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a(x)–MONOTONIC FUNCTIONS AND THEIR INEQUALITIES

JOSIP PEČARIĆ AND KSENIJA SMOLJAK

(Communicated by N. Elezović)

Abstract. In this paper a(x) -monotonic functions are defined and some inequalities for them are
derived. Related analogous of the Lagrange and the Cauchy mean value theorems are also de-
rived and means of the Cauchy type are generated. Furthermore, it is shown that the monotonicity
of the Stolarsky means can be proved using the notion of generalized monotonic functions.

1. Introduction

The following result is well known (it can be found in [2, p. 133–134]):
If the linear differential equation

u′(t) = a(t)u(t), u(0) = c, (1.1)

and the linear differential inequality

v′(t) � a(t)v(t), v(0) = c, (1.2)

are both valid for 0 � t � T , then

v(t) � u(t), 0 � t � T. (1.3)

Differential inequality y′(x)−a(x)y(x) � 0 is sometimes used as a definition of gener-
alized increasing functions. In this paper we shall observe an analoguous generalization
which we will call a(x)-monotonic functions.

First, let us recall Stolarsky means:

E(x,y;s, p) =
{

s(yp− xp)
p(ys− xs)

} 1
p−s

E(x,y;r,r) = e−
1
r

(
xxr

yyr

)1/(xr−yr)

E(x,y;r,0) = E(x,y;0,r) =
{

yr − xr

r(lny− lnx)

}1/r

E(x,y;0,0) =
√

xy.
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2 J. PEČARIĆ AND K. SMOLJAK

where x and y are positive real numbers x �= y , p and s are any real numbers. Stolarsky
introduced this means in 1975 (see [13]).

In the following theorem we state monotonicity of Stolarsky means first proved by
Stolarsky (see [13]).

THEOREM 1.1. Let r � s, l � p, then the following inequality is valid

E(x,y;r, l) � E(x,y;s, p) (1.4)

that is, the mean E(x,y;s, p) is monotonic.

Another proof, using a definition of monotonic functions, is given in [5]. In this
paper we shall show that Theorem 1.1 can also be proved by using definitions of gen-
eralized monotonic functions.

REMARK 1.1. Necessary and sufficient conditions for (1.4) to be valid are given
in [9].

The paper is organised as follows. In Section 2 we define a(x)-monotonic func-
tions and give some inequalities for them. In Section 3 we derive analogues of the
Lagrange mean value theorem and the Cauchy mean value theorem. In Section 4 we
prove the exponential convexity of a function defined as the difference between the
left-hand and the right-hand side of the inequality which defines a(x)-monotonic func-
tions, give means of Cauchy type and prove Theorem 1.1 using generalized monotonic
functions.

2. Properties of a(x)-monotonic functions and their inequalities

DEFINITION 2.1. Let f , a be real functions defined on interval I ⊆ R such that
a f is integrabile. Function f is called a(x)-increasing on interval I if for every x,y∈ I

(y− x)( f (y)− f (x)) � (y− x)
∫ y

x
a(t) f (t)dt (2.1)

holds.
Function f is called a(x)-decreasing if the inequality in (2.1) is reversed.
Function f is called a(x)-monotonic if it satisfies (2.1) or the reversed inequality.
If two functions are both a(x)-increasing, or both a(x)-decreasing, we say that

they are a(x)-monotonic in the same sense.

REMARK 2.1. Notice that for a(x) = 0, f is monotonic.

REMARK 2.2. If x �= y , (2.1) is equivallent to

f (y)− f (x)
y− x

� 1
y− x

∫ y

x
a(t) f (t)dt. (2.2)
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If f is a(x)-increasing, − f is a(x)-decreasing. So we will only give properties
of a(x)-increasing functions, because they are the same for a(x)-decreasing functions.
Properties of a(x)-increasing functions:

1) Let f and g be a(x)-increasing functions. Then f +g is a(x)-increasing.
If f and g are a(x)-monotonic functions (withouth further specifications), we
can’t conclude that f +g is a(x)-monotonic.

2) If f is a(x)-increasing function and λ is non-negative real number, then λ f is
a(x)-increasing function.

In applications we often use a(x)-monotonicity criteria given in the following
theorem.

THEOREM 2.1. If f ′ is a continuous function and a f an integrabile function
on interval I , f is a(x)-monotonic on interval I if and only if the function f ′(x)−
a(x) f (x) is non-negative or non-positive on I . More precisely, f is a(x)-increasing
function if and only if f ′(x)−a(x) f (x) � 0 ; f is a(x)-decreasing function if and only
if f ′(x)−a(x) f (x) � 0 .

Proof. Let f be a(x)-increasing function, then for x,y ∈ I such that x �= y we
have

f (y)− f (x)
y− x

� 1
y− x

∫ y

x
a(t) f (t)dt.

Taking a limit when y → x we get f ′(x) � a(x) f (x) .
Conversely, let f ′(x) � a(x) f (x) . For x,y ∈ I such that x < y we have that

∫ y

x
f ′(t)dt �

∫ y

x
a(t) f (t)dt. (2.3)

Since f ′ is continuous, we have that for every [x,y] ⊂ I ,
∫ y
x f ′(t)dt = f (y)− f (x) .

Furthermore, since x < y we can multiply inequality (2.3) by y− x and get

(y− x)( f (y)− f (x)) � (y− x)
∫ y

x
a(t) f (t)dt.

Hence, f is a(x)-increasing function.
Using the same reasoning we get criteria for a(x)-decreasing functions. So the proof is
completed. �

REMARK 2.3. Note that for f differentiabile and a(x)-monotonic we have:

(i) for a(x) = 1
x , f (x)

x is monotonic (this case is studied in [11]);

(ii) for a(x) = a
x , where a is some constant, f (x)

xa is monotonic;

(iii) for a(x) = h′(x)
h(x) , f

h is monotonic (this case is studied in [6]).
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Proof of this remarks follows from a(x)-monotonicity criteria in Theorem 2.1. For

example, for a(x) = 1
x and a(x)-increasing function f , we have f ′(x) � f (x)

x , so for

x > 0 we have
(

f (x)
x

)′
= x f ′(x)− f (x)

x2 � f (x)− f (x)
x2 = 0, hence f (x)

x is increasing function

for x > 0.

THEOREM 2.2. A function f is a(x)-increasing if and only if the function F de-
fined by

F(x) = f (x)−
∫ x

x0

a(t) f (t)dt (2.4)

is increasing.

Proof. Suppose that y > x . Then (2.1) is equivalent to

f (y)− f (x) �
∫ y

x
a(t) f (t)dt

i.e.

f (y)− f (x) �
∫ y

x0

a(t) f (t)dt−
∫ x

x0

a(t) f (t)dt

i.e.

f (y)−
∫ y

x0

a(t) f (t)dt � f (x)−
∫ x

x0

a(t) f (t)dt

i.e.

F(y) � F(x).

Since we have equivalence in each step, the proof is completed. �

We can apply the function F defined by (2.4) to inequalities for monotonic func-
tions and get inequalities for a(x)-monotonic functions.

Here we give Steffensen’s inequality for a(x)-monotonic functions.

COROLLARY 2.1. Suppose that f is a(x)-increasing and g is integrabile on
[b,c] with 0 � g � 1 and λ =

∫ c
b g(x)dx . Then we have

∫ b+λ

b
f (x)dx−

∫ b+λ

b

∫ x

x0

a(t) f (t)dt dx �
∫ c

b
f (x)g(x)dx−

∫ c

b

(
g(x)

∫ x

x0

a(t) f (t)dt

)
dx

�
∫ c

c−λ
f (x)dx−

∫ c

c−λ

∫ x

x0

a(t) f (t)dt dx.

(2.5)

The inequalities are reversed for f a(x)-decreasing.
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Proof. Let the function F be defined by (2.4) . Since, F is increasing we can
apply Steffensen’s inequality, hence

∫ b+λ

b
F(x)dx �

∫ c

b
F(x)g(x)dx �

∫ c

c−λ
F(x)dx.

By elementary calculation we get (2.5) . �

LEMMA 2.1. Let f be a positive, differentiabile and a(x)-increasing function.
Then functions G, H defined by

G(x) = f (x) · e−
∫
a(x)dx, (2.6)

H(x) = ln f (x)−
∫

a(x)dx (2.7)

are increasing.

Proof. Function f is a(x)-increasing, so from Theorem 2.1 we have

f ′(x)−a(x) f (x) � 0. Since f is positive, we get f ′(x)
f (x) −a(x) � 0. From (2.6) we get

G′(x) = f ′(x) · e−
∫
a(x)dx −a(x) f (x)e−

∫
a(x)dx � 0.

Hence, G is increasing. From (2.7) we get

H ′(x) =
f ′(x)
f (x)

−a(x) � 0.

Hence, H is increasing. �

REMARK 2.4. Using functions G and H defined by (2.6) and (2.7) we can get
new a(x)-monotonic inequalities.

THEOREM 2.3. Let u(t) = ce
∫ t
0 a(t)dt for 0 � t � T . Let v satisfy (1.2) with

a(x) � 0 for 0 � x � T and let v(0) = c. Then v(x)− u(x) is an increasing function
for 0 � x � T .

Proof. Notice that u is the solution of the differential equation u′(t)−a(t)u(t)= 0
with u(0) = c , so u satisfies (1.1) . Hence (1.3) is valid. Since v satisfies (1.2) , from
Theorem 2.1 we have that v is a(x)-monotonic function. So

(y− x)(v(y)− v(x)) � (y− x)
∫ y

x
a(t)v(t)dt. (2.8)

For x,y ∈ [0,T ] such that x < y we can divide (2.8) by y−x and then apply (1.3) . We
get

v(y)− v(x) �
y∫

x

a(t)v(t)dt �
y∫

x

a(t)u(t)dt =
y∫

x

u′(t)dt = u(y)−u(x). (2.9)
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Hence,
v(y)−u(y) � v(x)−u(x).

So the proof is completed. �
Now we give Steffensen’s inequality for function v(x)−u(x) :

COROLLARY 2.2. Let functions u and v be such that conditions of Theorem 2.3
are satisfied. Let g be an integrabile function on [0,T ] with 0 � g � 1 and λ =∫ T
0 g(t)dt . Then we have

λ∫
0

(v(t)−u(t))dt �
T∫

0

(v(t)−u(t))g(t)dt �
T∫

T−λ
(v(t)−u(t))dt. (2.10)

Proof. From Theorem 2.3 we have that v(x)− u(x) is an increasing function, so
we can apply Steffensen’s inequality and get (2.10) . �

3. Mean value theorems

LEMMA 3.1. Let I be an open interval. Let a be an integrabile and h ∈ C1(I)
be such that h′ − ah is bounded by integrabile functions M and m, that is, m(x) �
h′(x)−a(x)h(x) � M(x), for every x ∈ I . Then functions Φ1,Φ2 defined by

Φ1(x) = R1(x)−h(x),

Φ2(x) = h(x)−R2(x),

where
R1(x) = e

∫
a(x)dx

∫
M(x)e−

∫
a(x)dxdx, (3.1)

R2(x) = e
∫

a(x)dx
∫

m(x)e−
∫

a(x)dxdx, (3.2)

are a(x)-increasing.

Proof. Since h′(x)−a(x)h(x) � M(x) and R′
1(x)−a(x)R1(x) = M(x) we have,

Φ′
1(x)−a(x)Φ1(x) = R′

1(x)−a(x)R1(x)− (h′(x)−a(x)h(x)) � 0.

So Φ1 is a(x)-increasing function. In the same way, since h′(x)−a(x)h(x) � m(x) we
have,

Φ′
2(x)−a(x)Φ2(x) = h′(x)−a(x)h(x)− (R′

2(x)−a(x)R2(x)) � 0.

So Φ2 is a(x)-increasing function. �
Now we will state and prove the Lagrange-typemean value theorem. This theorem

is a consequence of the Cauchy mean value theorem but we will prove it by using a(x)-
increasing functions from Lemma 3.1.
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THEOREM 3.1. Let a, h′ be continuous and g be a positive and continuous func-
tion on [x,y] ⊆ R . Then there exists η ∈ [x,y] such that

h(y)−h(x)
y− x

− 1
y− x

∫ y

x
a(t)h(t)dt =

h′(η)−a(η)h(η)
g(η)

· 1
y− x

∫ y

x
g(t)dt. (3.3)

Proof. Since h′−ah
g is continuous on [x,y] , there exists

m = min
t∈[x,y]

(
h′(t)−a(t)h(t)

g(t)

)
and M = max

t∈[x,y]

(
h′(t)−a(t)h(t)

g(t)

)
.

Applying ( 2.2) on functions Φ1 and Φ2 from Lemma 3.1, with M(x) = Mg(x) ,
m(x) = mg(x) , the following inequalities hold:

Φ1(y)−Φ1(x)
y− x

� 1
y− x

∫ y

x
a(t)Φ1(t)dt,

Φ2(y)−Φ2(x)
y− x

� 1
y− x

∫ y

x
a(t)Φ2(t)dt.

It follows,

m

(
R3(y)−R3(x)

y− x
− 1

y− x

∫ y

x
a(t)R3(t)dt

)

� h(y)−h(x)
y− x

− 1
y− x

∫ y

x
a(t)h(t)dt

� M

(
R3(y)−R3(x)

y− x
− 1

y− x

∫ y

x
a(t)R3(t)dt

)
,

where
R3(x) = e

∫
a(x)dx

∫
g(x)e−

∫
a(x)dxdx.

Therefore, there exists η ∈ [x,y] such that

h(y)−h(x)
y− x

− 1
y− x

∫ y

x
a(t)h(t)dt

=
h′(η)−a(η)h(η)

g(η)

(
R3(y)−R3(x)

y− x
− 1

y− x

∫ y

x
a(t)R3(t)dt

)
.

holds. Since R′
3(x)−a(x)R3(x) = g(x) , we have a(x)R3(x) = R′

3(x)−g(x) . So

R3(y)−R3(x)
y− x

− 1
y− x

∫ y

x
a(t)R3(t)dt

=
R3(y)−R3(x)

y− x
− 1

y− x

∫ y

x
(R′

3(t)−g(t))dt

=
1

y− x

∫ y

x
g(t)dt.

Hence, there exists η ∈ [x,y] such that (3.3) holds. �
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REMARK 3.1. For a(x) = 0 Theorem 3.1 gives Cauchy mean value theorem, that
is,

h′(η)
g(η)

=
h(y)−h(x)

y∫
x

g(t)dt
.

Additionally, taking g ≡ 1 we get Lagrange mean value theorem, that is,

h′(η) =
h(y)−h(x)

y− x
.

REMARK 3.2. For a(x) = 1
x Theorem 3.1 gives

h(y)−h(x)
y− x

− 1
y− x

∫ y

x

h(t)
t

dt =
ηh′(η)−h(η)

ηg(η)
· 1
y− x

∫ y

x
g(t)dt.

Furthermore, taking g ≡ 1 we get

h(y)−h(x)
y− x

− 1
y− x

∫ y

x

h(t)
t

dt = h′(η)− h(η)
η

.

REMARK 3.3. For a(x) = k′(x)
k(x) Theorem 3.1 gives

h(y)−h(x)
y− x

− 1
y− x

∫ y

x

k′(t)
k(t)

h(t)dt =
h′(η)k(η)− k′(η)h(η)

k(η)g(η)
· 1
y− x

∫ y

x
g(t)dt.

Furthermore, taking g = h we get

h(y)−h(x)
y− x

− 1
y− x

∫ y

x

k′(t)
k(t)

h(t)dt =
(

h′(η)
h(η)

− k′(η)
k(η)

)∫ y

x
h(t)dt.

THEOREM 3.2. Let I be an interval in R and let x,y ∈ I be such that x �= y. Let
f ,h ∈C1(I) and let a be a continuous function such that

h(y)−h(x)−
∫ y

x
a(t)h(t)dt �= 0. (3.4)

Then there exists η ∈ [x,y] such that

f ′(η)−a(η) f (η)
h′(η)−a(η)h(η)

=
f (y)− f (x)− ∫ y

x a(t) f (t)dt
h(y)−h(x)− ∫ y

x a(t)h(t)dt
. (3.5)

Proof. Let

c1 =
h(y)−h(x)

y− x
− 1

y− x

∫ y

x
a(t)h(t)dt,

c2 =
f (y)− f (x)

y− x
− 1

y− x

∫ y

x
a(t) f (t)dt.
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Now we apply (3.3) to the function c1 f − c2h . The following equality holds:

c1

[
f (y)− f (x)

y− x
− 1

y− x

∫ y

x
a(t) f (t)dt

]
− c2

[
h(y)−h(x)

y− x
− 1

y− x

∫ y

x
a(t)h(t)dt

]

=
c1 f ′(ξ )− c2h′(ξ )−a(ξ )(c1 f (ξ )− c2h(ξ ))

g(ξ )
·
[

1
y− x

∫ y

x
g(t)dt

]
.

(3.6)

It is easy to see that the left-hand side of (3.6) is equal to 0, so the right-hand side
should also be equal to 0. From (3.4) we get that the right-hand side in (3.3) is not
equal to 0, so the part in square brackets on the right-hand side of (3.6) is not equal to
0. For the right-hand side in (3.6) to be equal to 0 it follows that c1 f ′(ξ )− c2h′(ξ )−
a(ξ )(c1 f (ξ )− c2h(ξ )) = 0. After a short calculation, it is easy to see that (3.5) follows
from c1( f ′(ξ )−a(ξ ) f (ξ ))−c2(h′(ξ )−a(ξ )h(ξ ))= 0, so the proof is completed. �

REMARK 3.4. Theorem 3.2 is equivalent to Cauchy mean value theorem.

4. Exponential convexity and means of Cauchy type

First we recall some basic facts about convexity, log-convexity and log-convexity
in the Jensen sense (see e.g. [4], [10], [12]).

DEFINITION 4.1. Let I ⊆ R be an interval. A function f : I ⊆ R → R is convex
in the Jensen sense on an interval I if for each a,b ∈ I

f

(
a+b

2

)
� f (a)+ f (b)

2

holds.

We recall that for a continuous function f , convexity and convexity in the Jensen
sense are equivalent properties.

DEFINITION 4.2. A positive function f : I → (0,∞) is said to be logarithmically
convex if log f is convex function on I . For such function f , we shortly say f is log-
convex. A positive function f : I → (0,∞) is log-convex in the Jensen sense if for each
a,b ∈ I

f 2
(

a+b
2

)
� f (a) f (b)

holds, i.e., if log f is convex in the Jensen sense.

The following result on log-convex functions is given in [12].
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LEMMA 4.1. Let positive function f : I → (0,∞) be log-convex and let a1,a2 ,
b1,b2 ∈ I be such that a1 � b1 , a2 � b2 and a1 �= a2 , b1 �= b2 . Then the following
inequality is valid [

f (a2)
f (a1)

] 1
a2−a1 �

[
f (b2)
f (b1)

] 1
b2−b1

.

Next we recall some basic facts about exponential convexity (see e.g. [3], [8], [7]).

DEFINITION 4.3. A function h : (a,b) → R is exponentially convex if it is con-
tinuous and

n

∑
i, j=1

tit jh(xi + x j) � 0,

holds for all n ∈ N and all choices ti,xi ∈ R , i = 1, . . . ,n such that xi + x j ∈ (a,b) ,
1 � i, j � n .

The following lemma gives characterization of exponential convexity (see [1], [8]).

LEMMA 4.2. Let h : (a,b) → R . The following statements are equivalent:

(i) h is exponentially convex,

(ii) h is continuous and
n

∑
i, j=1

tit jh

(
xi + x j

2

)
� 0, (4.1)

for every n ∈ N , ti ∈ R and every xi ∈ (a,b) , 1 � i � n.

REMARK 4.1. Condition (4.1) is equivalent with positive semi-definitness of ma-
trices [

h

(
xi + x j

2

)]n

i, j=1
, (4.2)

for all n ∈ N .

REMARK 4.2. Note that for n = 2 from (4.2) we get

h(x1)h(x2)−h2
(

x1 + x2

2

)
� 0,

hence, exponentially convex function is log-convex in the Jensen sense, and, being
continuous, it is also log-convex function.

LEMMA 4.3. Let p ∈ R . Then the function ϕp defined by

ϕp(x) = e
∫
a(x)dx

∫
xp−1e−

∫
a(x)dxdx (4.3)

is a(x)-increasing for x > 0 .
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Proof. Since ϕ ′
p(x)− a(x)ϕp(x) = xp−1 � 0, x > 0, therefore ϕp(x) is a(x)-

increasing function for x > 0. �

LEMMA 4.4. Let p ∈ R . Then the function ψp defined by

ψp(x) = e
∫
a(x)dx

∫
epxe−

∫
a(x)dxdx (4.4)

is a(x)-increasing function for x ∈ R .

Proof. Since ψ ′
p(x)− a(x)ψp(x) = epx � 0, therefore ψp(x) is a(x)-increasing

function for x ∈ R . �

LEMMA 4.5. Let p ∈ R and let the function ϕp be defined by (4.3) for x,y > 0 ,
x �= y. Then

ϕp(y)−ϕp(x)
y− x

− 1
y− x

∫ y

x
a(t)ϕp(t)dt =

{
1

y−x · yp−xp

p , p �= 0;
lny−lnx

y−x , p = 0.
(4.5)

Proof. Since ϕ ′
p(x)−a(x)ϕp(x) = xp−1 , we have a(x)ϕp(x) = ϕ ′

p(x)− xp−1 , so

ϕp(y)−ϕp(x)
y− x

− 1
y− x

∫ y

x
a(t)ϕp(t)dt =

ϕp(y)−ϕp(x)
y− x

− 1
y− x

∫ y

x
(ϕ ′

p(t)− t p−1)dt

=

{
1

y−x · yp−xp

p , p �= 0;
lny−lnx

y−x , p = 0. �

Let us define the right-hand side in (4.5) as

ξ (p) =

{
1

y−x · yp−xp

p , p �= 0;
lny−lnx

y−x , p = 0.
(4.6)

Obviously, we have that ξ (p) > 0 for all p ∈ R .
In the following theorem we explore some properties of the mapping p → ξ (p) .

THEOREM 4.1. Let p∈ R and let the function ξ be defined by (4.6) for x,y > 0 ,
x �= y. Then

(i) the function p → ξ (p) is continuous on R ,

(ii) for every n∈N and pi ∈R , pi j =
pi+p j

2 , i, j = 1, . . . ,n, the matrix
[
ξ
(

pi+p j
2

)]n
i, j=1

is a positive semi-definite matrix. In particular

det

[
ξ
(

pi + p j

2

)]n

i, j=1
� 0;
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(iii) the function p → ξ (p) is exponentially convex,

(iv) the function p → ξ (p) is log-convex.

Proof.

(i) In order to prove that the function p → ξ (p) is continuous on R , we only need
to verify that limp→0 ξ (p) = ξ (0) which is obtained by a simple calculation.
Hence, ξ is continuous on R .

(ii) Let n ∈ N , ti ∈ R , pi ∈ R , i = 1,2, . . . ,n . Denote pi j = pi+p j
2 .

Let ϕp be defined by (4.3) . Consider the function f : R
+ → R ,

f (x) =
n

∑
i, j=1

tit jϕpi j(x).

Then

f ′(x)−a(x) f (x) =
n

∑
i, j=1

tit jϕ ′
pi j

(x)−a(x)
n

∑
i, j=1

tit jϕpi j(x)

=
n

∑
i, j=1

tit j(ϕ ′
pi j

(x)−a(x)ϕpi j(x)) =
n

∑
i, j=1

tit jx
pi j−1

=

(
n

∑
i=1

tix
(pi j−1)/2

)2

� 0

Hence, f is a(x)-increasing function.
Now we can apply (2.2) to the function f defined above, and obtain

n

∑
i, j=1

tit j

(ϕpi j (y)−ϕpi j(x)
y− x

− 1
y− x

∫ y

x
a(t)ϕpi j(t)dt

)
� 0.

Now, from (4.5) it follows that

n

∑
i, j=1

tit jξ (pi j) � 0.

Therefore, the matrix
[
ξ ( pi+p j

2 )
]n
i, j=1

is positive semi-definite.

(iii) Follows form (i) , (ii) and Lemma 4.2.

(iv) Follows from (iii) and Remark 4.2. �

LEMMA 4.6. Let p ∈ R and let the function ψp be defined by (4.4) for x �= y.
Then

ψp(y)−ψp(x)
y− x

− 1
y− x

∫ y

x
a(t)ψp(t)dt =

{ 1
y−x · epy−epx

p , p �= 0;
1, p = 0.

(4.7)
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Proof. Similar to the proof of Lemma 4.5. �
Let us define the right-hand side in (4.7) as

ζ (p) =
{ 1

y−x · epy−epx

p , p �= 0;
1, p = 0.

(4.8)

Obviously, we have that ζ (p) > 0 for all p ∈ R .
In the following theorem we explore some properties of the mapping p → ζ (p) .

THEOREM 4.2. Let p ∈ R and let the function ζ be defined by (4.8) for x �= y.
Then

(i) the function p → ζ (p) is continuous on R ,

(ii) for every n∈N and pi ∈R , pi j =
pi+p j

2 , i, j = 1, . . . ,n, the matrix
[
ζ
(

pi+p j
2

)]n
i, j=1

is a positive semi-definite matrix. In particular

det

[
ζ
(

pi + p j

2

)]n

i, j=1
� 0;

(iii) the function p → ζ (p) is exponentially convex,

(iv) the function p → ζ (p) is log-convex.

Proof. Similar to the proof of Theorem 4.1. �
Theorem 3.2 enables us to define various types of means, because if the function

f ′−a f
h′−ah has inverse, from (3.5) we have

η =
(

f ′ −a f
h′ −ah

)−1( f (y)− f (x)− ∫ y
x a(t) f (t)dt

h(y)−h(x)− ∫ y
x a(t)h(t)dt

)
, η ∈ [x,y]

which means that η is a mean of numbers x and y .
First, let us observe differential equations f ′(η)−a(η) f (η) = η p−1 and h′(η)−

a(η)h(η) = ηs−1 for ps(p− s) �= 0. Then from (3.5) we get

η =
(

f (y)− f (x)− ∫ y
x a(t) f (t)dt

h(y)−h(x)− ∫ y
x a(t)h(t)dt

) 1
p−s

.

From f ′(t)−a(t) f (t) = t p−1 we have a(t) f (t) = f ′(t)− t p−1 , so

f (y)− f (x)−
∫ y

x
a(t) f (t)dt =

yp− xp

p
.

In the same way we get,

h(y)−h(x)−
∫ y

x
a(t)h(t)dt =

ys − xs

s
.
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Hence,

η =
{

s(yp− xp)
p(ys− xs)

} 1
p−s

.

Moreover, we have Stolarsky mean

E(x,y;s, p) =
{

s(yp− xp)
p(ys− xs)

} 1
p−s

where x and y are positive real numbers x �= y , s �= p , s, p �= 0. All continuos exten-
sions of Stolarsky means are known and given in the Introduction.
Furthermore,

E(x,y;s, p) =
(
ξ (p)
ξ (s)

) 1
p−s

where ξ is defined by (4.6) .

REMARK 4.3. Now we can give another proof of Theorem 1.1 by using definition
of a(x)-monotonic functions. Since ξ defined by (4.6) is a log-convex function, we
can apply Lemma 4.1 and get

(
ξ (l)
ξ (r)

) 1
l−r

�
(
ξ (p)
ξ (s)

) 1
p−s

(4.9)

hence, we get (1.4) .

Now, let us observe differential equations f ′(η)− a(η) f (η) = epη and h′(η)−
a(η)h(η) = esη . Then from (3.5) we get

e(p−s)η =
(

f (y)− f (x)− ∫ y
x a(t) f (t)dt

h(y)−h(x)− ∫ y
x a(t)h(t)dt

)

From f ′(t)−a(t) f (t) = ept we have a(t) f (t) = f ′(t)− ept , so

f (y)− f (x)−
∫ y

x
a(t) f (t)dt =

epy− epx

p
.

In the same way we get,

h(y)−h(x)−
∫ y

x
a(t)h(t)dt =

esy − esx

s
.

So,

η = ln

{
s(epy− epx)
p(esy− esx)

} 1
p−s

i.e.

η = ln

(
ζ (p)
ζ (s)

) 1
p−s

.
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Making substitutions ey → y , ex → x and then ln s(yp−xp)
p(ys−xs) → s(yp−xp)

p(ys−xs) we consider the
following expression

E(x,y;s, p) =
{

s(yp − xp)
p(ys − xs)

} 1
p−s

.

Hence, again we get Stolarsky mean.

REMARK 4.4. From Remark 2.3 (iii) we have that for a(x) = h′(x)
h(x) , function f/h

is monotonic. Special case, when f/h is an increasing function is studied in [6]. Using
generalization of Steffensen’s inequality for f/h increasing given in [12, p. 192] linear
functional L is defined as the difference between the left-hand and the right-hand side
of Steffensen’s inequality by

L( f ) =
∫ b

a
f (t)g(t)dt−

∫ a+λ

a
f (t)dt.

Let a(x) = k′(x)
k(x) , g(x) = k(x) , m(x) = mk(x) and M(x) = Mk(x) . Then R1 defined by

(3.1) is equal to Mxk(x) and R2 defined by (3.2) is equal to mxk(x) . Hence functions
Φ1 and Φ2 defined in Lemma 3.1 are

Φ1 = Mxk(x)−h(x), Φ2 = h(x)−mxk(x)

which are exactly the functions used in the proof of the Lagrange-type mean value
theorem given in [6]. Moreover, using linear functional L instead of the difference
between the left-hand and the right-hand side of inequality (2.2) , from Theorem 3.1
we can obtain Lagrange-type mean value theorem given in [6]. In the same way, from
Theorem 3.2, we can obtain the Cauchy-type mean value theorem given in [6].
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