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NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS

OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES

VAGIF S. GULIYEV, JAVANSHIR J. HASANOV AND YUSUF ZEREN

Abstract. We prove that the fractional maximal operator Mα and the Riesz potential operator
Iα , 0 < α < n are bounded from the modified Morrey space ˜L1,λ (Rn) to the weak modified

Morrey space W˜Lq,λ (Rn) if and only if, α/n � 1− 1/q � α/(n− λ) and from ˜Lp,λ (Rn) to
˜Lq,λ (Rn) if and only if, α/n � 1/p−1/q � α/(n−λ) .

As applications, we establish the boundedness of some Schödinger type operators on mod-
ified Morrey spaces related to certain nonnegative potentials belonging to the reverse Hölder
class. As an another application, we prove the boundedness of various operators on modified
Morrey spaces which are estimated by Riesz potentials.
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