can be used to simplify the proofs of
many other Wendroff type inequalities.

1.1. Wendroff type inequalities

In what follows we consider D = [0, l]× [0, l] ⊂ R
2. As a starting point we re-

call the following generalization of the original Wendroff inequality proved by B. G.
Pachpatte:

THEOREM 1.1. ([1], [9]) Let u(x,y), w(x,y) and a(x,y) non-negative continu-
ous functions defined for (x,y) ∈D, and let w(x,y) be non-decreasing in each variable
x,y ∈ D. If

u(x,y) � w(x,y)+
∫ x

0

∫ y

0
a(s,t)u(s,t)dtds, ∀(x,y) ∈ D (1.1)

then

u(x,y) � w(x,y)exp

(∫ x

0

∫ y

0
a(s,t)dtds

)
, ∀(x,y) ∈ D. (1.2)
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This inequality was generalized in [1] as follows:

THEOREM 1.2. ([1] – Theorem 2.1) Suppose u(x,y), w(x,y) and a(x,y) are
non-negative continuous functions defined on a domain D and w is nondecreasing in
the second variable. If inequality (1.1) is satisfied for all (x,y) ∈ D, then

u(x,y) � w(x,y)+G−1
(∫ x

0

∫ y

0
a(s,t)dtds

)
, ∀(x,y) ∈ D, (1.3)

where

G(r) =
∫ r

r0

ds
s+w

,r � r0 > 0, (1.4)

G−1 is the inverse function of G and
∫ x
0

∫ y
0 a(s,t)dtds ∈ Dom(G−1) , ∀(x,y) ∈ D.

REMARK 1.3. In [1] the last condition (w is nondecreasing) is omitted in the
statement of the theorem but it is used in the proof (line 7 of the proof).

THEOREM 1.4. ([1] – Theorem 2.2) Suppose u(x,y), w(x,y) and a(x,y) are
non-negative continuous functions defined on a domain D, and let w(x,y) be nonde-
creasing in each variable (x,y) ∈ D. If u satisfies inequality (1.1), then ∀(x,y) ∈ D we
have

u(x,y) � w(x,y)
[
1+

∫ x

0

∫ y

0
a(s,t)exp

(∫ x

s

∫ y

t
a(ξ ,η)dξdη

)
dtds

]
. (1.5)

REMARK 1.5. The proof of theorem 2.2 in [1] contains 2 errors. The first error is
on line 5-6 of the proof and can be corrected only by adding further assumptions on the
functions w and a. This motivates the need of a new proof for this theorem. The second
error is on page 611, line 11 but this error can be corrected only by replacing the right
hand side of the inequality with an other expression and this weakens the inequality.

1.2. Picard operators

The Picard operator technique was developed by I. A. Rus (see [11] and the refer-
ences therein) in order to handle some important problems in the theory of differential
equations (existence, uniqueness, differentiability of the solutions, etc.) and can be ap-
plied also in the study of Gronwall type inequalities (see [10], [13], [14], [5], [11], [12],
[2] and the references therein).

We recall some notations and some properties from [11].
Let (X ,→) be an L-space, A : X → X an operator. We denote by FA the fixed

points of A. We also denote A0 := 1X , A1 := A, . . . ,An+1 := An ◦A, n ∈ N the iterate
operators of the operator A.

DEFINITION 1.6. ([10], [11], [12]) A is a Picard operator (briefly PO), if there
exists x∗A ∈ X such that:

(i) FA = {x∗A};
(ii) An(x) → x∗A as n → ∞ , ∀x ∈ X .
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REMARK 1.7. The Banach fixed point theorem guaranties that if A is a contrac-
tion, then A is a Picard operator.

The following two abstract Gronwall lemmas can be used in order to give simple
and elegant proofs for most of the known Gronwall type inequalities.

LEMMA 1.8. [[10], [11]] (Abstract Gronwall lemma) Let (X ,→,�) be an orderd
L-space and A : X → X an operator. We assume that:

(i) A is PO;
(ii) A is increasing.
If we denote by x∗A the unique fixed point of A, then:
(a) x � A(x) ⇒ x � x∗A;
(b) x � A(x) ⇒ x � x∗A.

LEMMA 1.9. [[10], [11]] (Abstract Gronwall-comparison lemma) Let (X ,→,�)
be an orderd L-space and A1,A2 : X → X be two operators. We assume that:

(i) A1 is increasing;
(ii) A1 and A2 are POs;
(iii) A1 � A2 .
If we denote by x∗2 the unique fixed point of A2, then

x � A1(x) ⇒ x � x∗2.

2. Main results

The inequality (1.1) is linear in u, so we can obtain a representation by applying
the successive approximation method starting from the u0 = w. This representation
gives also the solution of the integral equation

u(x,y) = w(x,y)+
∫ x

0

∫ y

0
a(s,t)u(s,t)dtds, ∀(x,y) ∈ D, (2.1)

hence this is the maximal solution of the inequality (1.1). In [5] the authors proved
that the right hand side of the classical Wendroff inequality is not the fixed point of the
corresponding integral operator (it is not the solution of the associated integral equa-
tion). In what follows we prove that this is also valid for the Wendroff type inequalities
proved in [1] and we construct the best possible estimation (see theorem 2.1). We use
this representation to give a correct proof of theorem 2.2 from [1]. In the last section
we use the abstract Gronwall comparison lemma (see [14]) for proving theorem 1.2 and
2.1. from [1].

2.1. The representation for the best estimation

THEOREM 2.1. Suppose u(x,y), w(x,y) and a(x,y) are non-negative continuous
functions defined on a domain D. If u satisfies inequality (1.1), then

u(x,y) � w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)H(x,y,s, t)dtds, ∀(x,y) ∈ D (2.2)
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where

H(x,y,s,t) =
∞

∑
j=0

Kj(x,y,s, t)

and

Kj+1(x,y,s,t) =
∫ x

s

∫ y

t
a(ξ ,η)Kj(x,y,ξ ,η)dηdξ , K0 ≡ 1.

Proof. The integral operator A : C(D) →C(D) defined by

A(u)(x,y) = w(x,y)+
∫ x

0

∫ y

0
a(s,t)u(s,t)dtds (2.3)

is a Picard operator if we consider the Bielecki norm on the set C(D) :

‖u‖ = max
(x,y)∈D

e−τ(x+y)|u(x,y)|.

Moreover the space (C(D),‖ · ‖) is an ordered Banach space with the natural ordering
u � v ⇔ u(x,y) � v(x,y) , ∀(x,y) ∈ D and the operator A is an increasing operator.
These observations allow us to apply the abstract Gronwall lemma, so

u(x,y) � u∗(x,y),

where u∗(x,y) is the solution of the integral equation (2.1). But this solution can be
obtained as the limit of the successive approximation sequence starting from u0 = w
and the terms of this sequence can be calculated as follows:

u1(x,y) = A(u0)(x,y)

= w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)dtds

u2(x,y) = A(u1)(x,y)

= w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)dtds

+
∫ x

0

∫ y

0
a(s,t)

∫ s

0

∫ t

0
a(ξ ,η)w(ξ ,η)dηdξdtds

Changing the order of integration in the last integral and renaming the variables
we obtain

u2(x,y) = w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)dtds

+
∫ x

0

∫ y

0
a(s,t)w(s,t)

∫ x

s

∫ y

t
a(ξ ,η)dηdξdtds

= w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t) [K0(x,y,s,t)+K1(x,y,s, t)]dtds.
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Applying the operator A one more time we obtain

u3(x,y) = A(u2)(x,y)

= w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)

2

∑
j=0

Kj(x,y,s,t)dtds

and by an inductive argument we deduce

uk+1(x,y) = A(uk)(x,y)

= w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)

k

∑
j=0

Kj(x,y,s,t)dtds.

Hence the solution can be represented as

u∗(x,y) = w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)H(x,y,s,t)dtds, ∀(x,y) ∈ D,

where

H(x,y,s,t) =
∞

∑
j=0

Kj(x,y,s, t)

and

Kj+1(x,y,s,t) =
∫ x

s

∫ y

t
a(ξ ,η)Kj(x,y,ξ ,η)dηdξ , K0 ≡ 1. �

THEOREM 2.2. (Corrected statement of theorem 2.2 from [1]) Suppose u(x,y),
w(x,y) and a(x,y) are non-negative continuous functions defined on a domain D and
w is nondecreasing in both variables. If u satisfies inequality (1.1), then

u(x,y) � w(x,y)+
∫ x

0

∫ y

0
a(s,t)w(s,t)exp

(∫ x

s

∫ y

t
a(ξ ,η)dηdξ

)
dtds, ∀(x,y) ∈ D.

(2.4)

Proof. Denote by u(x,y) the right hand side of the inequality (2.4). Using the
representation from theorem 2.1 it is sufficient to prove that

H(x,y,s,t) � exp

(∫ x

s

∫ y

t
a(ξ ,η)dηdξ

)
, ∀(x,y) ∈ D.

In order to prove this inequality we proceed by mathematical induction and we prove
that for all k ∈ N

k

∑
j=0

Kj(x,y,s, t) � exp

(∫ x

s

∫ y

t
a(ξ ,η)dηdξ

)
, ∀(x,y) ∈ D and s � x, t � y.
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This inequality is trivial for k = 0. For a fixed k by replacing s with ξ and t with η ,
multiplying with a(ξ ,η) and integrating from s to x and from t to y we obtain

k

∑
j=0

∫ x

s

∫ y

t
a(ξ ,η)Kj(x,y,ξ ,η)dηdξ �

∫ x

s

∫ y

t
a(ξ ,η)exp

(∫ x

ξ

∫ y

η
a(α,β )dβdα

)
dηdξ

(2.5)
which implies

k+1

∑
j=0

Kj(x,y,s, t) � 1+
∫ x

s

∫ y

t
a(ξ ,η)exp

(∫ x

ξ

∫ y

η
a(α,β )dβdα

)
dηdξ (2.6)

In order to complete the inductive argument (and also the proof) it is sufficient to prove
that

1+
∫ x

s

∫ y

t
a(ξ ,η)exp

(∫ x

ξ

∫ y

η
a(α,β )dβdα

)
dηdξ � exp

(∫ x

s

∫ y

t
a(ξ ,η)dηdξ

)
.

Consider the function

G(ξ ,η) = exp

(∫ x

ξ

∫ y

η
a(α,β )dβdα

)
, (2.7)

where x,y are fixed parameters. For this function we have

∂G
∂ξ

(ξ ,η) = −
∫ y

η
a(ξ ,β )dβ ·G(ξ ,η) and

∂ 2G
∂ξ∂η

(ξ ,η) = a(ξ ,η) ·G(ξ ,η)+
∫ x

ξ
a(α,η)dα ·

∫ y

η
a(ξ ,β )dβ ·G(ξ ,η).

From this equality and the nonnegativity of a we obtain

a(ξ ,η)G(ξ ,η) � ∂ 2G
∂x∂y

(ξ ,η),

hence ∫ x

s

∫ y

t
a(ξ ,η)G(ξ ,η))dηdξ �

∫ x

s

∫ y

t

∂ 2G
∂ξ∂η

(ξ ,η)dηdξ .

But calculating the integrals from the right hand side expression we obtain

−1+ exp

(∫ x

s

∫ y

t
a(ξ ,η)dηdξ

)
,

so the proof is complete. �
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2.2. The abstract comparison lemma

The proof of theorem 2.1 in [1] contains an error on line 7 (if n(x,y) =
x∫
0

y∫
0

a(s,t)

u(s,t)dtds, then the quantity ny(x,y)+wy(x,y) is not necessary nonnegative. This error
can be corrected if we assume that w is increasing in y.

In the following we use the abstract Gronwall-comparison lemma (Lemma 1.9) to
prove theorem 1.2 (theorem 2.1 from [1]) and to prove a known version of a nonlinear
Gronwall-Bihari inequaity.

THEOREM 2.3. ([1], [5]) Suppose u(x,y), w(x,y) and a(x,y) are non-negative
continuous functions defined on a domain D, w is nondecreasing in y. If inequality
(1.1) is satisfied for all (x,y) ∈ D, then

u(x,y) � w(x,y)+G−1
(∫ x

0

∫ y

0
a(s,t)dtds

)
, ∀(x,y) ∈ D, (2.8)

where

G(r) =
∫ r

r0

ds
s+w

,r � r0 > 0, (2.9)

G−1 is the inverse function of G and
∫ x
0

∫ y
0 a(s,t)dtds ∈ Dom(G−1) , ∀(x,y) ∈ D.

Proof. We can see in [5], that if we take the integral operator A1 : C(D) →C(D)
defined by

A1(u)(x,y) = w(x,y)+
∫ x

0

∫ y

0
a(s,t)u(s, t)dtds (2.10)

it’s a PO, but its fixed point is not the function

u(x,y) = w(x,y)+G−1
(∫ x

0

∫ y

0
a(s,t)dtds

)
, ∀(x,y) ∈ D, (2.11)

Now we have to find a PO A2 :C(D)→C(D), with the property A1 � A2 and with
the fixed point defined by (2.11). Due to Lemma 1.9 if we construct A2, the proof will
be completed.

From (2.11) we obtain:

∂u
∂x

(x,y) =
∂w
∂x

(x,y)+ (G−1)′
(∫ x

0

∫ y

0
a(s,t)dtds

)∫ y

0
a(x,t)dt, ∀(x,y) ∈ D.

But

(G−1)′
(∫ x

0

∫ y

0
a(s,t)dtds

)
= u(x,y), ∀(x,y) ∈ D,

so we have

∂u
∂x

(x,y) =
∂w
∂x

(x,y)+u(x,y)
∫ y

0
a(x,t)dt, ∀(x,y) ∈ D.
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From the basic theorem of the calculus we have:

u(x,y)−u(0,y) =
∫ x

0

∂u
∂x

(s,y)ds =
∫ x

0

(
∂w
∂x

(s,y)+u(s,y)
∫ y

0
a(s,t)dt

)
ds.

From here we deduce that the Picard operator A2 : C(D) →C(D), defined by

A2(u)(x,y) = w(x,y)+
∫ x

0

∫ y

0
u(s,y)a(s,t)dtds,

admits the function defined by (2.11) as a fixed point. If we consider the set

X = {u ∈C(D)|u increasing in y and u(0,y) = w(0,y), u(x,0) = w(x,0)}
and the restrictions of A1,A2 to X , then

A1,A2 : X → X , A1(u) � A2(u), ∀u ∈ X

because u(s, t) � u(s,y) for t � y. On the other hand A1(u) ∈ X , for all u ∈C(D), A1

and A2 are Picard operators on X , and X is a closed subset of C(D), so using Lemma
1.9 the proof is complete. �

THEOREM 2.4. Let u(x,y), w(x,y) and a(x,y) non-negative continuous func-
tions defined on a domain D, w is non-decreasing in both variables and let g : [0,∞)→
(0,∞) a continuous non-decreasing function. If

u(x,y) � w(x,y)+
∫ x

0

∫ y

0
a(s,t)g(u(s,t))dtds, ∀(x,y) ∈ D (2.12)

then

u(x,y) � G−1
(

G(w(x,y))+
∫ x

0

∫ y

0
a(s,t)dtds

)
, ∀(x,y) ∈ D, (2.13)

where

G(r) =
∫ r

r0

ds
g(s)

,r � r0 > 0 (2.14)

G−1 is the inverse function of G and

G(w(x,y))+
∫ x

0

∫ y

0
a(s,t)dtds ∈ Dom(G−1), ∀(x,y) ∈ D.

Proof. Let us consider the integral operator A1 : C(D) → C(D) defined by the
right side of the the inequality (2.12), namely

A1(u)(x,y) = w(x,y)+
∫ x

0

∫ y

0
a(s,t)g(u(s,t))dtds, ∀(x,y) ∈ D,

and the function

u(x,y) = G−1
(

G(w(x,y))+
∫ x

0

∫ y

0
a(s,t)dtds

)
, ∀(x,y) ∈ D. (2.15)
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We can easily check that A1 is a PO, but its fixed point is not the function defined by
(2.15), so we cannot use the first abstract Gronwall lemma, we have to deal with the
abstract Gronwall-comparison lemma, like in the proof of the previous theorem.

From the (2.15) we have:

∂u
∂x

(x,y) = (G−1)′
(

G(w(x,y))+
∫ x

0

∫ y

0
a(s,t)dtds

)

×
(

G′(w(x,y))
∂w
∂x

(x,y)+
∫ y

0
a(x,t)dt

)
.

But

(G−1)′
(

G(w(x,y))+
∫ x

0

∫ y

0
a(s,t)dtds

)
= g(u(x,y)),

so
∂u
∂x

(x,y) = g(u(x,y))
(

1
g(w(x,y))

∂w
∂x

(x,y)+
∫ y

0
a(x,t)dt

)
.

From the basic theorem of calculus we have:

u(x,y)−u(0,y) =
∫ x

0

∂u
∂x

(s,y)ds

=
∫ x

0

g(u(s,y))
g(w(s,y))

∂w
∂x

(s,y)ds+
∫ x

0

∫ y

0
a(s,t)g(u(s,y))dtds

This relation shows that the function u defined by (2.15) is the fixed point of the integral
operator A2 : C(D) →C(D), defined by

A2(u)(x,y) = w(0,y)+
∫ x

0

g(u(s,y))
g(w(s,y))

∂w
∂x

(s,y)ds+
∫ x

0

∫ y

0
a(s,t)g(u(s,y))dtds,

∀(x,y) ∈ D. If we want to apply the abstract Gronwall-comparison lemma, we need to
consider the set

X = {u ∈C(D)|u increasing in y and u(0,y) = w(0,y), u(x,0) = w(x,0)}

and the restrictions of A1,A2 to X . This is necessary in order to obtain A1u � A2u.
But we do not know A2u ∈ X , and hence we can not apply the abstract Gronwall-
comparison lemma as stated in [10] or [14]. This difficulty can be overcame if we
observe that:

• from u � A1u we deduce u � u∗, where u∗ is the limit of successive approxima-
tion sequence for the operator A1 starting from u;

• if u is the fixed point of A2, then it is sufficient to have A1(u) � A2(u).

Indeed if A1 is a PO, then u∗ is the limit of the successive approximation sequence
starting from u and from A1(u) � A2(u) we can prove by induction that Ak

1(u) � u, so
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u∗ � u. Due to this observation it is sufficient to prove A1u � A2u. But u is defined by
(2.15), so w(x,y) � u(x,y), hence

g(w(s,y)) � g(u(s,y)), ∀0 � s � x,

so

w(x,y) � w(0,y)+
∫ x

0

g(u(s,y))
g(w(s,y))

∂w
∂x

(s,y)ds. (2.16)

From (2.15) we can deduce that u is nondecreasing in the second variable, hence
∫ x

0

∫ y

0
a(s, t)g(u(s,t))dtds �

∫ x

0

∫ y

0
a(s,t)g(u(s,y))dtds, ∀(x,y) ∈ D. (2.17)

From (2.16) and (2.17) we deduce A1(u) � A2(u), so the proof is complete. �

REMARK 2.5. This inequality generalizes some results from [7].

3. Concluding remarks

REMARK 3.1. The abstract Gronwall and the abstract Gronwall-comparison lem-
ma enables us to rewrite the proofs of many Gronwall type inequalities in a unitary,
structured, simplified way.

REMARK 3.2. The proof of theorems 2.4 shows that some Gronwall type inequal-
ities can not be proved by using the abstract Gronwall-comparison lemma, because the
condition A1 � A2 is too strong.

REMARK 3.3. The proof of theorems 1.2, 2.2 and 2.4 shows that the abstract
Gronwall-comparison lemma needs a revision in order to cover a wider range of con-
crete Gronwall type inequalities.
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