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QUADRATIC INTERPOLATION AND SOME OPERATOR INEQUALITIES

MING FAN

(Communicated by I. Franjic)

Abstract. We investigate some properties of Hilbert spaces and bounded linear operators under
quadratic interpolation in both qualitative and quantitative ways. Interpolation type, reiteration,
interpolation methods associated with quasi-power function parameters, nonlinear commutator
estimates, and interpolation of certain operators and spectral properties are under consideration.

1. Introduction and preliminaries

The interpolation theory for Hilbert spaces has a very simple character because
of the fine geometric structure of those spaces. In 1967, Donoghue gave a complete
description of exact quadratic interpolation methods which classified all Hilbert spaces
that can be interpolated exactly between two given Hilbert spaces [9]. Recently, Ameur
showed that all exact interpolation spaces for a couple of Hilbert spaces can be ob-
tained in terms of Peetre’s K -functional and the real interpolation methods with func-
tion parameters, which leads to a new interpretation of Donoghue’s interpolation theo-
rem [3, 4, 5].

The aim of the present paper is to investigate some properties of Hilbert spaces and
bounded linear operators under quadratic interpolation in both qualitative and quantita-
tive ways. Following this introductory section, we formulate an inequality concerning
the interpolation type and the reiteration result in Section 2. In section 3, we consider
the quadratic interpolation methods associated with quasi-power function parameters.
Section 4 is devoted to some operator inequalities concerning nonlinear commutator
estimates, invertible operators, measures of noncompactness, and some spectral prop-
erties.

Let 7 = (,%’f),,%”l) be a compatible couple of separable Hilbert spaces in the
sense that they are both embedded continuously in some Hausdorff topological vector
space. Throughout the paper, we assume that AJZ = J#) N 4 is dense in both %
and .74 . Such a couple /7 is said to be a regular Hilbert couple. We denote by (-, )j
and || . H, the inner product and norm on %} (j =0, 1), respectively, unless otherwise
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mentioned. Observe that Hm is a quadratic form on J7j, and thus there exists a
positive, injective, densely defined linear operator A = f[oﬁo] AdE; in %) such that

Hx”l (Ax,x)o for x€A.

The operator A is bounded on J7) iff s C 74 .
For r > 0, we consider the following functionals:

D (1,3 77) = Iy(t,x) = (HXHOHHXH)
for x € A, and
Kz(l,x;%) =K2(t7x)
. 2 2\1/2 .
= 1nf{ <||xo||0+t||x1’|1> )x:xo +x1,x; € 5 (j =0, l)}
for x € S = H#y+ . Now AA and T are also Hilbert spaces with the norm
HxHi :JQ(I,)C)2 = ((I+A)x,x)0

for x € A, and

. = K2(17~x)2

Il

for x € 257 . Ameur calculated the K -functional as follows [3, (3.1)]:

_ tA
Ko(t,x)? = (tA(I+1A) 1x7x)0:/[0 L d(E,xx), (1.1)

for x € A7, which implies
[x[l3 = (A+4)"x.2), (1.2)

for x € AA . o o L
For regular Hilbert couples ¢ and %, we denote by % (%ﬂ 4 ) the space of

all bounded linear operators T: .77 — X% such that the restriction of 7 on I is
bounded from JZ; to #; (j =0,1). The operator norm of 7" when it is restricted on
H; (j=0,1) or A is denoted by HTHJ or ||T|| A Tespectively. We simply write
B(A) =B (A, ). A regular interpolation method F is said to be quadratic if,

for each regular Hilbert couple .77, the interpolation space F (%) is a Hilbert space.
Let ¢: R — R™ be a quasi-concave function in the sense that

(1) < Co(s)(1V (t/s))

for a positive constant C, and for all s,# > 0 [16]. Each quasi-concave function
¢@: RT — R determines a quadratic form on % by

Hx” (x,x)p = (q)(A)xpc)O forx € AJ.
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The corresponding Hilbert space is denoted by %(p, which is a regular interpolation
space for the couple 7. Thus, the function ¢ determines a regular quadratic interpo-
lation method.

A function ¢@: Rt — R is said to be a Pick function [9, 10], if ¢ can be repre-
sented in the form

B (14+1)A
¢()L)_/[O7w] v du(r) for A >0, (1.3)

where u is a positive Radon measure on the compactified halfline [0,c<]. In this case,
if x€ S, then

1
!Mﬁ:AM<H7)&mw%Mﬂ (14)

by (1.1) and (1.3). Moreover, ¢ is a Pick function iff %(p is an exact interpolation
space of 77 in the sense that

IZlly <lITllo v 71, (1.5)

forall T € % (/, X&), whete ||T|| is the operator norm of T: J¢y — K ¢. For

instance, A(A) =1+24, j(A) =2/ (j=0,1),and 6(A) =219 (0 < 6 < 1) determine
the exact interpolation spaces A, ;= ; (j=0,1),and 9 (0< 6 <1),
respectively.

2. Interpolation type and reiteration

In this section, we first formulate an inequality concerning the interpolation norms
of bounded linear operators, which improves the estimate in (1.5); and then obtain a
reiteration result for the quadratic interpolation methods. Let @ : R™ — R™ be a quasi-
concave function. We denote

fort > 0.

00 =1/00/1) ana 50) =sup

A corresponding homogeneous function of two variables (again denoted by ¢ ) is de-
fined by
(p(l‘o,tl) =l‘0(p(l‘1/l‘0) for 79, t; > 0.
PROPOSITION 2.1. If ¢ is a Pick function, then

_ 12
17l <@ (Il 1717 @.1)

forall T € %(%,y)
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Proof. For T € B(7Z, ) we set M = 7|, /||T,. 1f x € 7 for which
x=xo+x; with x; € 7 (j=0,1), then we have

K (1.7x)" < |76+ |71 [} < 7115 (1lsollg + a2 [ 7).

and hence K> (t,Tx)2 < HTH(z)Kg (tM2,x)2. Assume that ¢ is given as in (1.3). By (1.1)
and (1.4), we have

73l = [ (147 )&t ante)
< HTH;/OOO(I+;>K2(IM2,x)2du(t)

:HTH?)/OO< 1+1/ %d(me)o>du(t>
=7tk f, () 11;’;%2du<z>)d<mx>o

=73 / (AM?) d(E,x.x),
This, together with the inequality ¢ (AM?) < @(A)- @ (M?), implies that

7l < 75e (171 /11G) [, 00 Erwa)y
= I loe (1711 /171l Il
Therefore,

_ 2 o\ 1/2
7|, < q’(HTHo» HTH1> )
which completes the proof. [J
REMARKS. (i) If ¢: R™ — R™ isaconcave function, then by [5, Lemma 1], there

exists a Pick function ¢ such that ¢ < ¢ <2¢. For T € B(H, %), the inequality in
(2.1) becomes

_ 1/2
Ill, < V2o (Il IIIE) 22)

This inequality improves the following result
I7ll, < vZ(lITllovITl),)

given in [14]. In general, if ¢ is quasi-concave, then

_ 1/2
Ill, <co(lrlaI717) 23
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for some positive constant C.
(i) Let T = (Tq,...,T,) , where T; € #(A) and T;Ty = T; T; on A for 1 <ik<n.
We define || 7|, (j=0,1) by

1/2
71 =supd (sl 4o+ [Tonl}) 8 ana ] =1,

and define HT||¢ similarly. The inequalities in (2.2) and (2.3) are even valid for this
kind of n-tuple T of commuting operators.

PROPOSITION 2.2. Let y be a Pick fuction, let @y, ¢1: RT — RY be quasi-
concave functions, and let ¢ = l[/((po7 (pl). Then

Ho= (Ko Hg,),
with equal norms. Furthermore, if ¢y and Q| are Pick functions, then 7q, is an exact
interpolation space for 7€ and hence @ is also a Pick function.

Proof. First we assume that

v = [ S )

for A > 0. Then

= (1+0)ei(A)
P(A) = (<p1 /(.00 ) /OHNP1 )}(po(/l)d,u(t). (2.4)

Letnow =g, (j=0,1),andlet & = (5,.#1). Then ¢ is a regular Hilbert
couple, and A7 is dense in AH = H gy N H g, . Let

B— / A dEB
0]

be the positive, injective, densely defined linear operator on .#; for which
(%) .0 = (Bx,y).x for x,y€AX .
For each x € A7, we have on one hand
Hx” = (Bx,x) x4 (q)o( )Bx,x)s%,
and on the other hand HxHil o7 = (¢1(A)x,x) - This implies that

@1(A)x = @o(A)Bx,

and hence

Bx=qo(A) ' @1(A)x = @1 (A)go(A) " 'x.
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Observe that

—A2 tA tB
Kol ) = [ (B g = ( +th“>%
B C0

1
_( _toi(A)go(A)!
B ( 1 +f1<01 (A)po(A)~! (po(A)x,x)

= 11(4) X, X
o) 1+z<p1(/1)/<,)0@)“’(E?L )

It turns out that

Hlez,/(Y) = K2 1, '%/) u(r)

_ l(P]()L) o

- (/oo]H-z(pl )/(po(,l)d(Efl ) 4 )dﬂ()
< 1+l‘)(,01(ﬁ.)

/[0 (/0 1+t@1(A )/(po(/l)dﬂ(l)>d(EM»x)(%7

il = [ 0A)(E2x3) = Il

by (2.4). Thatis, ¢ = (g, # ), With equal norms. [

and hence

3. On quasi-power function parameters

In this section, we investigate the quadratic interpolation space 7q, associated
with a quasi-power function. A function @: Rt — R™ is said to be of quasi-power if
3C >0 and 0 < o < 1, for which

P(At) <C(1* Vi) p(A) (3.1)

for all A,r > 0. Itis clear that a quasi-power function is always quasi-concave. Two
quasi-concave functions ¢, y: RT™ — R™ are said to be equivalent, denoted by ¢ ~ v,
if there exist positive constants a, b such that

ay(t) < ot) <by(r) for r>0.

Observe that if ¢ is a quasi-power function, and if @ = ¢, then y is also a quasi-power
function.

LEMMA 3.1. Let ¢ be a quasi-power function satisfying (3.1), and let

< At dt
k(M) =/0 (/)T

0/(2) = (/Omﬁ@*o)?)l.




QUADRATIC INTERPOLATION AND SOME OPERATOR INEQUALITIES 419

Then @k =~ @y ~ @. Consequently, Qg and @; are quasi-power functions, and
gy = H g, =Hp.
with equivalent norms.

Proof. Let A > 0. For function @k, we have

oc0 = [ et/ = [T G/ g

oo g0\ g1 2C

gC('D(/l)/o 1+1¢ at < oc/\(l—oc)q)(/l)’

and similarly,
2
A) 2 —0(A).
o) > o )

Now we consider function ¢, . Observe that

1 dt dt

[ et S = e T

oo g0\ g1 2C
< -1 < -1
SCod) /o 1+t at < oc/\(l—a)q)(/l)

This gives that

Similarly, we can obtain

Therefore, g ~ @; ~ ¢ . Consequently, ¢x and @; are quasi-power functions, and
gy = H gy =Hy.

with equivalent norms. [

Let ¢ be a quasi-power function. We define Hilbert spaces K>,y (%) and
J2:92(H) as below: K. () consists of all x € £ for which

Wl = ([ 0(1/0)Kale,° 1) o

and Jo,p 2 (%) consists of all x € X7 such that there exists a strongly measurable
function u: R™ — AJZ for which x = [§"u(t)dt /t in 25 and

/Owcp(l/t)Jz(nu(t))z% <
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with the norm

ol =inef (0000 )
Observe that both Ko, > (77) and J;p» () are regular quadratic interpolation spaces
for 7 . It is known by [4, Ex. 5.1] that, for the power function (1) = 9, 0<0<1,
Ko02(H) = D02 () = Hg (3.2)
with the propotional norms

sin

¥l , = el 0, = \f = [l (3-3)

We can show among other things that (3.2) is even valid for quasi-power functions with
isomorphic norms.

PROPOSITION 3.1. Let ¢ be a quasi-power function satisfying (3.1).
(1) K292 (%) =Dp2 (%) = %(p with equivalent norms.
(ii) If we define (1) = t~%/(1 -2 g (tl/(l’zo‘)) , then \ is of quasi-power, for which
%(p = (%a»%Fa)W
with equivalent norms.
Proof. (i) According to Lemma 3.1, it is enough to show that
Koo () = H gy and  Jogo(H) =H,. (3.4)

Let x € A7 . First we have

= 0 ](PK(/l)d(EM’x)o = ((pK(A)x’x)O

by (I.1). This implies that [[x[| = {[x[, . Next,let

av(t)=(1+0) " o(1/1) " dt /1.

Then Vv is a positive radon measure over R", and

-1 _ < 1+t
o) = [ v,

If x =[5 u(t)dz /1 is the canonical decomposition, and if we set

w(t) = (1+2)o(1/t)u(t),
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then x = [y w(r)dv(t) and
/Ooo(p(l/t)Jz (t,u(t))2$ = Om %ng(t,w(t))zdv(t).

Furthermore, by a version of the Foias-Lions theorem [4, Th. FL], we have

HXHJZW - HXHW

Therefore, the identities in (3.4) hold with equal norms. Making appeal to the regularity
of  concludes the proof of part (i).

(ii) By applying Proposition 2.2 on Pick functions @k, @o(¢) =t%, and ¢ (¢) =
1'%, we obtain @x = w(¢@,1), and hence ', = (%a,%l_a)w with equal
norms. Combining this with Lemma 3.1, we have

%(p = (%a;%l—a)w

with equivalent norms. [

EXAMPLE. Given a regular Hilbert couple /7, let & (S,A7) be the set of all
polynomials on the strip § = {z € C|0 < Rez < 1} with coefficients in A . We
denote by (S, #) the Hilbert space completion of & (S,A7) with the norm

£ 1] = (/_lef(it)HzPo(G,t)dt+/_°;||f(1+it)||fP1(9,z)dz>1/2,

where

Py(s+it) = exp(—n(t — 7)) sin7zs

2 (j:Ovl)

sin® 7ws + (cos s — exp(ijm — m(t — r)))2

are the Poisson kernels for the strip S. For 0 < 8 < 1 and n =0,1,2,..., we may

define the complex interpolation space Cgy) (%ﬂ ) with the n-th derivative at 0 by

CB(n) (%) = {x exXx

x= %ﬂ")(e), feAn*? (SJ_()}

with the norm Hx”ce(n) = inf{HfH%z x= %f(")(e)}. We simply write

Co () = Co0)(H),

which is equivalent to the classical complex interpolation space as given in [7, Sec. 4.1].
It is known that -
Co(H) = (3.5)

isomorphically. Let now

(p(t)=t9<l+wlogt>n
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for t > 0. Then ¢ is a quasi-power function. By combining the equivalence in [11,
Cor.2.1 & Ex.4.5], and the reiteration in [11, Rmk. 5.8 (iii)] and [12, Th. 5.4 (i)], with
Proposition 3.1 (i) and (3.5), we obtain

K92 (H) = Ja92(H) = H g = Co(n) ()

isomorphically.

4. On some operator inequalities

Because of the equivalence given in Proposition 3.1 (i), we may study the commu-
tator estimates arising from the real interpolation methods for Hilbert spaces. Let ¢ > 1
be a constant. For x € ZJ7, the decomposition x = x(¢) +x;(t), ¢ > 0, is (¢-) almost
optimal if

Ko (t,) < (|[xo0) o + 1l 1)1 ) < cKa(t,x).
An almost optimal projection is an operator D(t): X7 — 7, defined by
D(t)x=D(t,7)x = xo(t)

for some almost optimal decomposition. The corresponding quasi-logarithmic operator
{257 is defined by

Q) = [ (DO 2 @

t

for x € X7 . We refer to [15] for further details. However, if x € Yom(A), the domain
of A, then x has the optimal decomposition which is given by

xo() =tA(I+1A) ' (x) and x(1) = (I+14) "' (x) (4.2)
for £ > 0. That is, x = xo(t) +x1(¢) and K (t,x)? = ||xo(t Hé—kt”xl(I)Hf for r >0 [3].

LEMMA 4.1. Q =1logA.

Proof. Let F and G be operator functions given by
F(t) =log(I+tA) and G(t) = (logt)I —log(I+1tA) =log(t(I+tA)~"),
respectively, for # > 0. It is easy to see that
F'(t)y=D(t)/t and G'(t)=(I-D(1))/t.

By integration, we obtain

Q= (F(1)=F(0)) = (G(=
=log(I+A) —log(A™")

) —G(1))
+log((I+A)7") =logA. O
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PROPOSITION 4.1. If ¢ is a quasi-power Pick function, then

_ 1/2
I125 -2l <20(I737I7)

forall T € # (%) More generally, if ¢ is a quasi-power function, then there exists a
constant Y depending on ¢ such that

H (logA)T — T(logA) H(p < WE(HTH?)a HTH?)l/z

forall T € @(%)

Proof. For x € Yom(A) and for T € B(H), let x = xo(t) +xi(t) and Tx =
(Tx)o(z)+(Tx)1(z), t >0, be the corresponding optimal decompositions given in (4.2).

Then, by (4.1),
! d . d
Q)= [T~ [ 0T,

and

dt

(TQ5 — Q35 T) (x) = /0 l(Txo(t)—(Tx)o(t))T— /1 () — (Tl ())dl

t

For 1 >0, let yj(t) = Tx;(t) — (Tx);(z) (j=0,1),and let M = ||T||,/||T||,- Then
yo(t) +y1(t) = Tx — Tx = 0 and hence

(TQ57 — Q3T ( / yolt / (th)?

This implies that

(ras— ezl < [Colt/n(eninn)®

- [ (ot [+ )

<41 [ o(1/0)(roene) [ oo o)
—4lr3 [ o/t

< 4(P<||TH0’ HT||1) %,

This, combined with the regularity of .77, implies

- 12
1795~ 25T lg, ., ,,., <20 (7[5 171})
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More generally, assume that ¢ is a quasi-power function. As a consequence of the
above estimate, Lemma 4.1, and the equivalences given by Lemma 3.1 and [5, Lemma
1], we obtain

H@gﬂT—Tﬂ%Aww<y¢@Tm”Tmf”

for a constant y dependingon ¢. O

REMARK. In[13], we studied the similar estimates for the power functions 6(¢) =
19, 0 < 6 < 1, by using the complex interpolation and the corresponding derivation
operators. According to [13, Prop. 1.4], if we assume that A € & (%’6) is invertible,
then

/sinnne H(logA)T—T(logA)He (4.3)
0 o 2sind |7, 2sin76 HTH1
O O e

forall T € %’(%) . We apply now Proposition 4.1 and (3.3) on these functions without
assumming the boundedness and invertibility for A. Therefore, the estimate given in
(4.3) can be improved as follows

sinf _
Vo [(10gA) T = T (10ga) | <2177}

forall T € %’(%) .
Let ¢ be a Pick function, and let T € 2(7) . If T is invertible on ., then we
write T, ! as the inverse of T on 7.

PROPOSITION 4.2. Assume that T € %( ) If T is invertible on both % and
A, then T is invertible on o for all Pick functions @, and all inverses T(p agree
on A . In addition,

I, <@ (2 7 )

Proof. Observe first that, by the assumption, 7 is a bounded linear bijection of
3.7 onto itself. In fact, for any y = yg+y; € 2%, we can find x; ;€ with Tx; =y; =)
and Hx,” C||y,H (j = 0,1) for some positive constant C. Let x = xo +x; € 7.

Then y = Tx and Hx”2 CHsz' It implies that T is an isomorphism on X7 by the
open mapping theorem, and hence 7-! € (). Consequently, T is invertible on

J , for all Pick functions ¢, and all inverses T, ! agree on A7 . The estimate

_ 1112 1112 12
H%Wb<¢QV1MWT1M)
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follows from Proposition 2.1. O

REMARKS. For a Hilbert space .2 and for T € B(), let 6(T, ) be the
spectrum of T on ¢, and let r(T,.7¢) be the spectral radius of T on 7. Observe
that

H(1.20) = lim| |77, (44)

(1) By Proposition 4.2, we have

o(T,A%) Co(T, ) Uo(T, ). (4.5)
According to [1, Th. 2.3 (i)], the union of any two of the following three sets

o(T,4)Uo(T, ), o(T,AX), o(T,2H)

contains the third. Thus,

o(T,2) Co(T,#)Uo (T, ).
Furthermore, if ¢ is a Pick function, then by (4.5) and Proposition 4.2 again

o(T,#y) Co(T,4)uUo(T,7A4).
By combining (4.4) and (2.1), we obtain

H(T.4) < o(r(T.6)" r(T,)") .

(i1) For a compact subset K of C, the capacity of K is defined by
CapK = inf max|p(z)| /%€,
r zeK
where the infimum is taken over all polynomials p with the leading coefficient equal to
1. Assume that ¢ is a quasi-power function satisfying (3.1). By Proposition 3.1 (i) and

(4.5), we have L L L
o(T,#4) Co(T,#4)U0(T, H1_q).

This, together with [2, Cor. 7], gives that
Capo (T, )
< (Capc(ﬂ%)l*aCapG(T,,%ﬁ)a) v (CapG(T,,%’f))aCapO'(T,,}fi)170‘).

We conclude this section by an estimate of the measure of noncompactness for
bounded linear operators under quadratic interpolation. For Hilbert spaces .7 and
A, let Uy and U,y be the open unit balls of %2 and ¢, and let T € B(H,%).
We define the (ball) measure of noncompactness of operator 7' by

1T = ) = inf{ 0> 0| T(Us) C UL {yi+ nU } for

someyiE%withl<i<k<oo}.
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Observe that x(T: I — K ) =0 if and only if T is compact. Moreover, by [6,
Th. 14.3.1],

x(T: H — KH) = inf{ HT—}—SH%J,’Sis a compact operator from 7 to & },

the essential norm of T. For T € B(A, %), let x;(T) = x(T: #; — ;) (j =
0,1), and let x(T) = x(T: S, — JHp). If @ a quasi-power function, we may ap-
ply [8, Cor. 5.2] on the space K32 (%) , which is equivalent to %(p by Proposition
3.1 (i), and obtain the following result.

PROPOSITION 4.3. Let ¢ be a quasi-power function, and let T € %(%, y)
Then /2
X%o(T) <c@(0(T)?,3a(T)?) /™.

Consequently, if T: 56 — %y or T: 54 — ] is compact, then T : 7q, — 7(p is
also compact.

REMARK. For a Hilbert space ¢, and for T € %(%), let r.(T,.52) be the
essential spectral radius of 7 on JZ . Recall that

re(T,2) = lim x (T": A — H#)'/".

n—o0
Combining this with Proposition 4.3, we obtain

re(T7%(0) < (ﬁ(re(T’%)27re(T"%)2) 2

for any quasi-power function ¢@.
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