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FOUR INEQUALITIES OF VOLKMANN TYPE

WŁODZIMIERZ FECHNER

(Communicated by R. Ger)

Abstract. We deal with four functional inequalities which are motivated by a result of A. Chaljub-
Simon and P. Volkmann from 1994 and by several later results concerning the following two
equations:

max{ f (x+ y), f (x− y)} = f (x)+ f (y) (for each x,y)

min{ f (x+ y), f (x− y)} = | f (x)− f (y)| (for each x,y).

The purpose of the paper is to establish some basic properties of the inequalities discussed and
to compare them with some well known classical functional inequalities, such as the inequality
of subadditivity or the inequality of Jensen-quasiconvexity.

1. Introduction

In [6] we dealt with the following functional inequality:

| f (x)− f (y)| � f (x+ y)+ f (x− y)− f (x)− f (y) � min{ f (x+ y), f (x− y)} (1)

and with the corresponding functional equation:

| f (x)− f (y)| = f (x+ y)+ f (x− y)− f (x)− f (y) (2)

for a real mapping f acting on an Abelian group G . In particular, using a generalization
of the Hahn-Banach theorem due to R. Ger [7] we proved that each mapping f : G→R

which satisfies (1) for all x,y ∈ G jointly with f (0) = 0 is of the form

f (x) = ‖A(x)‖, x ∈ G,

where A : G→ X is an additive mapping having values in a certain normed linear space
X . Then, using this result, we derived the general solution of (2) as

f (x) = |A(x)|+ c, x ∈ G
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with an arbitrary additive mapping A : G→R and a constant c∈R . Later, P. Volkmann
(private communication) observed that equation (2) for mapping f : G → R vanishing
at zero can be transformed equivalently to the following equation:

max{ f (x+ y), f (x− y)} = f (x)+ f (y), (3)

which was first discussed in A. Chaljub-Simon and P. Volkmann [4]. Recently a new
proof and an interesting application of their result were obtained by T. Kochanek [12].
Some more results and comments can be found in a paper of W. Jarczyk and P. Volk-
mann [11].

The following equation:

min{ f (x+ y), f (x− y)} = | f (x)− f (y)|, (4)

which is in a sense complementary to equation (3) but not equivalent to it, was intro-
duced in [4]. Some related results are due to R.M. Redheffer and P. Volkmann [13] and
more recently the topic was studied by K. Baron and P. Volkmann [3] in more general
settings.

Therefore, it is well-motivated to ask about solutions of the following functional
inequalities:

max{ f (x+ y), f (x− y)} � f (x)+ f (y), (A)

max{ f (x+ y), f (x− y)} � f (x)+ f (y), (B)

min{ f (x+ y), f (x− y)} � | f (x)− f (y)|, (C)

min{ f (x+ y), f (x− y)} � | f (x)− f (y)|. (D)

All the above inequalities are discussed in the subsequent sections.
Recently, A. Gilányi [8] proposed to call a broad class of related functional in-

equalities Volkmann type inequalities due to outstanding contribution of Professor Peter
Volkmann to this field. Therefore, we take the liberty to put this name into use and call
inequalities (A)-(D) to be of Volkmann type.

A straightforward observation concerning these inequalities is the lack of symme-
try between (A) and (B) and between (C) and (D), respectively. In fact, (A) can be
rewritten as a system of two simultaneous inequalities:{

f (x+ y) � f (x)+ f (y);
f (x− y) � f (x)+ f (y),

whereas inequality (B) can be written an alternative of two inequalities:

∀
x,y

[ f (x+ y) � f (x)+ f (y) or f (x− y) � f (x)+ f (y)].

Similarly, (C) is a system of two simultaneous inequalities and (D) is a respective alter-
native. Therefore, one may expect relatively broad classes of solutions of inequalities
(B) and (D) and fewer solutions of (A) and (C).
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2. Inequality (A)

LEMMA 2.1. Assume that (G,+) is an Abelian group and f : G → R satisfies
inequality (A) for all x,y ∈ G. Then:

(a) max{ f (2x), f (0)} � 2 f (x) for each x ∈ G,

(b) f is nonnegative,

(c) f is subadditive.

Proof. Substitute x = 0 and y = 0 in (A) to get f (0) � 0. Then, substitution y = x
in (A) immediately implies assertion (a), which, jointly with the previous observation
gives us

0 � f (0) � max{ f (2x), f (0)} � 2 f (x),

and therefore (b) is proved. The last assertion is obvious. �

Since each solution of (A) is a nonnegative subadditive mapping, one may ask
whether the converse is also true. However, the following example provides a negative
answer to this question.

EXAMPLE 2.2. Let us define f1 : R → R by the formula

f1(x) =
{ 1

2 , x < 0,

x+ 1
2 , x � 0.

Clearly, f1 is nonnegative and one can easily see that f1 is subadditive. However,
inequality (A) is not fulfilled; to see this it is enough to take x = 0 and y = −1:

max{ f1(−1), f1(1)} = 2 > 1 = f1(0)+ f1(−1).

Therefore, we need to seek for an additional condition under which we are able to
obtain a full description of solutions of inequality (A).

THEOREM 2.3. Assume that (G,+) is an Abelian group and f : G → R satisfies
f (0) = 0 . Then f fulfills inequality (A) for all x,y ∈ G if and only if f is even and
subadditive mapping.

Proof. If f satisfies (A) then clearly f is subadditive. Additionally, we have

f (x− y) � f (x)+ f (y), x,y ∈ G.

Substitute x = 0 in the above inequality and apply the condition f (0) = 0 to deduce
the estimate

f (−y) � f (0)+ f (y) = f (y), y ∈ G.

Now, to obtain the evenness of f , it is enough to replace y by −y .
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To justify the converse implication it suffices to observe that if f is even and
subadditive then

f (x− y) = f (x+(−y)) � f (x)+ f (−y) = f (x)+ f (y),

which, jointly with the subadditivity of f , implies inequality (A). �

Now, we will show that the condition f (0) = 0 in the foregoing theorem can be
slightly relaxed.

THEOREM 2.4. Assume that (G,+) is an Abelian group and f : G → R satisfies
inequality (A) for all x,y ∈ G. If f vanishes at any point x0 ∈ G then f vanishes at
zero.

Moreover, if the set

K = {x ∈ G : f (x) = 0}

is nonempty then K forms a subgroup of G.

Proof. If f (x0) = 0 then, by Lemma 2.1 we deduce that

0 � f (0) � max{ f (2x0), f (0)} � 2 f (x0) = 0,

thus f (0) = 0.
Next, if x,y ∈ K then clearly

0 � max{ f (x+ y), f (x− y)} � f (x)+ f (y) = 0;

thus, in particular, f (x− y) = 0, i.e. x− y ∈ K . �

In view of the foregoing statements, it remains to discuss solutions of (A) which do
not have zeros. Our next easy example shows that there is a lot of freedom to construct
such solutions of (A).

EXAMPLE 2.5. Let (G,+) be an arbitrary Abelian group, let M > 0 be arbitrarily
fixed constant and let f2 : G → R be an arbitrary function such that f2(G) ⊂ [M,2M] .
Then f2 provides a solution of inequality (A). Indeed, for each x,y ∈ G we have

max{ f2(x+ y), f2(x− y)} � 2M � f2(x)+ f2(y).
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3. Inequality (B)

In this section we will focus on inequality (B) and on a related functional equation.
Let us recall the notion of quasiconvexity and Jensen-quasiconvexity. The terminology
is in accordance with the survey paper H.J. Greenberg and W.P. Pierskalla [10] and with
the monograph A.W. Roberts and D.E. Varberg [14]. If I ⊂ R is a nonempty interval
and f : I → R is an arbitrary mapping, then f is called quasiconvex if it satisfies

f (u) � max{ f (x), f (y)}, x,y,u ∈ I, x � u � y, (5)

and f is Jensen-quasiconvex if it fulfills

f

(
x+ y

2

)
� max{ f (x), f (y)}, x,y ∈ I. (6)

Clearly, if a map f is quasiconvex then it is Jensen-quasiconvex. In 2004 A. Gilányi, K.
Nikodem and Zs. Páles [9] proved that in the class of upper semicontinuous functions
quasiconvexity and Jensen-quasiconvexity are equivalent. On the other hand, it is well
known that in general settings the quasiconvexity is an essentially weaker property than
the classical convexity.

Note that inequality (6) can be transformed into

f (x) = f

(
x+ y+ x− y

2

)
� max{ f (x+ y), f (x− y)}. (7)

Therefore, it is reasonable for a real mapping defined on an arbitrary Abelian group to
call it Jensen-quasiconvex if it solves inequality (7).

Now, we are able to provide some straightforward examples of solutions of in-
equality (B).

EXAMPLE 3.1. Let (G,+) be an arbitrary Abelian group. Each superadditive
mapping defined on G provides a solution of inequality (B). Further, each nonpositive
Jensen-quasiconvex map on G satisfies (B). Moreover, if f solves (A) then − f solves
(B) (it is clear that the converse implication is not true: if f fulfills (B) then − f needs
not to fulfill (A)). Finally, f3 : R → R given by f3(x) = x2 satisfies inequality (B).
Indeed,

max{(x+ y)2,(x− y)2} = x2 + y2 +2|xy|� x2 + y2

for each x,y ∈ R . Function f3 serves as an example of convex (and thus Jensen-
quasiconvex) solution of (B) which is not nonpositive. Moreover, f3 is not superad-
ditive.

In view of the foregoing examples we see that inequality (B) is relatively weak.
Therefore, to obtain a reasonable description of solutions of (B) we need to impose
some additional conditions.

Now, let us rewrite inequality (B) as an alternative:
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∀
x,y

[Φ1(x,y) or Φ2(x,y)], (8)

where
Φ1(x,y) ≡ [ f (x+ y)− f (x)− f (y) � 0]

and
Φ2(x,y) ≡ [ f (x− y)− f (x)− f (y) � 0].

Observe that in case of superadditive solutions of (B) always Φ1 is fulfilled, Map-
ping − f2 from Example 2.5 fulfills both Φ1(x,y) and Φ2(x,y) for each x,y , whereas
for f3 from Example 3.1 exactly one of the two possibilities holds, unless xy = 0.

In what follows we will examine the situation, where exactly one possibility Φ1(x,y)
or Φ2(x,y) is true excluding the case of equality in one or both inequalities. Assume
that G = R and f : R → R is continuous. In particular, for each fixed x,y ∈ R the map

[−1,1] � t 	→ ϕx,y(t) := f (x+ ty)− f (x)− f (y) ∈ R (9)

is continuous. Then, we may rewrite Φ1(x,y) and Φ2(x,y) as ϕx,y(1) � 0 and ϕx,y(−1)
� 0, respectively. Clearly, if exactly one possibility Φ1 or Φ2 holds true then there
exists a point ξx,y ∈ [−1,1] such that ϕx,y(ξx,y) = 0; in other words, the following
functional equation is fulfilled:

f (x+ ξx,y · y) = f (x)+ f (y). (10)

If we denote x◦ y := x+ ξx,y · y for each x,y ∈ R then equation (10) takes the form

f (x◦ y) = f (x)+ f (y), x,y ∈ R.

In other words f is a homomorphism.
If additionally f is invertible then we have the following representation of the

operation ◦ :
x◦ y = f−1( f (x)+ f (y)), x,y ∈ R.

But this is the general form of associative, continuous and cancellative operations on
the real line or a real interval (see J. Aczél [1], J. Aczél [2, Chapter 6.2], R. Craigen and
Z. Páles [5]).

It is straightforward to check that always 0 is the neutral element (not necessarily
unique) of the operation ◦ . Therefore, we can think of invertible elements with respect
to this operation.

Since ξx,y ∈ [−1,1] then

|x◦ y− x|� |y|, x,y ∈ R. (11)

Inequality (B) can be rewritten as:

f (x◦ y) � max{ f (x+ y), f (x− y)}, x,y ∈ R,
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If additionally f is strictly increasing then we have equivalently

x◦ y � max{x+ y,x− y}= x+ |y|, x,y ∈ R.

Therefore, in this case inequality (B) is a consequence of relation (11). Consequently,
in view of the above mentioned result of J. Aczél, each associative operation ◦ which
is continuous, cancellative and satisfies (11) yields a continuous solution of inequality
(B).

4. Inequality (C)

EXAMPLE 4.1. The mapping f2 from Example 2.5 provides a solution of in-
equality (C). Indeed, for each x,y ∈ G we have

min{ f2(x+ y), f2(x− y)} � 2M � | f2(x)− f2(y)|.

Furthermore, each mapping which is constant and nonnegative solves (C).

In view of the foregoing example we need to impose an additional assumption that
f (0) = 0.

THEOREM 4.2. Assume that (G,+) is an Abelian group and f : G → R satisfies
f (0) = 0 . Then f fulfills inequality (C) for all x,y ∈ G if and only if f is even and
subadditive mapping.

Proof. To prove the “if” part substitute x = 0 in (C) to obtain

min{ f (y), f (−y)} � | f (0)− f (y)| = | f (y)|,

for each y ∈ G. From this estimation we see that f is nonnegative and then that it is
even. Having this we can easily calculate that for each s, t ∈ G we have

f (s) = f (s+ t− t) � min{ f ((s+ t)+ t), f ((s+ t)− t)}
� | f (s+ t)− f (t)|� ∣∣| f (s+ t)|− | f (t)|∣∣ � f (s+ t)− f (t),

thus f is subadditive.
To prove the converse implication it is enough to fix x,y∈G and observe that from

the subadditivity and from the evenness of f we get

f (x)− f (y) � f (x− y)

and
f (y)− f (x) � f (y− x) = f (x− y).

Thus
| f (x)− f (y)| � f (x− y)
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and also
| f (x)− f (y)| = | f (x)− f (−y)| � f (x+ y).

The last two estimates prove that f satisfies inequality (C). �
Now, we may establish an analogue to Theorem 2.4.

THEOREM 4.3. Assume that (G,+) is an Abelian group and f : G → R satisfies
inequality (C) for all x,y ∈ G. If f vanishes at any point x0 ∈ G then f vanishes at
zero.

Moreover, each point from the set

K = {x ∈ G : f (x) = 0}
is a period of f .

Proof. From inequality (C) applied for y = 0 we deduce that

0 = f (x0) = min{ f (x0), f (x0)} � | f (x0)− f (0)| = | f (0)|,
thus f (0) = 0.

Now, if x ∈ K and y ∈ G is arbitrary then

0 = f (x) � min{ f ((x+ y)+ y), f ((x+ y)− y)}� | f (x+ y)− f (y)| � 0,

so f (x+ y) = f (y) . �

5. Inequality (D)

Similarly like in cases of (A) and (B) situation is much less satisfactory for in-
equality (D) than for (C). Therefore, we restrict ourselves to providing a few examples
of solutions of (D).

Observe first, that by putting x = y = 0 in (D) we see that each solution of this
inequality satisfies f (0) � 0.

EXAMPLE 5.1. Let (G,+) be an arbitrary Abelian group. Clearly, each nonposi-
tive map on G satisfies (D). Next, observe that each superadditive mapping defined on
G provides a solution of inequality (D). Indeed, for arbitrary x,y ∈ G we have

f (x+ y) � f (x)− f (−y)

and
f (x− y) � f (x)− f (y),

thus

min{ f (x+ y), f (x− y)} � min{ f (x)− f (−y), f (x)− f (y)}
= f (x)−max{ f (y), f (−y)} � f (x)− f (y) � | f (x)− f (y)|.
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Further, if f solves (C) then − f solves (D) but not conversely.
Finally, we will show that if G = R then f = sinh solves (D). Fix arbitrary x,y ∈

R , we want to prove the inequality

min{sinh(x+ y),sinh(x− y)}� |sinh(x)− sinh(y)|.

Using some elementary identities for hyperbolic functions this inequality can be trans-
formed equivalently into

min

{
sinh

(
x+ y

2

)
cosh

(
x+ y

2

)
,sinh

(
x− y

2

)
cosh

(
x− y

2

)}

�
∣∣∣∣cosh

(
x+ y

2

)
sinh

(
x− y

2

)∣∣∣∣ .
Now, if we denote α = x+y

2 and β = x−y
2 and observe that it is enough to restrict

ourselves to the case α > 0 and β > 0 so that sinhα > 0 and sinhβ > 0 are positive
then we arrive at

min{sinhα coshα,sinhβ coshβ} � coshα sinhβ .

Since both mappings sinh and cosh are increasing and nonnegative then both estimates
sinhβ < sinhα and coshα < coshβ cannot hold simultaneously and consequently the
foregoing inequality is true.

It is worth to note that f = sin does not satisfy inequality (D). Indeed, it suffices
to take x = π

2 and y = π
6 and calculate that

min
{

sin
(π

2
+
π
6

)
,sin

(π
2
− π

6

)}
=

√
3

2

and ∣∣∣sin(π
2

)
− sin

(π
6

)∣∣∣ =
1
2
.

REMARK 5.2. We are aware that we are far from providing satisfactory descrip-
tions of inequalities discussed, especially of (B) and (D). Therefore, it is an open prob-
lem whether it is possible to prove any more definite results.
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