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Abstract. We find the greatest value α and the least value β such that the double inequality
αT (a,b) + (1−α)G(a,b) < A(a,b) < βT (a,b) + (1− β)G(a,b) holds for all a,b > 0 with
a �= b . Here T (a,b) , G(a,b) , and A(a,b) denote the Seiffert, geometric, and arithmetic means
of two positive numbers a and b , respectively.

1. Introduction

For a,b > 0 with a �= b the Seiffert mean T (a,b) was introduced by Seiffert [17]
as follows:

T (a,b) =
a−b

2arctan( a−b
a+b )

. (1.1)

Recently, the inequalities and monotonicity properties for the Seiffert mean T (a,b)
have attracted the attention of some researchers [7, 8, 10, 18]. We cite [1–6, 9, 11–16]
as comprehensive references for inequalities in general.

Let A(a,b) = (a + b)/2, and G(a,b) =
√

ab be the arithmetic, and geometric
means of two positive real numbers a and b , respectively. Then it is well-known and
elementary that G(a,b) < A(a,b) for all a,b > 0 with a �= b .

Seiffert [17] proved that
T (a,b) > A(a,b)

for all a,b > 0 with a �= b .
Hästö [8] proved that T (1,x)

Ap(1,x) is increasing in (0,∞) if p � 1, where Ap(a,b) =

( ap+bp

2 )
1
p (p �= 0) and A0(a,b) =

√
ab is the p -th power mean of two positive numbers

a and b .
Chu, Wang and Qiu [7] found the greatest value p = log3/ log(π/2) ∼= 2.4328

and the least value q = 5/2 such that

Hp(a,b) < T (a,b) < Hq(a,b)
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holds for all a,b > 0 with a �= b . Here Hp(a,b) =
(

ap+(ab)
p
2 +bp

3

) 1
p

(p �= 0) and

H0(a,b) =
√

ab is the p -th power-type Heron mean of two positive numbers a and
b , and Hp(a,b) is strictly increasing with respect to p ∈ R for fixed a and b with
a �= b .

In [18], the authors presented that

T (a,b) < L1/3(a,b)

for all a,b > 0 with a �= b . Here, Lp(a,b) = (ap+1 +bp+1)/(ap +bp) denotes the p -th
Lehmer mean of two positive numbers a and b .

In [10], the authors found the greatest values α1 = 2
9 and α2 = 1

π , and the least
values β1 = 1

π and β2 = 5
12 such that inequalities

α1C(a,b)+ (1−α1)G(a,b) < P(a,b) < β1C(a,b)+ (1−β1)G(a,b)

and
α2C(a,b)+ (1−α2)H(a,b) < P(a,b) < β2C(a,b)+ (1−β2)H(a,b)

hold for all a,b > 0 with a �= b . Here, C(a,b) = a2+b2

a+b and H(a,b) = 2ab
a+b are the

contraharmonic and harmonic means of two positive numbers a and b , respectively.
The main purpose of this paper is to answer the question: what are the greatest

value α ∈ (0,1) and the least value β ∈ (0,1) such that the double inequality

αT (a,b)+ (1−α)G(a,b) < A(a,b) < βT (a,b)+ (1−β )G(a,b)

holds for all a,b > 0 with a �= b .

2. Lemmas

In order to establish our result we need a lemma, which we present in this section.

LEMMA 2.1. Let g(t) = (1−α)t6 +α(2−α)t5 +(1−α)(1−4α)t4−2(3α2 −
4α+2)t3 +(1−α)(1−4α)t2+α(2−α)t+(1−α) . If α = 4/π = 1.27 . . . , then there
exists λ ∈ (1,∞) such that g(t) > 0 for t ∈ (1,λ ) and g(t) < 0 for t ∈ (λ ,∞) .

Proof. Simple computations lead to

g(1) = 0, (2.1)

limt→+∞ g(t) = −∞, (2.2)

g′(t) = 6(1−α)t5 +5α(2−α)t4 +4(1−α)(1−4α)t3

−6(3α2−4α+2)t2 +2(1−α)(1−4α)t+α(2−α),

g′(1) = 0, (2.3)

limt→+∞ g′(t) = −∞, (2.4)
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g′′(t) = 30(1−α)t4 +20α(2−α)t3 +12(1−α)(1−4α)t2

−12(3α2−4α+2)t +2(1−α)(1−4α),

g′′(1) = 20−12α = 4
π (5π−12) > 0, (2.5)

limt→+∞ g′′(t) = −∞, (2.6)

g′′′(t) = 120(1−α)t3 +60α(2−α)t2 +24(1−α)(1−4α)t−12(3α2−4α+2),

g′′′(1) = 120−72α = 24
π (5π−12) > 0, (2.7)

limt→+∞ g′′′(t) = −∞, (2.8)

g(4)(t) = 360(1−α)t2 +120α(2−α)t +24(1−α)(1−4α),
g(4)(1) = 24(16−10α−α2) = 192

π2 (2π2−5π−2) > 0, (2.9)

limt→+∞ g(4)(t) = −∞, (2.10)

g(5)(t) = 720(1−α)t +120α(2−α) � 720(1−α)+120α(2−α)
= − 240

π2 (8+8π−3π2) < 0
(2.11)

for t � 1.
Inequality (2.11) implies that g(4)(t) is strictly decreasing in [1,∞) , then from

(2.9) and (2.10) we know that there exists λ1 > 1 such that g(4)(t) > 0 for t ∈ [1,λ1)
and g(4)(t) < 0 for t ∈ (λ1,∞) . Therefore, g′′′(t) is strictly increasing in [1,λ1] and
strictly decreasing in [λ1,∞) .

From (2.7) and (2.8) together with the piecewise monotonicity of g′′′(t) we clearly
see that there exists λ2 > 1 such that g′′(t) is strictly increasing in [1,λ2] and strictly
decreasing in [λ2,∞) .

Inequality(2.5) and equation (2.6) together with the piecewise monotonicity of
g′′(t) lead to that there exists λ3 > 1 such that g′(t) is strictly increasing in [1,λ3] and
strictly decreasing in [λ3,∞) .

From (2.3) and (2.4) together with the piecewise monotonicity of g′(t) we know
that there exists λ4 > 1 such that g(t) is strictly increasing in [1,λ4] and strictly de-
creasing in [λ4,∞) .

Therefore, Lemma 2.1 follows from (2.1) and (2.2) together with the piecewise
monotonicity of g(t) . �

3. Main results

THEOREM 3.1. Inequality

3
5
T (a,b)+

2
5
G(a,b) < A(a,b) <

π
4

T (a,b)+
(
1− π

4

)
G(a,b) (3.1)

holds for all a,b > 0 with a �= b, and α = 3
5 and β = π

4 are the best possible pa-
rameters such that inequality αT (a,b)+ (1−α)G(a,b) < A(a,b) < βT (a,b)+ (1−
β )G(a,b) holds for all a,b > 0 with a �= b.
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Proof. Without loss of generality, we assume a > b . We first prove that 3
5T (a,b)+

2
5G(a,b) < A(a,b) . Let t =

√ a
b > 1, then (1.1) leads to

A(a,b)−
[
3
5
T (a,b)+

2
5
G(a,b)

]

=
b(5t2−4t +5)

10arctan
(

t2−1
t2+1

)
[
arctan

(
t2−1
t2 +1

)
− 3(t2−1)

5t2−4t +5

]
.

(3.2)

Let

f (t) = arctan

(
t2−1
t2 +1

)
− 3(t2−1)

5t2−4t +5
, (3.3)

then simple computations lead to
f (1) = 0, (3.4)

f ′(t) =
2 f1(t)

(t4 +1)(5t2−4t +5)2 , (3.5)

where

f1(t) = 6t6−5t5−34t4 +66t3−34t2−5t +6 = (t −1)4(6t2 +19t +6) > 0 (3.6)

for t > 1.
Therefore, 3

5T (a,b)+ 2
5G(a,b) < A(a,b) follows from (3.2)-(3.6).

Next, we prove that A(a,b) < π
4 T (a,b)+ (1− π

4 )G(a,b) . Let α = 4
π = 1.27 . . .

and t =
√ a

b > 1, then (1.1) leads to

π
4

T (a,b)+
(
1− π

4

)
G(a,b)−A(a,b)

=
b(αt2 +2(1−α)t +α)

2α arctan
(

t2−1
t2+1

)
[

t2−1
α(t−1)2 +2t

− arctan

(
t2−1
t2 +1

)]
.

(3.7)

Let

F(t) =
t2−1

α(t−1)2 +2t
− arctan

(
t2−1
t2 +1

)
, (3.8)

the simple computations lead to

F(1) = lim
t→+∞

F(t) = 0, (3.9)

F ′(t) =
2g(t)

(t4 +1)[α(t−1)2 +2t]2
, (3.10)

where g(t) is defined as in Lemma 2.1.
From (3.10) and Lemma 2.1 we clearly see that there exists λ > 1 such that F(t)

is strictly increasing in [1,λ ] and strictly decreasing in [λ ,∞) .
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Equation (3.9) and the piecewise monotonicity of F(t) imply that

F(t) > 0 (3.11)

for t > 1.
Therefore, A(a,b) < π

4 T (a,b)+ (1− π
4 )G(a,b) follows from (3.7) and (3.8) to-

gether with (3.11).
Finally, we prove that α = 3

5 and β = π
4 are the best possible parameters such that

inequality αT (a,b)+ (1−α)G(a,b) < A(a,b) < βT (a,b)+ (1−β )G(a,b) holds for
all a,b > 0 and a �= b .

For any ε > 0 and x > 0, one has

lim
x→+∞

(π4 − ε)T (1,x)+ (1+ ε− π
4 )G(1,x)

A(1,x)

= lim
x→∞

(π4 − ε) x−1
2arctan( x−1

x+1 )
+ (1+ ε− π

4 )
√

x

x+1
2

=1− 4
π
ε < 1,

(3.12)

(
3
5

+ ε
)

T (1+ x,1)+
(

2
5
− ε

)
G(1+ x,1)−A(1+ x,1)=

J(x)
2arctan

(
x

x+2

) , (3.13)

where

J(x) =
(

3
5

+ ε
)

x+2

[(
2
5
− ε

)
(1+ x)

1
2 −

(
1+

x
2

)]
arctan

(
x

x+2

)
. (3.14)

Letting x → 0 and making use of the Taylor expansion we get

J(x) =
(

3
5

+ ε
)

x−
[(

3
5

+ ε
)

+
(

3
10

+
ε
2

)
x+

(
1
20

− ε
8

)
x2

−
(

1
40

− ε
16

)
x3 +o(x3)

](
x− 1

2
x2 +

1
6
x3 +o(x3)

)

=
5
24

εx3 +o(x3).

(3.15)

Inequality (3.12) and equation (3.13)–(3.15) imply that for any ε > 0 there ex-
ist X = X(ε) > 1 and δ = δ (ε) > 0, such that A(1,x) > (π4 − ε)T (1,x) + (1 + ε −
π
4 )G(1,x) for x ∈ (X ,∞) and ( 3

5 + ε)T (1+ x,1)+( 2
5 − ε)G(1+ x,1) > A(1+ x,1) for

x ∈ (0,δ ) . �
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