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QUADRATIC INTERPOLATION AND SOME OPERATOR INEQUALITIES

MING FAN

(Communicated by I. Franjić)

Abstract. We investigate some properties of Hilbert spaces and bounded linear operators under
quadratic interpolation in both qualitative and quantitative ways. Interpolation type, reiteration,
interpolation methods associated with quasi-power function parameters, nonlinear commutator
estimates, and interpolation of certain operators and spectral properties are under consideration.

1. Introduction and preliminaries

The interpolation theory for Hilbert spaces has a very simple character because
of the fine geometric structure of those spaces. In 1967, Donoghue gave a complete
description of exact quadratic interpolation methods which classified all Hilbert spaces
that can be interpolated exactly between two given Hilbert spaces [9]. Recently, Ameur
showed that all exact interpolation spaces for a couple of Hilbert spaces can be ob-
tained in terms of Peetre’s K -functional and the real interpolation methods with func-
tion parameters, which leads to a new interpretation of Donoghue’s interpolation theo-
rem [3, 4, 5].

The aim of the present paper is to investigate some properties of Hilbert spaces and
bounded linear operators under quadratic interpolation in both qualitative and quantita-
tive ways. Following this introductory section, we formulate an inequality concerning
the interpolation type and the reiteration result in Section 2. In section 3, we consider
the quadratic interpolation methods associated with quasi-power function parameters.
Section 4 is devoted to some operator inequalities concerning nonlinear commutator
estimates, invertible operators, measures of noncompactness, and some spectral prop-
erties.

Let H =
(
H0,H1

)
be a compatible couple of separable Hilbert spaces in the

sense that they are both embedded continuously in some Hausdorff topological vector
space. Throughout the paper, we assume that ΔH = H0 ∩H1 is dense in both H0

and H1 . Such a couple H is said to be a regular Hilbert couple. We denote by (·, ·) j

and
∥∥·∥∥ j the inner product and norm on H j ( j = 0,1) , respectively, unless otherwise
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mentioned. Observe that
∥∥·∥∥2

1 is a quadratic form on H0 , and thus there exists a
positive, injective, densely defined linear operator A =

∫
[0,∞]λ dEλ in H0 such that

∥∥x∥∥2
1 = (Ax,x)0 for x ∈ ΔH .

The operator A is bounded on H0 iff H0 ⊆ H1 .
For t > 0, we consider the following functionals:

J2
(
t,x;H

)
= J2(t,x) =

(∥∥x∥∥2
0 + t

∥∥x∥∥2
1

)1/2

for x ∈ ΔH , and

K2
(
t,x;H

)
= K2(t,x)

= inf
{(∥∥x0

∥∥2
0 + t

∥∥x1
∥∥2

1

)1/2 ∣∣∣x = x0 + x1, x j ∈ H j ( j = 0,1)
}

for x ∈ ΣH = H0 +H1. Now ΔH and ΣH are also Hilbert spaces with the norm∥∥x∥∥2
Δ = J2(1,x)2 =

(
(I +A)x,x

)
0

for x ∈ ΔH , and ∥∥x∥∥2
Σ = K2(1,x)2

for x ∈ ΣH . Ameur calculated the K2 -functional as follows [3, (3.1)]:

K2(t,x)2 =
(
tA(I + tA)−1x,x

)
0 =

∫
[0,∞]

tλ
1+ tλ

d
(
Eλ x,x

)
0 (1.1)

for x ∈ ΔH , which implies ∥∥x∥∥2
Σ =

(
A(I +A)−1x,x

)
0 (1.2)

for x ∈ ΔH .
For regular Hilbert couples H and K , we denote by B

(
H ,K

)
the space of

all bounded linear operators T : ΣH → ΣK such that the restriction of T on H j is
bounded from H j to K j ( j = 0,1) . The operator norm of T when it is restricted on
H j ( j = 0,1) or ΔH is denoted by

∥∥T∥∥ j or
∥∥T∥∥Δ respectively. We simply write

B
(
H
)

= B
(
H ,H

)
. A regular interpolation method F is said to be quadratic if,

for each regular Hilbert couple H , the interpolation space F
(
H
)

is a Hilbert space.
Let ϕ : R+ → R+ be a quasi-concave function in the sense that

ϕ(t) � Cϕ(s)
(
1∨ (t/s)

)
for a positive constant C , and for all s,t > 0 [16]. Each quasi-concave function
ϕ : R+ → R+ determines a quadratic form on H0 by∥∥x∥∥2

ϕ = (x,x)ϕ =
(
ϕ(A)x,x

)
0 for x ∈ ΔH .
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The corresponding Hilbert space is denoted by H ϕ , which is a regular interpolation
space for the couple H . Thus, the function ϕ determines a regular quadratic interpo-
lation method.

A function ϕ : R+ → R+ is said to be a Pick function [9, 10], if ϕ can be repre-
sented in the form

ϕ(λ ) =
∫

[0,∞]

(1+ t)λ
1+ tλ

dμ(t) for λ > 0, (1.3)

where μ is a positive Radon measure on the compactified halfline [0,∞] . In this case,
if x ∈ H ϕ , then ∥∥x∥∥2

ϕ =
∫

[0,∞]

(
1+

1
t

)
K2(t,x)2 dμ(t) (1.4)

by (1.1) and (1.3). Moreover, ϕ is a Pick function iff H ϕ is an exact interpolation
space of H in the sense that ∥∥T∥∥ϕ �

∥∥T∥∥0 ∨
∥∥T∥∥1 (1.5)

for all T ∈ B
(
H ,K

)
, where

∥∥T∥∥ϕ is the operator norm of T : H ϕ → K ϕ . For

instance, Δ(λ ) = 1+λ , j(λ ) = λ j ( j = 0,1) , and θ (λ ) = λθ (0 < θ < 1) determine
the exact interpolation spaces ΔH , H j = H j ( j = 0,1) , and H θ (0 < θ < 1) ,
respectively.

2. Interpolation type and reiteration

In this section, we first formulate an inequality concerning the interpolation norms
of bounded linear operators, which improves the estimate in (1.5); and then obtain a
reiteration result for the quadratic interpolation methods. Let ϕ : R+ →R+ be a quasi-
concave function. We denote

ϕ∗(t) = 1
/
ϕ(1/t) and ϕ(t) = sup

s>0

ϕ(st)
ϕ(s)

for t > 0.

A corresponding homogeneous function of two variables (again denoted by ϕ ) is de-
fined by

ϕ
(
t0,t1

)
= t0ϕ

(
t1
/
t0
)

for t0, t1 > 0.

PROPOSITION 2.1. If ϕ is a Pick function, then

∥∥T∥∥ϕ � ϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)1/2
(2.1)

for all T ∈ B
(
H ,K

)
.
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Proof. For T ∈ B
(
H ,K

)
, we set M =

∥∥T∥∥1

/∥∥T∥∥0 . If x ∈ H ϕ for which

x = x0 + x1 with x j ∈ H j ( j = 0,1) , then we have

K2
(
t,Tx

)2 �
∥∥Tx0

∥∥2
0 + t

∥∥Tx1
∥∥2

1 �
∥∥T∥∥2

0

(∥∥x0
∥∥2

0 + tM2
∥∥x1
∥∥2

1

)
,

and hence K2
(
t,Tx

)2 �
∥∥T∥∥2

0K2
(
tM2,x

)2
. Assume that ϕ is given as in (1.3). By (1.1)

and (1.4), we have

∥∥Tx
∥∥2
ϕ =

∫ ∞

0

(
1+

1
t

)
K2(t,Tx)2 dμ(t)

�
∥∥T∥∥2

0

∫ ∞

0

(
1+

1
t

)
K2(tM2,x)2 dμ(t)

=
∥∥T∥∥2

0

∫ ∞

0

((
1+

1
t

)∫
[0,∞]

tλM2

1+ tλM2 d
(
Eλ x,x

)
0

)
dμ(t)

=
∥∥T∥∥2

0

∫
[0,∞]

(∫ ∞

0

(1+ t)λM2

1+ tλM2 dμ(t)
)

d
(
Eλ x,x

)
0

=
∥∥T∥∥2

0

∫
[0,∞]

ϕ
(
λM2)d(Eλ x,x

)
0.

This, together with the inequality ϕ
(
λM2

)
� ϕ(λ ) ·ϕ(M2

)
, implies that

∥∥Tx
∥∥2
ϕ �

∥∥T∥∥2
0ϕ
(∥∥T∥∥2

1

/∥∥T∥∥2
0

)∫
[0,∞]

ϕ(λ )d
(
Eλ x,x

)
0

=
∥∥T∥∥2

0ϕ
(∥∥T∥∥2

1

/∥∥T∥∥2
0

)∥∥x∥∥2
ϕ .

Therefore, ∥∥T∥∥ϕ � ϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)1/2
,

which completes the proof. �

REMARKS. (i) If ϕ : R+ →R+ is a concave function, then by [5, Lemma 1], there
exists a Pick function φ such that φ � ϕ � 2φ . For T ∈ B

(
H ,K

)
, the inequality in

(2.1) becomes ∥∥T∥∥ϕ �
√

2ϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)1/2
. (2.2)

This inequality improves the following result

∥∥T∥∥ϕ �
√

2
(∥∥T∥∥0 ∨

∥∥T∥∥1

)
given in [14]. In general, if ϕ is quasi-concave, then

∥∥T∥∥ϕ � Cϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)1/2
(2.3)
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for some positive constant C .

(ii) Let T =
(
T1, . . . ,Tn

)
, where Ti ∈ B

(
H
)

and TiTk = TkTi on ΔH for 1 � i,k � n .
We define

∥∥T∥∥ j ( j = 0,1) by

∥∥T∥∥ j = sup

{(∥∥T1x
∥∥2

j + · · ·+∥∥Tnx
∥∥2

j

)1/2
∣∣∣∣x ∈ H j and

∥∥x∥∥ j = 1

}
,

and define
∥∥T∥∥ϕ similarly. The inequalities in (2.2) and (2.3) are even valid for this

kind of n -tuple T of commuting operators.

PROPOSITION 2.2. Let ψ be a Pick fuction, let ϕ0, ϕ1 : R+ → R+ be quasi-
concave functions, and let ϕ = ψ

(
ϕ0,ϕ1

)
. Then

H ϕ =
(
H ϕ0 ,H ϕ1

)
ψ

with equal norms. Furthermore, if ϕ0 and ϕ1 are Pick functions, then H ϕ is an exact
interpolation space for H and hence ϕ is also a Pick function.

Proof. First we assume that

ψ(λ ) =
∫ ∞

0

(1+ t)λ
1+ tλ

dμ(t)

for λ > 0. Then

ϕ(λ ) = ϕ0(λ )ψ
(
ϕ1(λ )

/
ϕ0(λ )

)
=
∫ ∞

0

(1+ t)ϕ1(λ )
1+ tϕ1(λ )

/
ϕ0(λ )

dμ(t). (2.4)

Let now K j = H ϕ j ( j = 0,1) , and let K =
(
K0,K1

)
. Then K is a regular Hilbert

couple, and ΔH is dense in ΔK = H ϕ0 ∩H ϕ1 . Let

B =
∫

[0,∞]
λ dEB

λ

be the positive, injective, densely defined linear operator on K0 for which

(x,y)K1 = (Bx,y)K0 for x,y ∈ ΔK .

For each x ∈ ΔH , we have on one hand∥∥x∥∥2
ϕ1(H ) = (Bx,x)K0 =

(
ϕ0(A)Bx,x

)
H0

,

and on the other hand
∥∥x∥∥2

ϕ1(H ) =
(
ϕ1(A)x,x

)
H0

. This implies that

ϕ1(A)x = ϕ0(A)Bx,

and hence
Bx = ϕ0(A)−1ϕ1(A)x = ϕ1(A)ϕ0(A)−1x.
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Observe that

K2
(
t,x;K

)2 =
∫

[0,∞]

tλ
1+ tλ

d
(
EB
λ x,x

)
K0

=
(

tB
1+ tB

x,x

)
K0

=
(

tϕ1(A)ϕ0(A)−1

1+ tϕ1(A)ϕ0(A)−1ϕ0(A)x,x
)

H0

=
∫

[0,∞]

tϕ1(λ )
1+ tϕ1(λ )

/
ϕ0(λ )

d
(
Eλ x,x

)
H0

.

It turns out that∥∥x∥∥2
ψ(K ) =

∫ ∞

0

(
1+

1
t

)
K2
(
t,x;K

)2
dμ(t)

=
∫ ∞

0

(
1+

1
t

)(∫
[0,∞]

tϕ1(λ )
1+ tϕ1(λ )

/
ϕ0(λ )

d
(
Eλ x,x

)
H0

)
dμ(t)

=
∫

[0,∞]

(∫ ∞

0

(1+ t)ϕ1(λ )
1+ tϕ1(λ )

/
ϕ0(λ )

dμ(t)
)

d
(
Eλ x,x

)
H0

,

and hence ∥∥x∥∥2
ψ(K ) =

∫
[0,∞]

ϕ(λ )d
(
Eλ x,x

)
H0

=
∥∥x∥∥2

ϕ(H )

by (2.4). That is, H ϕ =
(
H ϕ0 ,H ϕ1

)
ψ with equal norms. �

3. On quasi-power function parameters

In this section, we investigate the quadratic interpolation space H ϕ associated
with a quasi-power function. A function ϕ : R+ → R+ is said to be of quasi-power if
∃C > 0 and 0 < α < 1, for which

ϕ(λ t) � C
(
tα ∨ t1−α

)
ϕ(λ ) (3.1)

for all λ , t > 0. It is clear that a quasi-power function is always quasi-concave. Two
quasi-concave functions ϕ , ψ : R+ →R+ are said to be equivalent, denoted by ϕ ≈ψ ,
if there exist positive constants a, b such that

aψ(t) � ϕ(t) � bψ(t) for t > 0.

Observe that if ϕ is a quasi-power function, and if ψ ≈ ϕ , then ψ is also a quasi-power
function.

LEMMA 3.1. Let ϕ be a quasi-power function satisfying (3.1), and let

ϕK(λ ) =
∫ ∞

0

λ t
1+λ t

ϕ
(
1
/
t
) dt

t
,

ϕJ(λ ) =
(∫ ∞

0

1
1+λ t

ϕ∗(t)
dt
t

)−1

.
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Then ϕK ≈ ϕJ ≈ ϕ . Consequently, ϕK and ϕJ are quasi-power functions, and

H ϕK = H ϕJ = H ϕ .

with equivalent norms.

Proof. Let λ > 0. For function ϕK , we have

ϕK(λ ) =
∫ ∞

0

1
1+λ t

ϕ
(
1
/
t
)
dt =

∫ ∞

0

t
1+ t

ϕ
(
λ
/
t
) dt

t

� Cϕ(λ )
∫ ∞

0

t−α ∨ tα−1

1+ t
dt � 2C

α ∧ (1−α)
ϕ(λ ),

and similarly,

ϕK(λ ) � 2

C
(
α ∨ (1−α)

)ϕ(λ ).

Now we consider function ϕJ . Observe that

∫ ∞

0

1
1+λ t

ϕ
(
1
/
t
)−1 dt

t
=
∫ ∞

0

1
1+ t

ϕ
(
λ
/
t
)−1 dt

t

� Cϕ(λ )−1
∫ ∞

0

t−α ∨ tα−1

1+ t
dt � 2C

α ∧ (1−α)
ϕ(λ )−1.

This gives that

ϕJ(λ ) � α ∧ (1−α)
2C

ϕ(λ ).

Similarly, we can obtain

ϕJ(λ ) �
C
(
α ∧ (1−α)

)
2

ϕ(λ ).

Therefore, ϕK ≈ ϕJ ≈ ϕ . Consequently, ϕK and ϕJ are quasi-power functions, and

H ϕK = H ϕJ = H ϕ .

with equivalent norms. �
Let ϕ be a quasi-power function. We define Hilbert spaces K2;ϕ,2

(
H
)

and
J2;ϕ,2

(
H
)

as below: K2;ϕ,2
(
H
)

consists of all x ∈ ΣH for which

∥∥x∥∥K2;ϕ,2
=
(∫ ∞

0
ϕ
(
1
/
t
)
K2(t,x)2 dt

t

)1/2
< ∞;

and J2;ϕ,2
(
H
)

consists of all x ∈ ΣH such that there exists a strongly measurable
function u : R+ → ΔH for which x =

∫ ∞
0 u(t)dt

/
t in ΣH and

∫ ∞

0
ϕ
(
1
/
t
)
J2
(
t,u(t)

)2 dt
t

< ∞
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with the norm

∥∥x∥∥J2;ϕ,2
= inf

u

{(∫ ∞

0
ϕ
(
1
/
t
)
J2
(
t,u(t)

)2 dt
t

)1/2
}

.

Observe that both K2;ϕ,2
(
H
)

and J2;ϕ,2
(
H
)

are regular quadratic interpolation spaces
for H . It is known by [4, Ex. 5.1] that, for the power function θ (t) = tθ , 0 < θ < 1,

K2,θ ,2
(
H
)

= J2,θ ,2
(
H
)

= H θ (3.2)

with the propotional norms

∥∥x∥∥K2,θ ,2
=
∥∥x∥∥J2,θ ,2

=

√
sinπθ
π

∥∥x∥∥θ . (3.3)

We can show among other things that (3.2) is even valid for quasi-power functions with
isomorphic norms.

PROPOSITION 3.1. Let ϕ be a quasi-power function satisfying (3.1).

(i) K2;ϕ,2
(
H
)

= J2;ϕ,2
(
H
)

= H ϕ with equivalent norms.

(ii) If we define ψ(t) = t−α/(1−2α)ϕK
(
t1/(1−2α)) , then ψ is of quasi-power, for which

H ϕ =
(
H α ,H 1−α

)
ψ

with equivalent norms.

Proof. (i) According to Lemma 3.1, it is enough to show that

K2;ϕ,2
(
H
)

= H ϕK and J2;ϕ,2
(
H
)

= H ϕJ . (3.4)

Let x ∈ ΔH . First we have∫ ∞

0
ϕ
(
1
/
t
)
K2(t,x)2 dt

t
=
∫ ∞

0
ϕ
(
1
/
t
)(∫

[0,∞]

λ t
1+λ t

d
(
Eλ x,x

)
0

)
dt
t

=
∫

[0,∞]
ϕK(λ )d

(
Eλ x,x

)
0 =

(
ϕK(A)x,x

)
0

by (1.1). This implies that
∥∥x∥∥K2;ϕ,2

=
∥∥x∥∥ϕK

. Next, let

dν(t) = (1+ t)−1ϕ
(
1
/
t
)−1

dt
/
t.

Then ν is a positive radon measure over R+ , and

ϕJ(λ )−1 =
∫ ∞

0

1+ t
1+λ t

dν(t).

If x =
∫ ∞
0 u(t)dt

/
t is the canonical decomposition, and if we set

w(t) = (1+ t)ϕ(1/t)u(t),
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then x =
∫ ∞
0 w(t)dν(t) and

∫ ∞

0
ϕ
(
1
/
t
)
J2
(
t,u(t)

)2 dt
t

=
∫ ∞

0

1
1+ t

J2
(
t,w(t)

)2
dν(t).

Furthermore, by a version of the Foias-Lions theorem [4, Th. FL], we have∥∥x∥∥J2;ϕ,2
=
∥∥x∥∥ϕJ

.

Therefore, the identities in (3.4) hold with equal norms. Making appeal to the regularity
of H concludes the proof of part (i).

(ii) By applying Proposition 2.2 on Pick functions ϕK , ϕ0(t) = tα , and ϕ1(t) =
t1−α , we obtain ϕK = ψ

(
ϕ0,ϕ1

)
, and hence H ϕK =

(
H α ,H 1−α

)
ψ with equal

norms. Combining this with Lemma 3.1, we have

H ϕ =
(
H α ,H 1−α

)
ψ

with equivalent norms. �

EXAMPLE. Given a regular Hilbert couple H , let P
(
S,ΔH

)
be the set of all

polynomials on the strip S =
{
z ∈ C

∣∣0 � Rez � 1
}

with coefficients in ΔH . We
denote by H 2

θ
(
S,H

)
the Hilbert space completion of P

(
S,ΔH

)
with the norm

∥∥ f
∥∥

H 2 =
(∫ ∞

−∞

∥∥ f (it)
∥∥∥2

0
P0(θ ,t)dt +

∫ ∞

−∞

∥∥ f (1+ it)
∥∥2

1P1(θ ,t)dt
)1/2

,

where

Pj(s+ iτ, t) =
exp(−π(t− τ))sinπs

sin2πs+
(
cosπs− exp(i jπ −π(t− τ))

)2 ( j = 0,1)

are the Poisson kernels for the strip S . For 0 < θ < 1 and n = 0,1,2, . . . , we may
define the complex interpolation space Cθ(n)

(
H
)

with the n -th derivative at θ by

Cθ(n)
(
H
)

=
{

x ∈ ΣX

∣∣∣∣x =
1
n!

f (n)(θ ), f ∈ H 2(S,X
)}

with the norm
∥∥x∥∥Cθ (n)

= inf
{∥∥ f

∥∥
H 2

∣∣∣x = 1
n! f (n)(θ )

}
. We simply write

Cθ
(
H
)

= Cθ(0)
(
H
)
,

which is equivalent to the classical complex interpolation space as given in [7, Sec. 4.1].
It is known that

Cθ
(
H
)

= H θ (3.5)

isomorphically. Let now

ϕ(t) = tθ
(

1+
θ (1−θ )

n
| logt|

)−n
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for t > 0. Then ϕ is a quasi-power function. By combining the equivalence in [11,
Cor. 2.1 & Ex. 4.5], and the reiteration in [11, Rmk. 5.8 (iii)] and [12, Th. 5.4 (i)], with
Proposition 3.1 (i) and (3.5), we obtain

K2;ϕ,2
(
H
)

= J2;ϕ,2
(
H
)

= H ϕ = Cθ(n)
(
H
)

isomorphically.

4. On some operator inequalities

Because of the equivalence given in Proposition 3.1 (i), we may study the commu-
tator estimates arising from the real interpolation methods for Hilbert spaces. Let c > 1
be a constant. For x ∈ ΣH , the decomposition x = x0(t)+ x1(t), t > 0, is (c-) almost
optimal if

K2(t,x) �
(∥∥x0(t)

∥∥2
0 + t

∥∥x1(t)
∥∥2

1

)1/2
� cK2(t,x).

An almost optimal projection is an operator D(t) : ΣH −→ H0 defined by

D(t)x = D
(
t,H

)
x = x0(t)

for some almost optimal decomposition. The corresponding quasi-logarithmic operator
ΩH is defined by

ΩH (x) =
∫ ∞

0

(
D(t)− I · χ(1,∞)(t)

)
x

dt
t

(4.1)

for x ∈ ΣH . We refer to [15] for further details. However, if x ∈ Dom(A) , the domain
of A , then x has the optimal decomposition which is given by

x0(t) = tA
(
I + tA

)−1(x) and x1(t) =
(
I + tA

)−1(x) (4.2)

for t > 0. That is, x = x0(t)+x1(t) and K2(t,x)2 =
∥∥x0(t)

∥∥2
0 + t

∥∥x1(t)
∥∥2

1 for t > 0 [3].

LEMMA 4.1. Ω = logA.

Proof. Let F and G be operator functions given by

F(t) = log
(
I + tA

)
and G(t) =

(
logt

)
I− log

(
I + tA

)
= log

(
t(I + tA)−1),

respectively, for t > 0. It is easy to see that

F ′(t) = D(t)
/
t and G′(t) =

(
I−D(t)

)/
t.

By integration, we obtain

Ω =
(
F(1)−F(0)

)− (G(∞)−G(1)
)

= log
(
I +A

)− log
(
A−1)+ log

(
(I +A)−1) = logA. �
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PROPOSITION 4.1. If ϕ is a quasi-power Pick function, then

∥∥TΩH −ΩH T
∥∥

K2,ϕ,2,J2,ϕ,2
� 2ϕ

(∥∥T∥∥2
0,
∥∥T∥∥2

1

)1/2

for all T ∈ B
(
H
)
. More generally, if ϕ is a quasi-power function, then there exists a

constant γ depending on ϕ such that

∥∥∥(logA
)
T −T

(
logA

)∥∥∥
ϕ

� γ ϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)1/2

for all T ∈ B
(
H
)
.

Proof. For x ∈ Dom(A) and for T ∈ B
(
H
)
, let x = x0(t) + x1(t) and Tx =

(Tx)0(t)+(Tx)1(t) , t > 0, be the corresponding optimal decompositions given in (4.2).
Then, by (4.1),

ΩH (x) =
∫ 1

0
x0(x)

dt
t
−
∫ ∞

1
x1(t)

dt
t

,

and

(
TΩH −ΩH T

)
(x) =

∫ 1

0

(
Tx0(t)− (Tx)0(t)

)dt
t
−
∫ ∞

1

(
Tx1(t)− (Tx)1(t)

)dt
t

.

For t > 0, let y j(t) = Tx j(t)− (Tx) j(t) ( j = 0,1) , and let M =
∥∥T∥∥1

/∥∥T∥∥0 . Then
y0(t)+ y1(t) = Tx−Tx = 0 and hence

(
TΩH −ΩH T

)
(x) =

∫ ∞

0
y0(t)

dt
t

=
∫ ∞

0
y0
(
tM2)dt

t
.

This implies that

∥∥∥(TΩH −ΩH T
)
(x)
∥∥∥2

J2,ϕ,2
�
∫ ∞

0
ϕ
(
1
/
t
)
J2

(
t,y0

(
tM2))dt

t

=
∫ ∞

0

(
ϕ
(
1
/
t
)∥∥∥y0

(
tM2)∥∥∥2

0
+ t
∥∥∥y1
(
tM2)∥∥∥2

1

)
dt
t

� 4
∥∥T∥∥2

0

∫ ∞

0
ϕ
(
1
/
t
)(∥∥∥x0

(
tM2)∥∥∥2

0
+ tM2

∥∥∥x1
(
tM2)

∥∥∥2

1

)
dt
t

= 4
∥∥T∥∥2

0

∫
[0,∞)

ϕ
(
M2/t)K2(t,x)2 dt

t

� 4ϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)∥∥x∥∥2
K2,ϕ,2

.

This, combined with the regularity of H , implies

∥∥TΩH −ΩH T
∥∥

K2,ϕ,2,J2,ϕ,2
� 2ϕ

(∥∥T∥∥2
0,
∥∥T∥∥2

1

)1/2
.
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More generally, assume that ϕ is a quasi-power function. As a consequence of the
above estimate, Lemma 4.1, and the equivalences given by Lemma 3.1 and [5, Lemma
1], we obtain ∥∥∥(logA

)
T −T

(
logA

)∥∥∥
ϕ

� γ ϕ
(∥∥T∥∥2

0,
∥∥T∥∥2

1

)1/2

for a constant γ depending on ϕ . �

REMARK. In [13], we studied the similar estimates for the power functions θ (t)=
tθ , 0 < θ < 1, by using the complex interpolation and the corresponding derivation
operators. According to [13, Prop. 1.4], if we assume that A ∈ B

(
H0
)

is invertible,
then√

sinπθ
π

∥∥∥(logA
)
T −T

(
logA

)∥∥∥
θ

(4.3)

� 2
∥∥T∥∥1−θ

0

∥∥T∥∥θ1
(√

1+
(

2sinπθ
π

log

∥∥T∥∥1∥∥T∥∥0

)2

+
2sinπθ

π
log

∥∥T∥∥1∥∥T∥∥0

)1/2

for all T ∈B
(
H
)
. We apply now Proposition 4.1 and (3.3) on these functions without

assumming the boundedness and invertibility for A . Therefore, the estimate given in
(4.3) can be improved as follows√

sinπθ
π

∥∥∥(logA
)
T −T

(
logA

)∥∥∥
θ

� 2
∥∥T∥∥1−θ

0

∥∥T∥∥θ1
for all T ∈ B

(
H
)
.

Let ϕ be a Pick function, and let T ∈B
(
H
)
. If T is invertible on H ϕ , then we

write T−1
ϕ as the inverse of T on H ϕ .

PROPOSITION 4.2. Assume that T ∈ B
(
H
)
. If T is invertible on both H0 and

H1 , then T is invertible on H ϕ for all Pick functions ϕ , and all inverses T−1
ϕ agree

on ΔH . In addition,

∥∥T−1
∥∥
ϕ � ϕ

(∥∥T−1
∥∥2

0,
∥∥T−1

ϕ
∥∥2

1

)1/2
.

Proof. Observe first that, by the assumption, T is a bounded linear bijection of
ΣH onto itself. In fact, for any y = y0 +y1 ∈ ΣH , we can find x j ∈H j with Tx j = y j

and
∥∥x j
∥∥

j � C
∥∥y j
∥∥

j ( j = 0,1) for some positive constant C . Let x = x0 + x1 ∈ ΣH .

Then y = Tx and
∥∥x∥∥Σ � C

∥∥y∥∥Σ . It implies that T is an isomorphism on ΣH by the
open mapping theorem, and hence T−1 ∈ B

(
H
)
. Consequently, T is invertible on

H ϕ for all Pick functions ϕ , and all inverses T−1
ϕ agree on ΔH . The estimate

∥∥T−1
ϕ
∥∥
ϕ � ϕ

(∥∥T−1
∥∥2

0,
∥∥T−1

∥∥2
1

)1/2
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follows from Proposition 2.1. �

REMARKS. For a Hilbert space H and for T ∈ B
(
H
)
, let σ(T,H ) be the

spectrum of T on H , and let r(T,H ) be the spectral radius of T on H . Observe
that

r(T,H ) = lim
n→0

∥∥Tn
∥∥1/n

H ,H
. (4.4)

(i) By Proposition 4.2, we have

σ
(
T,ΔH

)⊆ σ
(
T,H0

)∪σ(T,H1
)
. (4.5)

According to [1, Th. 2.3 (i)], the union of any two of the following three sets

σ
(
T,H0

)∪σ(T,H1
)
, σ

(
T,ΔH

)
, σ

(
T,ΣH

)
contains the third. Thus,

σ
(
T,ΣH

)⊆ σ
(
T,H0

)∪σ(T,H1
)
.

Furthermore, if ϕ is a Pick function, then by (4.5) and Proposition 4.2 again

σ
(
T,H ϕ

)⊆ σ
(
T,H0

)∪σ(T,H1
)
.

By combining (4.4) and (2.1), we obtain

r
(
T,H ϕ

)
� ϕ

(
r
(
T,H0

)2
,r
(
T,H1

)2)1/2
.

(ii) For a compact subset K of C , the capacity of K is defined by

CapK = inf
p

max
z∈K

|p(z)|1/deg p,

where the infimum is taken over all polynomials p with the leading coefficient equal to
1. Assume that ϕ is a quasi-power function satisfying (3.1). By Proposition 3.1 (i) and
(4.5), we have

σ
(
T,H ϕ

)⊆ σ
(
T,H α

)∪σ(T,H 1−α
)
.

This, together with [2, Cor. 7], gives that

Capσ
(
T,H ϕ

)
�
(
Capσ

(
T,H0

)1−α
Capσ

(
T,H1

)α)∨(Capσ
(
T,H0

)α
Capσ

(
T,H1

)1−α)
.

We conclude this section by an estimate of the measure of noncompactness for
bounded linear operators under quadratic interpolation. For Hilbert spaces H and
K , let UH and UK be the open unit balls of H and K , and let T ∈ B(H ,K ) .
We define the (ball) measure of noncompactness of operator T by

χ
(
T : H → K

)
= inf

{
η > 0

∣∣∣T (UH ) ⊆ ∪k
i=1

{
yi +ηUK

}
for

some yi ∈ K with 1 � i � k < ∞
}

.
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Observe that χ
(
T : H → K

)
= 0 if and only if T is compact. Moreover, by [6,

Th. 14.3.1],

χ
(
T : H → K ) = inf

{∥∥T +S
∥∥

H ,K

∣∣∣S is a compact operator from H to K
}
,

the essential norm of T . For T ∈ B
(
H ,K

)
, let χ j(T ) = χ

(
T : H j → K j

)
( j =

0,1) , and let χϕ(T ) = χ
(
T : Hϕ → Kϕ

)
. If ϕ a quasi-power function, we may ap-

ply [8, Cor. 5.2] on the space K2;ϕ,2
(
H
)
, which is equivalent to H ϕ by Proposition

3.1 (i), and obtain the following result.

PROPOSITION 4.3. Let ϕ be a quasi-power function, and let T ∈ B
(
H ,K

)
.

Then
χϕ(T ) � cϕ

(
χ0(T )2,χ1(T )2)1/2

.

Consequently, if T : H0 → K0 or T : H1 → K1 is compact, then T : H ϕ → K ϕ is
also compact.

REMARK. For a Hilbert space H , and for T ∈ B
(
H
)
, let re(T,H ) be the

essential spectral radius of T on H . Recall that

re(T,H ) = lim
n→∞

χ
(
Tn : H → H )1/n.

Combining this with Proposition 4.3, we obtain

re
(
T,H ϕ

)
� ϕ

(
re
(
T,H0

)2
,re
(
T,H1

)2)1/2

for any quasi-power function ϕ .
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